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Abstract—In this paper, we propose a computational method for
constructing variable surface impedance, based on combining Rytov’s
perturbation method and level set technique. It is well-known that the
choice of the most appropriate order of Rytov’s expansion is important
both for accuracy and implementation. By using level set method,
we constructed a piecewise distribution of low- and high-order surface
impedance boundary conditions on the surface of an arbitrarily shaped
conductor. It is found that the proposed method is able to give good
results both in terms of accuracy and implementation cost.

1. INTRODUCTION

The surface impedance was introduced to model conductors with a
sufficiently strong skin effect. The main idea behind this concept
is replacing the conducting volume by an approximate boundary
condition applied to the interface conductor/dielectric. Therefore, the
field distribution in the conductor can be omitted. We focus only
on exterior field. Modeling conductors by SIBC have been shown
to be of great importance because of their various applications in
many areas such as electromagnetic scattering, geophysical problems,
RCS computation and other sciences. The use of SIBC reduces
the expected computational cost by eliminating conducting volume
from the numerical implementation. Judicious choice of SIBC’s order
provides good compromise between accuracy and implementation cost,
but for complicated geometry conductors it is difficult to have such an
opportunity by using only one SIBC’s order. Indeed, application of
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high order SIBC on entire conductor’s surface makes numerical solution
very expensive, without necessarily providing significant improvement
in accuracy. On the other hand, the improper use of low SIBC’s orders
degrades numerical accuracy. So, it will be interesting to apply a
variable SIBC, where the choice of the approximation order depends
on local geometric properties of the conductor’s surface. By using level
set technique, we tried to find where each approximation order should
be applied on the conductor’s surface to get good compromise between
accuracy and implementation cost. The level set method is recognized
as a numerical technique for tracking interfaces and shapes, in this
paper we used level set representation of interfaces between domains
with different approximation SIBC’s order. So to identify the best
suited region for each order we just need to identify the appropriate
level set function.

2. RYTOV’S APPROACH

By using perturbation method, Rytov developed general method to
construct low and high order SIBCs. He demonstrated that SIBC is
equal to the infinite sum of asymptotic expansion in p [1], where p
is the ratio between skin depth and characteristic dimension of the
conductor’s surface.

Bue = (<P S 1 2 () 1)
“7” denotes a non-dimensional V;Ees.
p=2 &)
2
6= s 3)
R = min(Rs, R,) (4)

where u, w, o, Rs, R, and v are respectively the magnetic
permeability, angular frequency, the electrical conductivity, the
minimum radius of curvature, the minimum distance between the field
source and the conductor, the principal curvature coordinates.
The condition of applicability of Rytov’s expansion can be
summarized as follows [2]:
p<1 (5)

The =zero order expansion represents SIBC for perfect electric
conductors (PEC), where there is no electromagnetic field penetration.
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The first expansion order represents Leontovich SIBC, where the
electromagnetic field variation parallel to the surface is assumed to
be small compared to the variation perpendicular to the surface [1].

1+
By = (-1 L By i+ 00?) (7)
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where ¢ is the dielectrical permittivity of the conductor.
The second expansion order is Mitzner SIBC, take into
consideration the radii of curvature [1].

- . 1+7 [ = 1 5 5
Euk:(—1)3 kaj [Hv3 kD 49J <d3 lk dy, 1) H@-‘C} +O(p3) &)

where Jk, k = 1,2 are the local radii of curvature.
The third expansion order is Rytov SIBC, take into consideration,
the variations of electromagnetic fields on the conductor’s surface [1]
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The approximation errors of PEC, Leontovich, Mitzner, and Rytov
SIBC are respectively p, p?, p* and p*.

3. LEVEL SET REPRESENTATION

Let consider € an open subset of R? represents a conductor object
and let I' be a closed surface in 2. We define 9 as a signed distance
function by [3]:

| distance (r,I') if reQ
Y= { —distance (r,I') if r ¢ Q (11)

It is clear that I' is the zero level set of the function v, I' divides the
domain €2 into two parts, then the level set function 1 is positive inside
Q0 and negative outside.

Once the level set function ¥ is defined, we can use it to calculate
the local geometric properties of the conductor’s surface.
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The normal vector is given by [4]:

vy
n= —- (12)
Il
The mean curvature [4]:
%
kK=-V-n=-V L4 (13)

vyl

The Gaussian curvature:
G =1 - Adj(He(v))7n (14)

where He(v)) is the 3 x 3 Hessian matrix of the function ¢, Adj(He(v)))
is the adjoint of the Hessian He(1)).

Principal curvatures x; and ko can be expressed in terms of
gaussian and mean curvature as follows:

e

Ky = % (15)

k+vVK: -G
2

We define the minimal radius of curvature at each point on the
conductor’s surface by:

R = (16)

1
max(|k1], |k2])
2

Ry=— >
v |k| + VK2 — G

where || is the absolute value of the mean curvature k.

Any part of the object’s surface ' can be represented also by a
level set function.

Let ¢ be a closed curve defined on I' and represents the boundary
of a region I'z in the conductor’s surface I', we define ¢ as [5] :

(=¢ny (19)
( is the intersection of the zero level set function ¢ and the zero level
set function .

R, = (17)

(18)

4. METHODOLOGY

For simplicity, let Zy, Z1, Zo and Z3 denote respectively the PEC,
Leontovich, Mitzner and Rytov SIBC.

By using many SIBC to model an arbitrarily shaped conductor,
the total SIBC Z, is shown as a piecewise function, for example,
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assuming that Z equals Z; inside I'y; and equal Z; outside I'yz, it is
easy to see that Z can be represented as:

Z = ZoH(p) + Z:(1 - H(p)) (20)

where H(p) the Heaviside function, defined by:

1 i >0
H(‘P)—{o if ©<0 (21)

From (20), we deduce the total approximation error:
E = pH(p) +p*(1 — H(p)) (22)
J J

= = > — 23
P=RZER, (23)

It is clear that, if, p < 1 then py = R%, < L.
So, we define E, as:
By = pyH(p) +py(1 — H(p)) (24)
Assume now, we have two closed curves (; and (3 on I', and we associate

the two level set functions ¢; and @9 with these curves. Then the
conductor’s surface I is divided into four parts:

F1:{T€F, p1 >0, 902>0}

FQZ{T’GF, p1 >0, g02<0}

FgZ{TEF, p1 <0, g02>0}

Ly={rerl, y1 <0, p2 <0}
Using the Heaviside function again, we can express Z as:

Z = ZoH(p1)H(p2) + Z1H(1)(1 — H(p2))
+2Z2(1 — H(p1))H(p2) + Z3(1 — H(p1))(1 — H(p2)) (26)

The associated approximation error £y, is:

Ey = pyH (1) H(p2) +pH (1) (1 — H(2))

+pi (1 — H(p1))H (p2) + py (1 — H(1))(1 — H(p2)) (27)
By generalizing, we see that n level set functions split the surface I' in
2" regions [6]. o ‘
Let bin(i — 1) = (b%,b,...,b.,) the binary representation of ¢ — 1
b € {0,1} (28)
The total piecewise surface impedance, composed by Z;, i =
0,1,2,...,2, — 1 could be represented as:

A n
Z = Z Zi-1 H Ri(5) (29)
i=1 j=1

(25)
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where

H(p;) if b, =0

The associated approximation error £, is:

2n n
Ey=> i [[ Rile)) (31)
=1 j=1

Assume that we want to use m surface impedance Zp<j<m—1 for
modeling a conductor object such that E, don’t exceed a fixed
threshold S. We can use n level set functions to split the conductor’s
surface into m region, with n defined by:

ol am<om (32)
It is easy to reformulate this problem to an optimization one, as follow:
‘Pfgzgn = arg minJ(@h P2y, SOTL) (33)

P1<i<n

Find level set functions ¢j.;.,, which minimize the cost functional .J.

2

A n
T(p1, 0, on) = (By = 9)? = [ > py [[ Rilgy) = S (34)
i=1  j=1

We will use the gradient type method to find ¢j;,,, we just need to
compute the % for1 <i<n.

oJ OEy
=2 (Ey —
20 (Ey —5) 9o (35)
where
aE 271/ Z n
5 C=S"p | T Riles) | Dle) (36)
vio o j=1,j#i
and
N 5((,01) if b;z
o ={ 50 & 4 (37)

0(p) denotes the Dirac function:

so={ ¥ 520 (38)
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So,

2n n 2n n
oJ , A
oo =22 pu ][ Rilen) =S| D_ru| 11 Rile))]| Dig)] (39)
Pi i=1  j=1 i=1 j=1,ji
We used the following gradient algorithm to construct a piecewise
surface impedance for a given conductor shape:

1- Compute the minimum radius of curvature R.

2- For a given frequency f and conductivity o, verify if p < 1.
3- Choose a threshold S.

4- Determine how many level set functions we need to use.

5- Choose initial level set functions ¢, .

6- for k > 1:
- Choose the step size a; and update the level set functions as:

3 0 Qﬁk_l,@k_l,..-,ﬁpk_l
o=t - )y
Pi

- Go to the next iteration if not converged.

Figure 1. Conductor object.
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5. NUMERICAL EXAMPLE

In order to show the feasibility of this method, we present an example
of construction of piecewise surface impedance by the proposed
scheme.We consider an aluminum smooth dumbbell (¢ = 3.5714 x
107 S - m~!) as shown in Figure 1, illuminated by an incident plane
wave at 100 kHz.

We take the computation domain D as:

D =[-2,2] x [-2,2] x [-2,2] (41)

D is divided into square elements with uniform mesh size (h = h, =
hy = h, = 0.05). The proposed method has been developed and
implemented within MATLAB environment and the level set Toolbox
of Ian Mitchell [7]. The Figure 2 show the construction of piecewise
surface impedance by using the first four SIBC (PEC, Leontovich,
Mitiner and Rytov) where the approximation error don’t exceed
10~*%.

From Figure 2, it follows that, to get a small approximation order
about 1074%, there is no need to use high SIBC every where on the
conductor’s surface. High SIBC’s orders are localized near smooth
corners where the curvature radius tends to zero, however low SIBC’s
orders are localized near flat surfaces.

We can also observe from the results, that the proposed method
leads to a SIBC discontinuity between adjacent regions, which
produce spurious edge effects when calculating the scattered fields

Rytov SIBC

9 - 1 2 Mitzner SIBC

1 Leontovich SIBC

0 PEC SIBC

Figure 2. Piecewise surface impedance boundary conditions.
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computationally. We can circumvent this drawback by introducing
local buffer area between adjacent regions. Indeed, the interactions
of sub-regions with buffer regions can suppress the singularities
introduced by the abrupt termination of each sub-region and ensure
stability and accuracy.

6. CONCLUSIONS

We have reported a numerical scheme combining Rytov’s perturbation
method and level set technique to construct a piecewise surface
impedance for an arbitrarily shaped conductor. It is found that
proposed method is able to automate the construction of variable SIBC
with good compromise between accuracy and implementation cost. By
using Level set technique, this method shows a great potential to be
applied to electromagnetic structure design and optimisation.
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