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Abstract—An array processing algorithm based on artificial neural
networks (ANNs) is proposed to estimate the directions of arrival
(DOAs) of moving humans using a small sensor array. In the approach,
software beamforming is first performed on the received signals from
the sensor elements to form a number of overlapping beams. The
received signals from all the beams produce a unique “signature” in
accordance with the target locations as well as the number of targets.
The target tracking procedure is handled by two separate ANNs in
sequence. The first ANN determines the number of targets, and the
second ANN estimates their respective DOAs. The ANNs are trained
using simulation data generated based on a point scatterer model in
free space. The proposed approach is tested using measurement data
from two loudspeakers and two walking humans in line-of-sight and
through-wall environments.

1. INTRODUCTION

Through-wall human detection, tracking and imaging using radar
within a highly cluttered environment is a problem of current
interest [1–8]. Some potential applications include law enforcement,
urban military operation, and disaster search-and-rescue. The goal is
to sense humans through building walls using a radar system. For
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practical use, a compact, portable device would be desirable. In
this context, the use of a small sensor array is useful for finding
the directions of arrival (DOAs) of humans. For example, in [7, 8]
a Doppler-based sensor array with very few elements was researched
to track humans, as it can offer an inexpensive way to detect moving
targets in the presence of stationary clutters.

The determination of DOA using a sensor array is a well studied
topic in radar [9–12]. Using a sensor array, the DOA information could
be obtained by either a beam-steering method or a super-resolution
algorithm. The beam-steering method attempts to find the DOA
information by changing the direction of the main lobe of the array
pattern and detecting the power of the received beams. The resolution
in beam steering to distinguish two targets is inversely proportional
to the electrical size of the array. When the available number of
sensor elements is small while assuming Nyquist spatial sampling,
the technique has a poor angular resolution. Nevertheless, human
tracking using a four-element array was successfully demonstrated
in [8]. To overcome the influence of side lobes of a strong target
from overshadowing weaker targets, algorithms such as CLEAN [13]
and RELAX [14] were applied. These algorithms showed promising
results. However, they are computationally very expensive and can not
be implemented for real-time applications. Super-resolution algorithms
such as MUSIC [15] and ESPRIT [16] determine the phase angles of
the arriving signals using exponential parameter estimation. They have
been successfully used for high-resolution DOA estimation. However,
the returns from an angularly distributed human subject may violate
the data model and pose a challenge for the algorithms. The results
can also be unstable when the number of sensors is small. Furthermore,
correlated returns from multiple targets may further reduce their
performance.

In this paper, we investigate an alternative approach for the
DOA estimation of multiple humans using a small sensor array. The
approach is based on an artificial neural network (ANN), which has
been applied to DOA estimation problems [17–19]. Previous works
used ANN to the array output with slight preprocessing for the
estimation of DOA. In our approach, software beamforming is first
performed on the received signals from the sensor elements. In the
beamforming process, a number of overlapping beams are formed
simultaneously. The received signals from all the beams produce a
unique “signature” in accordance with the target locations as well
as the number of targets. By properly establishing the relationship
between the received signatures and the number of targets (or the
target locations) via an ANN, the identification of the number of
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targets (or their locations) can be carried out. In our target tracking
procedure, two separate ANNs are used sequentially. The first ANN
determines the number of targets, and the second ANN estimates
their respective DOAs. The ANNs are trained using simulation data
generated using a point scatterer model in free space. Once the ANNs
are trained, they can be used to carry out the DOA estimation in
real-time. The proposed approach is verified by measurements of
loudspeakers and walking humans using a four-element array described
in [8]. Through-wall measurements are also performed and their results
are reported.

2. PROCESSING IN BEAMFORMING SPACE

2.1. Problem Formulation

Our proposed approach to estimate the number of targets and to find
their DOAs can be considered as an extension of the monopulse radar
concept. Monopulse is a simultaneous lobing technique for determining
the angular location of a target with high resolution [20]. Two beams
are generated slightly off the target direction. The ratio of the received
signal strengths from the beams determines the more accurate bearing
of the target. The DOA information is derived using the monopulse
ratio:

Monopulse Ratio =
Difference of the Strengths

Sum of the Strengths
(1)

The monopulse concept improves the angular resolution, but this
technique is limited to finding the DOA of a single target. When there
are multiple targets, the DOA estimation may not be correct because
the sidelobes of the beams can receive returns from other targets.

Here, we extend the monopulse concept by generating several
beams simultaneously in order to track multiple targets using a
moderate size array. In the beamforming process, a number of
overlapping beams are formed. The beams are broad due to the limited
size of the array. The received signal strengths from the beams form
a (preferably unique) signature in accordance with the number of
targets and their bearing locations. Therefore, by properly modeling
the relationship between the signature and the number of targets (or
their bearing locations), the identification of the target information
may be carried out.

The signature, i.e., the relative received strengths from the
different beams, plays a key role for estimating the number of targets
and their DOAs. In our discussion, we normalize the signature by the
total signal strength to eliminate the effects from the target range and
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(a) (b)

Figure 1. Multiple targets case. (a) 12 formed beams. (b) Signature
consisting of the received power from all the beams.

the target radar cross section. When there is a single target, a beam
directed close to the target experiences the strongest signal return. The
beams directed far off the target also experience a return due to the
sidelobe of its pattern. A more accurate DOA can be determined by
comparing the ratio of the received strengths from adjacent beams, as
is done in a monopulse radar. As the number of targets increases, the
signature of the received beams becomes more complex. The received
signal strength of each beam is a complex sum of returns from all the
targets. Fig. 1 depicts the situation with four targets. The normalized
signature is strongly related to the number of targets, their strengths,
and their locations. The signature is normalized by dividing by its
energy to remove the effects of distance and the RCS of the target,
which are not parameters of interest in this paper.

The forward relationship can be formulated by an equation when
we assume a uniform linear array. If the number of targets is N , the
number of sensors is P and the number of generated beams is S, the
received signal from the each beam can be expressed as

[E1, E2, . . . , ES ] = k1 · [r1
1, r

2
1, . . . , r

S
1 ] + . . . + kN · [r1

N , r2
N , . . . , rS

N ] (2)

where Ei is the received signal from the ith beam, kj is the
target strength of the jth target, which is a complex number, and
[r1

m, r2
m, . . . , rS

m] is a vector representing the phase response of the array
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from the mth target represented as




r1
m

r2
m·
·
rS
m


 =




P∑
n=1

e−jβd(n−1) sin φ1 · e−jβd(n−1) sin θm

P∑
n=1

e−jβd(n−1) sin φ2 · e−jβd(n−1) sin θm

·
·
P∑

n=1
e−jβd(n−1) sin φS · e−jβd(n−1) sin θm




(3)

where θm (−90◦ < θm < 90◦) is the DOA of the mth target, φi

(−90◦ < φi < 90◦) is the ith beam angle, d is the antenna spacing
and β (= 2π/λ) is the wave number. Because each r vector is uniquely
dependent on the DOA of the target, Eq. (2) can be written as:

[E1, E2, . . . , ES ] = k1 ·H(θ1) + . . . + kN ·H(θN ) (4)

Here, the function H, which is an S-dimensional function, is assumed
to be known. For a given set of E, N and θm are the unknown values to
be estimated. The target strength km in Eq. (4) is dependent not only
on the target range but also on the radar cross section of the target,
and, is not considered of interest. While the phase information at the
beam output may be informative, only the magnitude information is
considered in this study. Thus, the final equation becomes:

[∣∣E1
∣∣ , ...,

∣∣ES
∣∣] = abs (k1 ·H(θ1) + k2 ·H(θ2) + . . . kN ·H(θN )) (5)

where abs(A) is the matrix where abs(A)i = |Ai|. The number of
targets N and the target DOAs should be determined based on the
received signature [|E1|, . . . , |ES |]. Since the relationship between
the signature and the information of interest is quite complex and
nonlinear, we will utilize an artificial neural network to approximate
the relationship.

2.2. Uniqueness of the Solution

In order to apply the ANN for DOA estimation, it should be verified
that the problem is truly a regression problem, i.e., we must be able
to determine a unique DOA in accordance with a given signature. If
not, a high DOA estimation error will result from the ANN. In the
above problem, the conditions that ensure the uniqueness of the DOA
estimation are S ≥ P and P ≥ 2N (S =no. of beams, P =no. of
sensors, N =no. of targets). In this section, we prove that the solution
is unique under these conditions.
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The lemma we have is that the k and θ that satisfy Eq. (2) are
unique for a given E when S ≥ P and P ≥ 2N . If we assume that the
solution is not unique so that 〈k, θ〉 and 〈k′, θ′〉 are two sets of solutions
that satisfy Eq. (2), the following equation can be written:




E1

E2

·
·
ES


 = k1 ·




P∑
n=1

e−jβd(n−1) sin φ1 · e−jβd(n−1) sin θ1

P∑
n=1

e−jβd(n−1) sin φ2 · e−jβd(n−1) sin θ1

·
·
P∑

n=1
e−jβd(n−1) sin φS · e−jβd(n−1) sin θ1




+ . . .

+kN ·




P∑
n=1

e−jβd(n−1) sin φ1 · e−jβd(n−1) sin θN

P∑
n=1

e−jβd(n−1) sin φ2 · e−jβd(n−1) sin θN

·
·
P∑

n=1
e−jβd(n−1) sin φS · e−jβd(n−1) sin θN




= k′1 ·




P∑
n=1

e−jβd(n−1) sin φ1 · e−jβd(n−1) sin θ′1

P∑
n=1

e−jβd(n−1) sin φ2 · e−jβd(n−1) sin θ′1

·
·

P∑
n=1

e−jβd(n−1) sin φS · e−jβd(n−1) sin θ′1




+ . . .

+k′N ·




P∑
n=1

e−jβd(n−1) sin φ1 · e−jβd(n−1) sin θ′N

P∑
n=1

e−jβd(n−1) sin φ2 · e−jβd(n−1) sin θ′N

·
·
P∑

n=1
e−jβd(n−1) sin φS · e−jβd(n−1) sin θ′N




(6)

If we substitute −jβd by α, the above equation can be formatted
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as:

(k1 − k′1 + . . . kN − k′N ) + (k1 · eα sin θ1 − k′1 · eα sin θ′1 + . . .

+ kN · eα sin θN − k′N · eα sin θ′N ) · eα sin φi + . . .

+ (k1 · eα(P−1) sin θ1 − k′1 · eα(P−1) sin θ′1 + . . .

+ kN · eα(P−1) sin θN − k′N · eα(P−1) sin θ′N ) · eα(P−1) sin φi = 0 (7)

where i = 1, 2, . . . , S. Eq. (7) is a (P − 1)th order polynomial with
respect to eα sin φi . From the condition of the lemma, S is equal to or
greater than P .

When S is equal to P , the number of equations is same as the
order of the equation. Eq. (7) can be represented in a matrix form as:




1 · · · 1
eα sin φi · · · eα sin φS

...
...

...
eα(P−1) sin φ1 · · · eα(P−1) sin φS




·




k1 − k′1 + . . . kN − k′N
k1 ·eα sin θ1−k′1 · eα sin θ′1 +. . .+kN ·eα sin θN−k′N ·eα sin θ′N
...
k1 · eα(P−1) sin θ1 − k′1 · eα(P−1) sin θ′1 + . . .

+kN · eα(P−1) sin θN − k′N · eα(P−1) sin θ′N




=0 (8)

Because sinφ is a monotonically increasing function when φ is from
−90 deg to 90 deg, eα sin φi 6= eα sin φj for i 6= j. Thus, the determinant
of the left matrix, which is a Vandermonde matrix, cannot be zero, and
Eq. (8) should have only a trivial solution. When S is greater than P ,
the number of equations is greater than the order of the equation. In
this case, Eq. (7) has only a trivial solution. Therefore, the following
equations should be satisfied when S is equal to or greater than P :

(k1 − k′1 + . . . kN − k′N ) = 0

(k1 · eα sin θ1−k′1 · eα sin θ′1 +. . .+kN · eα sin θN−k′N · eα sin θ′N ) = 0
. . .

(k1 · eα(P−1) sin θ1 − k′1 · eα(P−1) sin θ′1+ . . .

+kN · eα(P−1) sin θN − k′N · eα(P−1) sin θ′N ) = 0

(9)

Eq. (9) can be represented in a matrix form as:

A ·B = 0
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where

A=




1 −1 . . . 1 −1
eα sin θ1 −eα sin θ′1 . . . eα sin θN −eα sin θ′N

...
...

...
...

...
eα sin θ1(P−1) −eα sin θ′1(P−1) . . . eα sin θN (P−1) −eα sin θ′N (P−1)


 ,

B=




k1

k′1
...

kN

k′N




(10)

When P ≥ 2N from the proposition, the matrix A is not guaranteed
to be a square matrix. However, A can be truncated to a 2N by 2N
matrix. After truncation and moving the minus sign into k′, we have
the following equation:



1 1 . . . 1 1
eα sin θ1 eα sin θ′1 . . . eα sin θN eα sin θ′N

...
...

...
...

...
eα sin θ1(2N−1) eα sin θ′1(2N−1) . . . eα sin θN (2N−1) eα sin θ′N (2N−1)




·




k1

−k′1
...

kN

−k′N




= 0 (11)

To obtain a non-trivial solution, the determinant of the truncated A,
which is a Vandermonde matrix, must be zero:

det(Truncated A) = 0 (12)

Because the determinant of an n by n Vandermonde matrix is∏
1<i<j<n

(αi − αj) where αi and αj are variables of polynomials, at

least two of the column vectors should be the same. For all θ1 . . . θN

and θ′1 ·θ′N , Eq. (11) should be satisfied. When k and k′ are all non-zero
in Eq. (11):

eα sin θ1 = eα sin θ′1 , . . . , eα sin θN = eα sin θ′N (13)

This can be proven through the mathematical induction. When θ is
from −90 deg to 90 deg, sin θ is a monotonically increasing function.
Thus:

θ1 = θ′1, . . . , θN = θ′N . (14)
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If we let ki − k′i = Kdi, Eq. (11) becomes:



1 1 . . . 1
eα sin θ1 eα sin θ2 . . . eα sin θN

...
...

...
...

eα(P−1) sin θ1 eα(P−1) sin θ2 . . . eα(P−1) sin θN


 ·




Kd1

Kd2
...
KdN


 = 0 (15)

When θ1 6= θ2 6= . . . 6= θN , the determinant of the above Vandermonde
matrix cannot be zero. Thus, Eq. (15) has only a trivial solution:




Kd1

Kd2
...

KdN


 =




k1 − k′1
k2 − k′2

...
kN − k′N


 = 0 (16)

From Eqs. (14) and (16), it is found that the two assumed solutions
should be the same solution. Thus, the 〈k, θ〉 that satisfies Eq. (2) is a
unique solution.

To confirm the analytical result, we verify it using numerical
simulations. We employ the particle swarm optimization (PSO) [21],
which is a global optimizer, in a search exercise shown in Fig. 2. Given
the signature E of a predefined test case, we search over all DOA
values and target strength k to minimize the signature difference with
the given E. The number of sensor elements is set to 4. The number of

Simulator

Signature

PSO

- +

Given ETarget 

DOA+Strength
Σ

Figure 2. PSO search of DOAs and target strengths.

Table 1. The cost, DOA error and target strength error vs. different
number of targets for a predefined test case.

Target

Number
Cost

DOA Error

(degree)

Amp.

Error

Phase Error

(degree)

1Tgt 0 0 0 0

2Tgts 1.21e-26 0 0 120.1

3Tgts 3.23e-21 11.1 4.1 151.1

4Tgts 8.56e-16 16.9 3.7 78.9

5Tgts 2.34e-25 14.7 5.1 181.8
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beam generated is 20. The cost function in the PSO is defined as the
RMS error between the simulated signature and the given signature.
After the search process, the errors in the DOA and the target strength
(amplitude and phase) are tabulated. Table 1 shows the results for
different number of targets.

For the single-target case, the cost, the DOA error, and target
strength error are all zero. The search algorithm is able to find the
correct DOA and the corresponding target strength exactly. For the
two-target case, the cost is very low. The DOA error and the amplitude
error are zero, leading us to conclude that the found DOA is unique and
correct. Although the phase error is large, it is not relevant because
only the signal strength is considered in Eq. (5). In cases with three
or more targets, the DOA and target strength errors are high, even
though the final cost value after the search process is very low. This
implies that the search algorithm found a proper combination of DOAs
and target strengths that generated almost the same signature as the
given value. However, the found DOA is quite different from the actual
DOA. In these cases, signature uniqueness does not hold. From this
simulation, we conclude that the number of trackable targets is limited
to two using a 4-element array, which is the same conclusion from the
analytical solution.

3. ARTIFICIAL NEURAL NETWORK

3.1. Proposed Sequential ANN and Training Results

An ANN approach is proposed to estimate the number of targets and
their DOAs based on the normalized signature at the beamformer
output. An ANN is a computational model that optimizes its
interconnections between artificial neurons based on external training
data. After training, the ANN can describe the complex relationship
between the input and output. We use a multi-layered perceptron
(MLP) as our ANN structure [22].

In our problem, the number of estimated DOAs should be
dependent on the number of targets. Therefore, the number of targets
must first be estimated before constructing an ANN for predicting the
DOA information. However, once an ANN structure is set, the number
of inputs and outputs is not flexible. Therefore, we propose a sequential
ANN scheme as shown in Fig. 3. The first ANN estimates the number
of targets. The input to this ANN is the normalized signature. The
output is the predicted number of targets. Once this first ANN is
completed, a second ANN, constructed specifically for a fixed number
of targets, is used to find the target DOAs. The input to the second
ANN is the normalized signature and the outputs are the estimated
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ANN1 for 

# of Targets

Monopulse
ANN2 for DOA

DOA

Beamformer

Figure 3. Proposed DOA estimation scheme.

DOAs for the specified number of targets. The number of ANNs that
needs to be constructed for the second stage is the maximum possible
number of targets.

To construct the ANNs, we consider a four-element linear array
for illustration (P = 4). The normalized signatures of the received
signals from many different DOAs and different number of targets
are simulated for the generation of training data using Eqs. (3) and
(5). A point scatterer model in free space is used for each target.
In the simulation, it is assumed that the differences between target
strengths (|k|) are less than 10 dB, and the phases (∠k) are random.
The number of beams formed (S) is 20. With a four-element array
at half-wave spacing, the 3 dB beam width of the array is around
22 degrees. For each target, 1100 data pairs, i.e., the DOAs and
their corresponding signatures, are generated by inputting random
DOAs and target strengths to Eq. (5) for training and validation. If
the number of targets is increased, the simulation model should be
changed by adding more terms in the equation. Thus, 5500 data pairs
are constructed for 5 targets (N = 5). To find the optimum values
for the inner structure of the ANN, the training process is iterated
until the validation error converges. The conjugate-gradient descent
method is used in the training process. The number of hidden units is
determined empirically. We increase the number of hidden units until
the validation error is minimized.

First, the ANN that predicts the number of targets is trained. For
the single-target case, i.e., when the training data set consists of data
with only one target, 1000 data pairs are used as training data and
100 data pairs are used for validation. The resulting validation error is
0.03 (97% accuracy). When the training data set consists of data from
one or two targets, 2000 data pairs are used in the training and 200
data pairs are used for validation. The resulting validation error is 0.08
(92% accuracy). As we continue to increase the number of targets, the
classification errors are summarized in Table 2. From the table, it is
observed that the number of targets that can be estimated with high
accuracy is only two for a four-element array. For three or more targets,
the validation error increases dramatically. The training time of the
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Table 2. Classification error and DOA estimation error vs. number
of targets.

Number of

Targets

Classification Error

(Accuracy)

DOA Error

(degree)

1 0.03 (97%) 0.11

2 0.08 (92%) 2.42

3 0.38 (62%) 7.96

4 0.42 (58%) 13.56

5 0.54 (46%) 12.78

first ANN is 389 seconds using a Pentium dual processor (2.2 GHz)
computer with 2GB of memory. After training, the evaluation time is
negligible.

The second ANN is next trained to estimate the DOAs.
Depending on the number of targets, a separate ANN is constructed
for each. The DOA estimation errors for different number of targets
are shown in the third column of Table 1. For the single-target case,
the number of output units of the ANN is one. After training, the
DOA estimation error is only 0.11 degree. In the two-target case, the
number of output units is two. The averaged error of the two DOAs
is 2.42 degrees. However, the error increases rapidly when the number
of targets is three or more. From the results, it is shown that only
two targets can be tracked with high accuracy by using a four-element
array. This echoes the result of the first ANN. The training time of the
second ANN for two targets is 192 seconds using the same computer.
After the training, the evaluation time is again negligible.

3.2. Effects of Target Strength and Number of Sensors on
DOA Estimation Error

The effects of target strengths on the DOA estimation error are
investigated for the two-target case for the four-sensor array. In the
previous simulation, the magnitude difference of the target strengths
is less than 10 dB. In order to test the effect of target strengths on the
estimation error, the difference of the target strength is increased in
the training data generation for the two-target case. The DOA RMS
errors after training are plotted in Fig. 4. When the target strengths
are exactly the same, the averaged DOA error is only 1.17 degrees.
The error increases as the difference of the signal strengths is increased.
This is because the influence of other targets on the signature is minor
if the strength of a particular target is too strong. Beyond a 40 dB
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Figure 4. DOA estimation error versus difference in target strengths
for the two-target case with a 4-sensor array.

Figure 5. RMS error in DOA estimates vs. number of targets and
number of sensors.

difference, the error stays around 5.7 degrees.
It is also instructive to examine the effect of the number of array

elements on the DOA estimation error of multiple targets. More
sensors should result in a lower estimation error. We set the difference
between target strengths to be less than 10 dB and train the ANN for
different numbers of sensor elements as well as for different numbers
of targets. The optimal number of hidden units and the number of
iterations are empirically searched for each case.

The results are presented in Fig. 5. As expected, the averaged
DOA estimation error decreases as the number of sensors is increased.
For the two-target case, the averaged DOA estimation error can be
less than 2 degrees with five or more sensors. However, the four-
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targets case results in more than 5 degrees of averaged error even with
eight sensors. Thus, the proposed technique is most effective when the
number of sensors and the number of targets are both small. When
the number of sensors is large, other techniques such as beamforming
or super-resolution algorithms may result in better performance.

4. MEASUREMENTS

4.1. Line-of-sight Measurements

Measurements of loudspeakers and humans are performed to verify the
proposed method in an indoor line-of-sight environment. A receiver
array that consists of four sensor elements developed previously is
used to collect measurement data [8]. A horn antenna is used to
transmit a continuous wave at 2.4 GHz. The transmitted power used
in the measurement is 5 dBm. Four microstrip patch antennas are
used as front-ends to the four receivers. The antennas are fabricated
on a 1.6mm FR-4 substrate and the element spacing is 0.56λ where
λ = 12.5 cm. The gain of the individual antenna is about 0 dB. After
down conversion by a quadrature mixer in each receiver, the digitized
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Figure 6. Experimental array configuration.
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signals are stored for subsequent Doppler processing and software
beamforming as shown in Fig. 6.

First, two loudspeakers are used as test targets. Both loudspeakers
are driven by a 50 Hz audio signal and are located in front of the receive
array. The distance between the array and the midpoint of the speakers
is 3m. The measurement setup is shown in Fig. 7. The separation
between the speakers is gradually increased, resulting in a bigger
angular separation between the two speakers. Before applying the
proposed method, the traditional beamforming technique is first tried.
The received time-domain signals from the sensors are transformed
into Doppler frequency data by the fast Fourier transform (FFT). The
transformed data are linearly phase-shifted and summed by software to
form beams. The beam is steered by sweeping the phase shift amount.
The beamforming results are presented in Fig. 8 for angular separations
of 7, 14, 21 and 28 degrees. In the figure, the x axis is the angle, and the
y axis is the Doppler frequency. The ±50Hz Doppler returns caused
by the vibrating speaker membranes are clearly observed. Due to the
small array aperture, the constructed beams have rather poor angular
resolution. The two speakers cannot be clearly distinguished until the
angular separation reaches 28 degrees in Fig. 8(d).

3 m

50 Hz

1 m

Tx Rx

Tx

Rx

Figure 7. Measurement setup of two loudspeakers using a Doppler
beamformer.

The same measured data are next processed using the proposed
ANN. 20 overlapping beams are generated at 50 Hz to construct the
signature, which consists of the beamformer output at a 9-degree
angular sampling along the DOA axis. The signature vector is then
fed as input to the trained ANN. The signatures for speaker angular
separations of 7, 14, 21 and 28 degrees are shown in Fig. 9. The
signatures are processed by the first ANN to estimate the number of
targets. As an example, the output of the first ANN given the input
signature for the 21-degree case over time is presented in Fig. 10(a).
Over a two-second period, the output value of the first ANN is plotted
in blue. The estimated number of targets is shown in red after rounding
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(a) (b)

(c) (d)

Figure 8. Beamforming results. (a) 7-degree separation. (b) 14-
degree separation. (c) 21-degree separation. (d) 28-degree separation.

of the ANN output. The number of targets is correctly estimated as
two.

Based on the result of the first ANN, the second ANN for the two-
target case is used to determine the DOA. The outputs of the ANN are
two values indicating the DOAs of the two speakers. Because the exact
DOA is sensitive to the measurement setup, we instead tabulate the
difference DOA of the two targets, ∆DOA. In Fig. 10(b) the estimated
∆DOA over time is depicted and compared to the actual ∆DOA. The
results of the second ANN agree well with the expected ∆DOA values.
The averaged ∆DOA error is about 2 degrees.

Next, two walking human subjects are measured. The heights of
the two human subjects are 1.85 m and 1.76 m. The minimum distance
between the humans and the radar is 3m. One human subject walks
from the left side to the right side, while the other human subject
walks from the right to the left, as illustrated in Fig. 11(a). The
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(a) (b)

(c) (d)

Figure 9. Sampled beamforming results. (a) 7 degree separation.
(b) 14 degree separation. (c) 21 degree separation. (d) 28 degree
separation.

<True DOA>

28 deg

21 deg

14 deg

7 deg

(a) (b)

Figure 10. (a) Output of the first ANN over time. (b) Estimated
∆DOA and actual ∆DOA.
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DOAs are constrained to ±45 degrees so that they do not exceed
the beamwidth of the transmitting horn antenna. Fig. 11(b) shows
the beamforming results for the case of the two-walking humans at a
certain time instance. At this particular time instance, the two humans
can be clearly observed because they have different Doppler shifts.
However, when the two humans have overlapping Doppler frequencies
and are close (less than 22 degrees) to each other, they become hard
to discriminate using standard beamforming. In fact, because of the
microDoppler spread caused by the human limbs, multiple moving
humans often have significant Doppler overlap.

 

Tx Rx 

45 deg-45 deg 3 m

(a)(a) (b)

Figure 11. (a) Setup of the human tracking measurement. (b)
Beamforming result from two walking humans at a certain time
instance.

In our processing, we coherently sum the signal strengths along
the Doppler axis in the beamforming results. By not using the Doppler
separation to distinguish targets, it constitutes a more stringent test of
the developed algorithm. After generating the signature, the two ANN
are applied sequentially as before. The number of targets estimated
using the first ANN is presented in Fig. 12(a). The output of the first
ANN is plotted as a blue line. The red line is the estimated number of
targets after rounding. The number of targets is correctly determined.
The estimated DOA versus time using the second ANN is shown as dots
in Fig. 12(b). It is observed that the DOAs of the two humans crossing
each other are correctly depicted. However, the error is high when the
two humans cross each other at around 7 sec. During this interval,
the maximum DOA error is around 15 degrees. Outside this interval,
the DOA estimation error appears to be much smaller, but the actual
DOA error is difficult to compute due to the lack of ground truth DOA
information. To further decrease the error requires an increase in the
number of sensors, as the signature from a narrow beam can be more
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Figure 12. (a) Estimation of the number of targets from the first
ANN. (b) Estimated DOAs of the two walking humans.

explicit even when two targets are close. The shaded areas are the
out-of-bound regions where the DOA estimation error is high because
the human subjects are beyond the beamwidth of the transmitting
antenna.

4.2. Through-wall Measurements

Next, we carry out through-wall measurements and test the ANNs that
were trained previously using the free-space, point-scatterer model. Of
course, if the wall material is known exactly, we could in principle
incorporate its property in the training process of a new set of
ANNs. However, since the wall property is unknown in many practical
situations, it would be instructive to see how well the simple free-space
training can perform when walls are present. The two loudspeakers
and two human subjects are next measured in a through-wall scenario.
The transmitter and the receiver are located inside a building, and
the test targets are positioned outside. The transmitted power used in
the measurement is 15 dBm. The wall is a 40 cm exterior brick wall.
The measurements setup is shown in Fig. 13(a). The speakers are
driven with a 50 Hz audio signal again. By gradually increasing the
angular separation, the estimated DOAs using the proposed method
are depicted in Fig. 13(b). The actual DOAs are also noted. It is
interesting to observe that the estimated DOAs are always higher than
the actual DOA, possibly due to the refraction of the wall [23]. The
averaged error between the estimated and the actual DOAs is 3.3
degrees, which is slightly higher than that of the line-of-sight case.
Nevertheless, the ANN still seems to perform to a large extent.

Finally, two walking human subjects are measured through the
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Figure 13. (a) Through-wall measurement setup. (b) Estimated
DOAs from the through-wall measurement.
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Figure 14. Estimated DOAs of the two walking humans from the
through-wall measurement.

wall. The scenario is the same as the line-of-sight case. We again
coherently sum the signal strengths from all the Doppler frequencies
to form the signature before the DOA processing by the ANN. The
DOAs of the two walking humans is presented in Fig. 14. The shaded
region is when the human subjects move beyond the beamwidth of the
transmitter. The overall trend of the two DOAs is correct, but the
error is higher than the ling-of-sight case in Fig. 12. Also, higher error
occurs when the two humans cross each other.

5. CONCLUSION

The DOAs of multiple moving humans were estimated using array
processing when the number of available sensor elements is small. An
extended monopulse concept was explored for the determination of
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the number of targets and their DOAs based on the received signature.
Two separate ANNs were constructed and used in sequence to estimate
the number of targets and their DOAs. The proposed scheme was
tested using measurement data from two loudspeakers and two walking
humans in line-of-sight and through-wall environments. The real-time
estimation method could find the DOA robust with better angular
resolution as compared to the beam-steering approach.

Due to the small number of array elements, the proposed
technique was found to be effective for tracking a limited number of
targets. Although the number of trackable targets can be extended by
increasing the number of elements, the training of the ANN can become
cumbersome. In these cases, other techniques such as super-resolution
algorithms may be more appropriate. In this work, we applied the
ANNs trained based on the free-space assumption to measurement data
from through-wall scenarios. As a result, the DOA errors were found
to be higher than the errors resulting from line-of-sight data. It may
be possible to reduce the error by compensating for wall refraction,
provided that the wall information is known. Finally for future work,
other data-driven models such as the support vector machine [24, 25]
can also be tried for solving this regression problem.
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