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Abstract—Charges and fields in a rotating non-magnetic conducting
sphere under stationary conditions are investigated by using
Minkowski’s electrodynamics of moving media and the Lorentz force
equation, taking into account the electric permittivity of the sphere.
Starting from the assumption that the magnetic field inside the sphere
is constant, exact solutions of the corresponding field equations are
obtained in a first-order theory. However, it is found that there is
a range of values of the sphere’s net charge for which the physical
interpretation of the results is difficult within a continuum model.
Outside that range, our solution to the classic electromagnetostatic
problem appears plausible.

1. A CLASSIC ELECTROMAGNETOSTATIC PROBLEM

Despite the fact that more than a century has passed since the
advent of Einstein’s special theory of relativity and Minkowski’s
electrodynamics of moving media, which grew out of the Maxwell
electromagnetic equations, the conquest of a relativistic mentality
appears to be a slow and painful process. For example, in the vast
literature dealing with conductors that move in externally applied or
self-excited magnetic fields, in the framework of a first-order theory,
the results of Minkowski’s electrodynamics are often misinterpreted or
ignored. Therefore, a solution to a problem in the electrodynamics of
moving bodies, in addition to its possible applications in engineering,
may provide us with a better understanding of these fundamental
physical theories as well as be a test of their validity. Consider an
isolated conducting body of revolution with a net electric charge that
rotates uniformly around its axis of revolution. What are the charge
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distribution and electromagnetic fields in the rotating conductor under
stationary conditions?

Some time ago, Grøn and Vøyenli [1] solved the problem both in
the inertial rest frame of the rotational axis and in the rotating rest
frame of the conductor, starting from Maxwell’s equations in vacuo
and the Lorentz force equation. The authors pointed out that in the
general case a space charge may appear inside the rotating conductor
when a steady state is reached, contrary to what happens in the
equilibrium situation of the same conductor at rest. The redistribution
of charge is due to the inertia of the conduction electrons as well as to
the axisymmetric magnetic field which is produced by the azimuthal
convection current of the rotating charges. Grøn and Vøyenli estimated
that for solid conductors under laboratory conditions the effect of the
inertia of the conduction electrons cannot be neglected.

The authors, however, did not take into account the electric
permittivity of the rotating conductor. (It appears that the electric
permittivity of good conductors, while unknown, should be included
not only in description of electromagnetic waves in stationary
conductors (see, for example, [2, 3]) but also in analyses of steady-
state situations in rotating conductors [4–10].) The shortcoming
was remedied by Redžić [9], who retraced the analysis given in [1],
considering the relativistic case in the frame of the rotational axis,
putting the reflection in the framework of Minkowski’s electrodynamics
of moving media. The author assumed a homogeneous, non-magnetic
conductor with relative permittivity εr and found that the E- and
B-fields of the rotating conductor are independent of εr and coincide
with those calculated in [1]; the space and surface free charge densities,
however, depend on εr.

Both the Grøn and Vøyenli [1] and Redžić [9] analyses were
applied to the case of an infinite cylindrical conductor with a given net
charge rotating around its own axis. While possessing the advantage
of allowing the exact relativistic solution to the problem, the system
considered is obviously impracticable. A discussion of a more realistic
system seems to be lacking in the literature.

In this work, we present an analysis of the electromagnetic field
and the charge distribution of a rigid, non-magnetic conducting sphere
of finite conductivity with a net electric charge that rotates uniformly
around a diameter. We consider non-relativistic speeds and we restrict
ourselves to a first-order theory, in which the classical concept of rigid
body is meaningful. Our key assumption is that the B-field inside
the sphere is constant. We show that that simple assumption leads to
mathematically correct results within an apparently consistent first-
order theory. There is, however, a range of values of the sphere’s net
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charge Q for which the physical interpretation of our results seems to
be difficult in the framework of a continuum model. For the values of
Q outside that range, our solution to the problem appears plausible.

Finding the fields and charge distributions of a uniformly
rotating conducting sphere under stationary conditions is a classic
electromagnetostatic problem. A clear solution to the problem
taking into account the sphere’s permittivity and the inertia of the
conduction electrons is not available in the literature. The only
attempt in this direction seems to have been made long time ago by
Swann [11] who discussed a rotating conducting sphere with no net
charge. Unfortunately, his analysis takes into account only the electric
force on a rotating conduction electron, without even mentioning the
corresponding magnetic force, which turns out to be incorrect in the
general case of a rotating conductor with a net electric charge [1].
(To do justice to Swann, it should be noted that, apart from the
wrong starting Equation (9) of Swann [11], the analysis given in ([11],
Section 2, 157–162), is exact and was exploited in his long paper on
unipolar induction [12].) In this work, we present a generalization of
Swann’s solution to the problem from the perspective of Minkowski’s
electrodynamics of moving media, highlighting the limits of validity
of the continuum model. Our solution, which is based on the
method developed in [9] and an ansatz leading to a problem with the
Dirichlet boundary condition, appears to be new. Hopefully, it could
contribute to the continuous interest in application-oriented relativistic
electrodynamics (cf, e.g., [13–21]).

2. ELECTROMAGNETOSTATICS OF ROTATING
CONDUCTORS

For the convenience of the reader, in this section we briefly summarize
our earlier argument [9] and give some exact relativistic results for
rotating conductors under stationary conditions.

Consider an isolated conducting body of revolution that rotates
with constant angular velocity ωωω = ωuz around its axis of revolution.
Under steady-state conditions, in the inertial rest frame ΣI of the axis
(the lab frame), according to Minkowski’s electrodynamics of moving
media ([22–25], cf also [26–28]), for the system considered Maxwell’s
equations reduce to

∇ · (ε0E + P) = % (1)
∇×E = 0 (2)
∇ ·B = 0 (3)

∇×B = µ0(%v +∇×M) (4)
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where E, B, P and M are the electric field strength, magnetic flux
density, polarization and magnetization, respectively, v = ωωω × ρuρ is
the velocity of a material point of the conductor and % (‘varrho’) is
the space charge density. In writing Equation (4), we assumed that
the conduction electrons are at rest relative to the crystal lattice, i.e.,
that the conduction current density vanishes. As a consequence, the
equation of motion of the conduction electrons inside the conductor
with respect to the lab is

−e(E + v ×B) = γmωωω × v, γ ≡ (1− v2/c2)−1/2, (5)

where −e and m are the charge and mass of the electron, respectively.
Equation (5) can be recast as

E + v × (B + γBm) = 0 (6)

where
Bm ≡ −m

e
ωωω. (7)

With ω = 103s−1 one gets Bm = (m/e)ω = 5.7× 10−9 T.
Now for a linear, isotropic and non-magnetic rotating conductor

of relative permittivity εr, using the Lorentz-covariance of Minkowski’s
electrodynamics, we get simple expressions for P and M:

P = γ2ε0(εr − 1)(E + v ×B) (8)
M = γ2ε0(εr − 1)(E + v ×B)× v (9)

and consequently
M = P× v (10)

∇×M = −(∇ ·P)v. (11)

Thus, the magnetization current density in our rotating conductor
reduces exactly to the convection current density of bound charges,
since −∇ · P equals the space charge density of bound charges inside
a polarized medium.

One might wonder why the term −(∇ · P)v was not included
explicitly from the beginning in Equation (4). It should be noted
however that like all good physical theories (that make us able ‘to
leap ahead of the empirical frontier’) Minkowski’s electrodynamics too
must contain some non-obvious steps, i.e., postulates, whose validity
can be checked only indirectly, by experimental verification of the
consequences of the theory. So the Ampère-Maxwell law well known
from the electrodynamics of bodies at rest, ∇ × H = Jc + ∂D/∂t,
where H ≡ B/µ0−M, D ≡ ε0E+P, and Jc is the conduction current
density, is replaced in the Minkowski electrodynamics by equation
∇ × H = J + ∂D/∂t where J is now the total current density of
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free charges, convection plus conduction, J = %v + Jc. (We remind
the reader that in the framework of relativistic electrodynamics the
conduction current density Jc is defined by the preceding equation
inside a moving medium (cf [23, 25]).) Obviously, a tacit assumption
is hidden in the above postulate that, if the theory is valid, the
term ∇ × M should generally describe the contribution to ∇ × B
from the ‘true’ magnetization of the moving medium (due to its own
magnetization in a locally co-moving frame) as well as the contribution
from the convection current of bound charges. It turns out that this
is indeed so (cf [25]).

Equations (1), (4) and (11) obviously imply

∇ ·E = %t/ε0 (12)
∇×B = µ0%tv (13)

where %t = %−∇·P is the total, free plus bound, space charge density
inside the rotating conductor. From the preceding results, after a
somewhat cumbersome but in every step simple calculus, we obtain

%t = −ε0γ
2ωωω · [2B + γ(1 + γ2)Bm] (14)

% = −ε0γ
2ωωω · [2B + γBm(3εrγ

2 − εr + 2− 2γ2)]. (15)
%b = −∇ ·P = ε0(εr − 1)γ3(3γ2 − 1)ωωω ·Bm. (16)

For details of derivation, and a more complete argument, we refer
the reader to the original Reference [9].

3. A ROTATING CONDUCTING SPHERE

Specialize now to the case of a solid, non-magnetic conducting sphere of
radius R and uniform relative permittivity εr, carrying a net charge Q.

Figure 1. Conducting sphere rotating around a diameter.
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The sphere rotates around a diameter with constant angular velocity
ω = ωuz, Figure 1. We consider non-relativistic speeds, ωR ¿ c, and
we restrict ourselves to a first-order theory. The non-relativistic case
is obtained by setting γ = 1 in equations of the preceding section.

After many fruitless attempts to find an exact solution of the
corresponding equations for E and B, it has been recognized that an
apparently consistent solution is obtained by assuming that the B-field
inside the sphere is constant. In what follows the solution will naturally
unfold starting from this crucial assumption.

Setting γ = 1 in Equation (6) we obtain

E + v ×B∗ = 0, (17)

where
B∗ ≡ B + Bm. (18)

As was explained above, Equation (6), and thus Equation (17), is a
consequence of our starting assumption that the conduction current
vanishes inside the rotating conducting body of revolution. It should be
pointed out, however, that in the framework of a first-order theory and
under stationary conditions, that assumption is unnecessary. Namely,
the vanishing of the conduction current can be derived using the
constitutive equation for the conduction current density Jc for a rigid
ohmic non-magnetic conductor in arbitrary motion. A derivation is
given in Appendix A.

Assume now that inside the sphere B is constant, Binside = Bzuz,
where Bz is a constant to be determined. Since both Binside and Bm

are constant and collinear with the z-axis, the same applies to B∗.
Thus B∗ = B∗

zuz.
Now we have arrived at the well trodden path. Namely, the

same type of the problem arises in calculating the electric field of a
conducting sphere rotating in a constant externally applied magnetic
field (e.g., [4, 5, 8, 29–31]), or a permanently magnetized rotating
conducting sphere ([12, 32], [24, pp. 152–157]). So we exploit the well
known successful strategy for finding the electric potential of our non-
magnetic, rotating sphere.

From Equation (17) and our crucial assumption we have, in
cylindrical coordinates,

E = −v ×B∗ = −ωρB∗
zuρ, (19)

i.e., in spherical coordinates,

E = −ωrB∗
z sin θ(sin θur + cos θuθ), (20)

Thus, the radial component of the electric field inside the sphere is

Er inside = −ωrB∗
z sin2 θ. (21)
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In addition, the potential inside the sphere along the axis of rotation
is constant, since the electric field vanishes at those points. Denote the
constant potential by VA. Then the potential over the sphere’s surface
is given by

Vsurface(R, θ) = VA + ωB∗
zR2(sin2 θ)/2, (22)

since the potential inside the sphere is

Vinside = VA + ωB∗
zρ2/2 = VA + ωB∗

zr2(sin2 θ)/2, (23)

using Equation (19). Taking into account that Legendre polynomial of
second order equals

P2(cos θ) =
3
2

cos2 θ − 1
2

= 1− 3
2

sin2 θ, (24)

the potential over the surface can be written as

Vsurface(R, θ) = VA +
ωB∗

zR2

3
− ωB∗

zR2

3
P2(cos θ). (25)

There is no charge outside the sphere, the potential satisfies the Laplace
equation and, since the problem has azimuthal symmetry, for Voutside

we have

Voutside(r, θ) =
∞∑

n=0

Bn

rn+1
Pn(cos θ). (26)

choosing V (r = ∞) = 0.
From the continuity of the potential at r = R, using

Equations (25) and (26) and the properties of Legendre polynomials,
we find that

B0

R
= VA +

ωB∗
zR2

3
, B2 = −ωB∗

zR5

3
, (27)

and that all other Bi vanish. Since the monopole term in
expansion (26) must coincide with the potential of a point charge Q
located at the centre of the sphere it follows that

B0 =
Q

4πε0
(28)

and consequently

VA =
Q

4πε0R
− ωB∗

zR2

3
. (29)

Thus the potential outside the sphere is the sum of a monopole and a
quadrupole terms

Voutside(r, θ) =
Q

4πε0r
− ωB∗

zR5

3r3
P2(cos θ), (30)
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and the radial component of the electric field is given by

Er outside =
Q

4πε0r2
− ωB∗

zR5

r4
P2(cos θ). (31)

The total surface charge density over the sphere r = R must satisfy
the relation

ςt
ε0

= Er(r = R+)−Er(r = R−). (32)

From Equations (32), (31), (21) and (24) we find that

ςt = σ−ε0ωB∗
zR

[
5
3
P2(cos θ)− 2

3

]
= σ+ε0ωB∗

zR

(
5
2

sin2 θ−1
)

. (33)

where
σ ≡ Q

4πR2
(34)

The total space charge density inside the sphere is obtained by taking
the divergence of Equation (17), and then using Equations (12), (13),
the vectorial identity

∇ · (a×B) = B · (∇× a)− a · (∇×B), (35)

and the relation ∇ × v = 2ωωω. In this way, neglecting second-order
quantities, we get the following result for the total space charge density

%t = −2ε0ωB∗
z . (36)

The same expression is obtained setting γ = 1 in the general result (14),
as it should be. (Note that in the above derivation of %t it was not
assumed that B is constant inside the sphere.) One can easily verify
that, when B inside the sphere is constant, the Poisson equation

∇2Vinside = −%t

ε0
(37)

is identically satisfied with expressions (23) and (36), as it should
be. One can also verify that the total charge inside the sphere,
−2ε0ωB∗

z (4/3)πR3, plus the total charge on the surface of the sphere
obtained by integration of Equation (33) is Q, as it should be. (It
is straightforward to find the free and bound charge densities inside
and over the sphere.) As can be seen, the redistribution of charge
due to rotation, as well as to the inertia of the conduction electrons,
produces the electric field inside the sphere which in combination
with the v × B-field provides the necessary centripetal force on the
conduction electrons. Needless to say, the electric field due to σ given
by Equation (34) vanishes inside the sphere.

Thus our rotating conducting sphere produces a stationary electric
field whose potential inside and outside the sphere is given by
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Equations (23) and (29), and (30), respectively. The potential outside
the sphere is obtained by finding the solution of the Laplace equation
that reduces to the prescribed function given by Equation (25) over
the sphere’s surface, and that matches the sphere’s net charge Q. As
can be seen, uniqueness theorem applies to this case too. Namely, for
any given B∗

z and VA we have a problem with the Dirichlet boundary
condition for the potential outside the sphere. The same applies
to the potential inside the sphere. Thus the potentials given by
Equations (23) and (29), and (30), are the only solution to our problem
for a given B∗

z and the given sphere’s net charge Q. The sources of
the stationary electric field are (free and bound) surface and space
charges of the rotating sphere whose total charge densities are given
by Equations (33) and (36), respectively. Note that these results for
the electric field are valid for any constant B∗

z .
[It is perhaps worthwhile to answer the following query: how

do we know that charge distributions (33) and (36) indeed produce
the electric field whose potential is given by Equations (23) and (29),
and (30)? The answer is simple. Namely, as was pointed out above,
this potential is the only function complying with the conditions of
our problem for a given B∗

z and Q. On the other hand, on the basis of
the well known representation formula for the electrostatic potential
which is obtained using Green’s second identity (cf, e.g., [33, pp. 750–
751], [34, Section 1.8], and also [3, Section 1.12]) we have that the
potential of our rotating sphere is everywhere equal to

V (r0) =
1

4πε0

∫
%t(r)
|r0 − r|d

3r +
1

4πε0

∮
ςt(r)
|r0 − r|da,

where r0 is the observation point, r is the integration variable, and the
second term is the surface integral over the sphere r = R (which is
the only surface of discontinuity of the gradient of V ). Of course, one
can verify by direct calculation that charge distributions (33) and (36)
indeed have the potential given by Equations (23) and (29), and (30).
A proof is sketched in Appendix B.

The preceding considerations imply the following interesting
result. If the surface charge density over the sphere r = R is
σ∗ = A sin2 θ, where A is a constant, the electric field outside and
inside the sphere is given by

Eoutside = ∇
[

2AR4

15ε0r3
P2(cos θ)

]
+

2AR2

3ε0r2

r
r
,

Einside =
4A

15ε0R
rP2(cos θ)− 2A

5ε0R
r sin θ cos θuθ.

The above result, well known from the theory of the spherical
harmonics (cf, e.g., [35, pp. 157–160]), was essential in Schlomka and
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Schenkel’s analysis of electric fields due to free and bound charges in
the case of a uniformly magnetized rotating sphere [32]. (A simplified
version of the problem, involving total charge densities only, is found
in [34, pp. 285–286].)]

The field outside the sphere is the sum of a monopole (due
to constant σ of Equation (34)) and a quadrupole field (due to ω-
dependent term in Equation (33) and to %t of Equation (36)); the
electric field inside the sphere is obviously due to the rotation-induced
distribution only.

There still remains the problem of finding the magnetic field
produced by our rotating conducting sphere. The sources of
the field are the azimuthal convection current of the rotation
induced distribution (ω-dependent term in Equation (33) and %t of
Equation (36)) as well as the azimuthal convection current of the
uniform surface charge distribution (the σ-term in Equation (33)). The
magnetic field due to the σ-source is well known (cf, e.g., [33, pp. 505–
506], [36, pp. 236–237]). Inside the sphere it is given by

Bσ = Bσuz =
2
3
µ0σωRuz; (38)

outside the sphere the field is identical to that of an ideal magnetic
dipole of magnetic moment Pm = (4/3)πR3σωRuz located at the
centre of the sphere. (The vector potential of the ideal dipole field
is of course A(r) = (µ0/4π)Pm × r/r3.)

A somewhat cumbersome but in every step simple calculus reveals
that the magnetic field due to the rotation-induced charge distribution
is a second-order quantity and thus negligible, consistent with our
crucial assumption above. (The calculus is outlined in Appendix C.)
Consequently, since Equation (18) and our crucial assumption imply

B∗ = B + Bm = (Bz + Bmz)uz, (39)
using Equations (38) and (7) we have

B∗
z =

2
3
µ0σωR−Bm. (40)

Thus it appears that we have arrived at a consistent first-order theory
giving us fields and charge distribution of our rotating conducting
sphere, Figure 2. Namely, the total B∗ field is the sum of Bσ, Bm

and the rotation induced fields B<
ω−sur.ch. and B<

sp.ch. calculated in
Appendix C. It is clear that the only choice for B∗ consistent with our
starting assumption, in the first-order theory, is the one expressed by
Equation (40), i.e., B∗ = Bσ + Bm. (Note that in our analysis we had
to deduce the value of B∗

z as a vital part of the solution, whereas the
corresponding quantities in References [4, 5, 8, 12, 29–32], [24, pp. 152–
157], were simply given.)
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Figure 2. Induced charges and electric field of the rotating sphere in
the special case of vanishing net charge. The electric field outside the
sphere is a linear quadrupole field.

4. DISCUSSION

From Equations (19), (36) and (40) we see that the electric field and
the total charge density inside the sphere have one component due to
the charge σ and one due to the inertia of the electrons. To estimate
the magnitude of these components recall that under normal laboratory
conditions the dielectric strength of air is 3×106 Vm−1. As can be seen
(cf Equations (30) and (31)), the magnitude of the sphere’s electric field
is maximum just outside the surface, and is of the order

σ + ε0ωB∗
zR

ε0

which using Equation (40) and neglecting second-order quantities
reduces to

σ − ε0ωBmR

ε0
.

Choosing as earlier ω = 103 s−1 we find that for a sphere with a radius
R = 0.1m, the maximum value of σ that the sphere will keep before
the breakdown of air is of the order 10−5 Cm−2, the term ε0ωBmR
being many orders smaller than that. Then a corresponding value of
Bσ is of the order 10−9 T, which is of the order of Bm calculated earlier
under the same conditions. Hence the contribution to E and %t inside
the sphere from the charge σ and from the inertia of the conduction
electrons may be of the same order under laboratory conditions in this
case too. It is perhaps worthwhile to note that there is the potential
difference between the pole of the rotating sphere and its equator, given
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by

U = −ωB∗
zR2

2
, (41)

as follows, e.g., from Equation (22). With ω = 103 s−1, R = 0.1m, for
a sphere with zero net charge this gives U = 2.8× 10−8 V.

The theory seems to be wholly satisfactory up to know so it was
somewhat surprising to recognize that there is a problematic point.
Namely, using Equations (36) and (40) we find that the total space
charge inside the sphere QV is

QV =
4
3
πR32ε0ωBm − 4

9

(
ωR

c

)2

Q. (42)

For the sphere of radius R = 0.1m, and with ω = 103s−1, we find that
the total space charge inside the sphere is about 4 × 10−19 C under
laboratory conditions (σ = 10−5 Cm−2, Q ≈ 10−6 C). That would
mean that a redistribution of several electrons would be enough for
settling an equilibrium state inside the rotating sphere. This however
seems to be hardly reconcilable with a continuum model, taking into
account that the volume of our sphere of radius R = 0.1m is about
4000 cm3.

Pursuing this line of thought, we find that when Q decreases from
10−3 C to−10−3 C (assuming that the sphere is in vacuo), QV increases
from (approximately) −5× 10−17 C to 5× 10−17 C, which is about 300
and −300 electron charges, respectively. These values of QV also seem
to be hardly reconcilable with a continuum model. On the other hand,
when Q = 10−2 C, we have that QV ≈ −5 × 10−16 C, or about 3000
electrons, which is perhaps consistent with a continuum model, for our
sphere with volume of about 4000 cm3.

Durand [33, p. 506] claims: “With a conducting sphere where the
charges can move freely over the surface, the centrifugal force would
modify the distribution of the charges at rest but feebly.” Our analysis
shows that generally things are not so simple.

It is difficult to see what the correct interpretation of the small
values of the space charge QV is, when the sphere’s net charge Q
is in the range of 10−3 C to −10−3 C. Excluding the possibility that
Minkowski’s electrodynamics of moving media was incorrectly used in
the above analysis of the simplest electromagnetostatic problem, and if
we wish to retain the continuum model, what remains is that our very
starting assumption, namely that there is a stationary situation in our
system, is incorrect for those values of Q. The most radical possibility
would be of course that, in the general case, there is no equilibrium and
also that Minkowski’s electrodynamics is inadequate for description in
the lab frame of the electrodynamics of accelerated systems, such as
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our simple uniformly rotating sphere. (This radical alternative would
perhaps require a revision of fundamental concepts (cf, e.g., [37, 38]).)
It should be noted, however, that outside the ‘problematic’ range of
values of the sphere’s net charge Q our solution to the problem appears
plausible.

5. CONCLUSIONS

In this paper, the fields and charges in a rotating non-magnetic
conducting sphere with a net electric charge under stationary
conditions are investigated, in a first-order theory, using Minkowski’s
electrodynamics of moving media and the Lorentz force equation.
Starting from the assumption that the magnetic field inside the sphere
is constant and solving the Laplace equation for the potential outside
the sphere with the Dirichlet boundary condition, the exact solutions of
the corresponding field equations are found, deducing the value of the
constant magnetic field inside as a vital part of the complete solution.
However, the physical interpretation of the obtained results is in the
general case difficult. Namely, there is a range of values of the sphere’s
net charge Q for which the solution is problematic in the framework
of a continuum model. Outside the ‘problematic’ range of values of Q
the solution appears plausible.
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APPENDIX A.

The constitutive equation for the conduction current density Jc for a
rigid ohmic non-magnetic conductor in arbitrary motion reads

Jc = σc

(
E + v ×B +

m

e
v̇
)

, (A1)

where v and v̇ are the velocity of a material point of the conductor and
its acceleration, respectively, and σc is the conductivity of the medium
(cf, e.g., [39, p. 222]). In the case of our uniformly rotating body of
revolution

v = ωρuφ, v̇ = −ω2ρuρ (A2)
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and thus
Jc = σc

(
E + v ×B− m

e
ω2ρuρ

)
(A3)

Then under stationary conditions, taking into account the fact that
∇ · v = 0 and the azimuthal symmetry of the problem, assuming that
the conductor is homogeneous and using the identity

∇× (a×B) = (B · ∇)a− (a · ∇)B + (∇ ·B)a− (∇ · a)B, (A4)
we find that the curl of Jc vanishes

∇× Jc = 0. (A5)
Also, from the local conservation of electric charge for media in
arbitrary motion (cf [10]) we obtain that in our case, when ∇ · v = 0
and (v · ∇)% = 0,

∇ · Jc = 0. (A6)
In addition, from the continuity of the normal component of Jc across
the surface of our rotating conductor, and from the fact that there is no
conduction current outside, it follows that Jcn = 0 at the surface. Now
since the interior of the rotating conductor is a simply connected space,
and since the curl of Jc vanishes, it follows that Jc can be expressed
as the gradient of a single-valued potential Ψ, Jc = −∇Ψ. Then from
Green’s first identity we have∮

S
Ψ

∂Ψ
∂n

dS =
∫

τ
[(∇Ψ)2 + Ψ∇2Ψ]dτ (A7)

where τ is the volume of the conductor, and S is its surface. The
left-hand side of the above equation vanishes (Jcn = 0), and also
∇2Ψ = 0, which implies that ∇Ψ vanishes inside the conductor,
i.e., Ψ is a constant. Thus Jc vanishes inside our rotating conductor
under stationary conditions. The above elegant way of proving that
Jc vanishes seems to be due to van Bladel [31, pp. 285–286]. Needless
to say, the vanishing of Jc and equation (A3) imply Equation (17).

APPENDIX B.

Let there be a circular ring in vacuo carrying a charge Q∗ distributed
uniformly on it, the ring being of such a size that its diameter subtends
an angle 2θ0 at the centre of a sphere of radius R. The potential of
the charged ring is well known and is given by

V > =
Q∗

4πε0R

∞∑

n=0

(
R

r

)n+1

Pn(cos θ0)Pn(cos θ) (B1)

V < =
Q∗

4πε0R

∞∑

n=0

( r

R

)n
Pn(cos θ0)Pn(cos θ) (B2)
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in the regions r > R and r < R, respectively (cf, e.g., [35, pp. 101–
104]). Replacing Q∗ by ςt2πR2 sin θ0dθ0 and integrating over θ0 from
0 to π, using well-known properties of Legendre polynomials, we get
the potential of the surface charge distribution (33)

V >
sur.ch. =

Q

4πε0r
+

2ωB∗
zR3

3r
− ωB∗

zR5

3r3
P2(cos θ) (B3)

V <
sur.ch. =

Q

4πε0R
+

2ωB∗
zR2

3
− ωB∗

zr2

3
P2(cos θ) (B4)

outside and inside the conducting sphere, respectively. (For an
alternative way of proving this cf [36, pp. 142–143].)

On the other hand, a simple calculus reveals that the potential of
the uniform space charge distribution (36) is given by

V >
sp.ch. = −2ωB∗

zR3

3r
(B5)

V <
sp.ch. =

ωB∗
zr2

3
− ωB∗

zR2 (B6)

outside and inside the sphere, respectively. Adding up Equations (B3)
and (B5) we get expression (30); also, adding up Equations (B4)
and (B6) we get the potential inside the sphere expressed by
Equations (23) and (29).

APPENDIX C.

Let there be a circular current loop with current I∗ in vacuo, the circle
being of such a size that its diameter subtends an angle 2θ0 at the
centre of a sphere of radius R. The magnetic field of the current loop
is well known and is given by

B>
r =

µ0I
∗ sin θ0

2R

∞∑

n=1

(
R

r

)n+2

P 1
n(cos θ0)Pn(cos θ) (C1)

B>
θ =

µ0I
∗ sin θ0

2R

∞∑

n=1

1
n + 1

(
R

r

)n+2

P 1
n(cos θ0)P 1

n(cos θ) (C2)

and

B<
r =

µ0I
∗ sin θ0

2R

∞∑

n=1

( r

R

)n−1
P 1

n(cos θ0)Pn(cos θ) (C3)

B<
θ = −µ0I

∗ sin θ0

2R

∞∑

n=1

1
n

( r

R

)n−1
P 1

n(cos θ0)P 1
n(cos θ) (C4)
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in the regions r > R and r < R, respectively (cf, e.g., [40, 41]). Now
replace I∗ by ωR2σω(θ0) sin θ0dθ0, where

σω(θ0) =
2
3
ε0ωRB∗

z −
5
3
ε0ωRB∗

zP2(cos θ0) (C5)

is ω-dependent term in Equation (33), and integrate over θ0 from 0 to
π. Using the recurrence formula for Legendre polynomials,

P ′
n(1− µ2) =

n(n + 1)
2n + 1

(Pn−1 − Pn+1) (C6)

where µ ≡ cos θ0, the definition

P 1
n(cos θ0) = sin θ0P

′
n(µ), (C7)

and properties of Legendre polynomials (cf, e.g., [42, pp. 146–147, 158])
we obtain that the magnetic field due to the azimuthal current of
ω-dependent surface charge in Equation (33), inside our rotating
conducting sphere, is given by

B<
ω−sur.ch. =

(
ωR

c

)2

B∗
z

{
4
9
uz +

[
2
9
P1(cos θ)− 4

7

( r

R

)2
P3(cos θ)

]
ur

−
[
2
9
P 1

1 (cos θ)− 4
21

( r

R

)2
P 1

3 (cos θ)
]
uθ

}
, (C8)

which is a second-order quantity. It can be verified that the curl of
B<

ω−sur.ch. vanishes identically, as it should.
Similarly, replacing I∗ by ω%tr

2dr sin θ0dθ0, it is found that the
magnetic field due to the azimuthal current of the uniform space charge
distribution (36) is given by

B<
sp.ch. = −2

(
ωR

c

)2

B∗
z

{
P1(cos θ)

[
1
3
− 1

5

( r

R

)2
]
ur

+P 1
1 (cos θ)

[
−1

3
+

2
5

( r

R

)2
]
uθ

}
, (C9)

inside the rotating sphere.
A simple calculus reveals that the second-order field (C9) satisfies

Equation (13), i.e.,
∇×B<

sp.ch. = µ0%tv, (C10)

with %t given by Equation (36), as it should.
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40. Redžić, D. V.,“An extension of the magnetostatic image theory for
a permeable sphere,” J. Phys. D: Appl. Phys., Vol. 39, 4136–4141,
2006.
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