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Abstract—With the increasing threat of terrorism in recent years, the
detection of concealed weapons, plastic bombs and other contraband at
secure locations attracts more and more countries’ attention all over
the world. Three-dimensional (3D) microwave imaging surveillance
systems, allowing for acquisition of full 3D microwave images of human
body, have been developed for security applications. In this paper,
we firstly propose a 3D imaging algorithm which not only accounts
for the free space propagation losses and wavefront curvature but
also avoids 3D interpolation in the 3D wavenumber domain without
suffering from any approximations and truncation errors. Then, the
sampling constraints and the resolution issues associated with proper
and alias-free implementation of the 3D reconstruction are analyzed.
Finally, the focusing capabilities of our proposed imaging algorithm
are investigated and verified by means of numerical simulations as well
as theoretical analysis, and an approach for better displaying projected
images is examined.

1. INTRODUCTION

In order to combat terrorism, various kinds of techniques for better
security monitoring in airports or other public places have been
developed for the detection of concealed weapon. The conventional
metal detectors have a number of shortcomings in detecting concealed
objects composed of plastic, wood, ceramic or other materials [1–
7]. Microwave possesses a unique property of passing transparently
through materials such as common clothing or packing. This
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property provides potential to identify hidden weapons or contraband
underneath a person’s clothing with the help of high resolution images.
In the beginning of this century, a holographic microwave imaging
system employing a linear transceiver array was designed and tested [1].
Using non-ionizing radiation with low emitted power and posing no
health concerns for operators and objects [1–7], the system has the
capability to map the microwave reflectivity of an entire human body
in 3D space and provides the base for detection, identification and
further automatic recognition.

The holographic microwave imaging system operates by gathering
the amplitude and phase of a wavefront scattered from a target, and
reconstructs the image based on the theory of wavefront reconstruction.
Range Migration Algorithm (RMA), as one kind of the holographic
imaging algorithms, was developed by several authors [8–10]. The
imaging system prototype for human body was originally designed with
a planar scanning geometry, and the 3D Range Migration Algorithm
(3D RMA) [1, 3, 10, 11] based on the planar synthetic aperture was
utilized to process the data acquired over a wide frequency bandwidth.
Several years later, in order to further perform full-body security
screening and monitor a person from all sides without inconveniencing
him, the system was improved by using a cylindrical scanning
geometry, and an imaging algorithm was proposed by Sheen [2, 3].
Soumekh developed a 3D wavenumber domain algorithm for the
cylindrical aperture based on the slant-range plane algorithm [10].
Contemporaneously, the 3D RMA was extended for the cylindrical
aperture by expanding the 3D scalar Helmholtz equation into a sum of
cylindrical harmonics and backpropagating the backscatter data to the
planar aperture [11]. Recently, the development of microwave imaging
systems providing 3D capability has become a field of intensive research
and has been reported by several authors [12–24]. For example,
an approach to detect concealed objects has been suggested, e.g.,
Bertl et al. [14] used interferometric Synthetic Aperture Radar (SAR)
technique for imaging. However, the interferometric SAR technique
is not a very good choice for 3D imaging, since it can not obtain the
3D spatial frequency space of target area with the Nyquist sampling
intervals.

The algorithms mentioned above are generally used without
considering the losses due to the free space propagation. When the
distance between antennas and illuminated targets varies greatly under
near-field conditions, the existing algorithms will degrade the quality
of resulting images. More specifically, an accurate 3D interpolation [14]
should be performed in the 3D wavenumber domain not only for
planar but also for cylindrical scanning geometries [1–4, 11]. The
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method in [2, 3] divided the whole cylindrical aperture into smaller
sub-apertures and processes the received echoed signals within these
sub-apertures independently, which limited the angular extent of the
synthetic aperture to a span of 90◦.

Fortuny [11] designed a focusing operator taking into account the
free space propagation losses and obtained high quality image with
an interpolation-free algorithm. However, this algorithm is based on
space-variant matched filtering and only suited for the case of spherical
synthetic aperture. Moreover, it is computationally costly and difficult
for real time inspection of concealed weapons in practice.

In this paper, we present the formulation of a new 3D imaging
algorithm, which compensates for the free space propagation losses
and the wavefront curvature under near-field condition. The proposed
algorithm has the advantages of low implementation complexity, not
requiring any interpolation in the 3D wavenumber domain, and forming
a cylindrical frame at each radius. It is noted that the above-
mentioned microwave imaging systems and algorithms rely on the
SAR principle [10] and they are developed in the field of linearized
inverse scattering. Also the systems can be developed for breast tumor
detection application in a low frequency situation (e.g., < 3 GHz) [25].
However, the multiple scattering phenomenon inside the object is
highly non-linear, and the image formation is to solve an ill-posed
non-linear inverse problem [26–29], which is not taken into account in
the paper.

The structure of the paper is organized as follows. Section 2
presents the cylindrical scanning geometry, signal model, the
formulation of the proposed algorithm, the algorithm implementation,
the required sampling criteria and the resulting 3D resolutions.
Section 3 assesses the performance of this algorithm by means of
two numerical simulations and theoretical analysis, and discusses an
approach to improve the quality of the focused images. Finally, the
conclusions of this paper are provided in Section 4.

2. SPHERICAL-WAVE THREE-DIMENSIONAL
IMAGERY RECONSTRUCTION

This section is split into three subsections. First, the algorithm which
is free of 3D interpolation in the wavenumber domain with a cylindrical
scanning geometry is addressed. Then, the computational procedure
of this algorithm is described. Finally, the sampling criteria and the
resulting resolutions which take into account the scattering angular
extent of the targets are investigated with the cylindrical synthetic
aperture.
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2.1. Spherical-wave Imaging Algorithm

The human body imaging with a cylindrical scanning geometry is
shown in Fig. 1. A stepped frequency (or frequency modulated)
continuous wave (CW) signal with bandwidth B is radiated and
received. An array of Transmit/Receive (Tx/Rx) antennas spans the
vertical length of aperture

−−→
AB for fast scanning, and the corresponding

equivalent sample points in the z-axis is acquired. Considering the
equivalent sample point in the z-axis is located at P (x′, y′, z′) in
Cartesian coordinates, the corresponding cylindrical coordinate is
P (ρ′0, φ

′, z′). The antenna array rotates on the surface of a cylinder
with radius ρ′0 and forms a cylindrical aperture ÂCD which completely
surrounds the target. The axis of the synthetic aperture coincides
with the z-axis. Since the antennas are located within the near-
field region of the object [11], the distortion caused by a spherical
wavefront and free space propagation losses should not be ignored.
Denote the backscattered field function as E (Kω, φ′, z′), which is a
function of four parameters: the working frequency wavenumber Kω

of the CW signal, the radius ρ, the azimuth angle position φ and
height position z of the illuminated objects. Suppose that the 3D
complex reflectivity functions of the distributed targets in Cartesian
and cylindrical coordinates are I (x, y, z) and I (ρ, φ, z), respectively.
In this case, the measured echoes from a given point scatterer located

P (x',y',z')
=P (ρ' ,φ',z')

0

I (x,y,z)
=I (ρ ,φ,z)

Figure 1. Cylindrical imaging geometries with human body.
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at (ρ, φ, z) under near-field condition can be written as

EI

(
Kω, φ′, z′

)
= I (ρ, φ, z)

exp (−j2KωR)
R2

(1)

where Kω is the frequency wavenumber, and is related to instantaneous
frequency f and the speed of light C via Kω = 2πf/C. Kω ∈
[Kω min,Kω max], where Kω min and Kω max denote the wavenumbers at
the minimum and maximum frequencies, respectively. R is the distance
between the target (ρ, φ, z) and the transceiver antenna (ρ′0, φ

′, z′); that
is,

R =
√

(x− x′)2 + (y − y′)2 + (z − z′)2

=
√

ρ′2 + ρ2 − 2ρ′ρ cos (φ− φ′) + (z − z′)2 (2)

Consequently, the backscattered fields E (Kω, φ′, z′) of illuminated
target area could be measured over a range of frequency, azimuth
aspect angles and elevation positions of the antenna (φ′, z′). When
ignoring the interaction between scatterers, the response measured at
transceiver position (ρ′0, φ

′, z′) at instantaneous frequency wavenumber
Kω has the following form:

E
(
Kω, φ′, z′

)
=

∫∫∫

V
EI

(
Kω, φ′, z′

)
dr

=
∫∫∫

V
I (ρ, φ, z)

exp (−j2KωR)
R2

dr (3)

where V and r denote the illuminated area and the vector position of
the targets, respectively. Thus, dr = dxdydz = ρdρdφdz. |φ− φ′| ≤
φA/2, where φA represents the azimuth angular span in which the
backscattering of the target is homogeneous and isotropic. |z − z′| ≤
LZ/2, where LZ is the elevation aperture length and determined by
−3 dB beam width φZ in elevation. It should be emphasized that the
resolutions in azimuth and elevation are determined by φA and φZ ,
respectively. This will be derived in the next section in detailed form.
With the signal model in (3), the free space propagation losses and the
exact spherical-wave phase history are both investigated by a quadratic
term in the amplitude and the exponential function, respectively.

The signal model based on (1) and (3) indicates that the amplitude
of the received echoes from different targets is proportional to R2.
When ignoring the disturbance of this term, the quality of the image
focusing would be degraded [11]. Unfortunately, they are difficult to be
directly removed in the frequency domain. When a slant-range inverse
Fourier transform with respect to Kω is performed on E (Kω, φ′, z′),
the amplitude of the impulse response is also proportional to R2 in
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the slant-range domain. Hence, we compensate for the free space
propagation losses through multiplying an amplitude function R2 in
the slant-range domain, followed by slant-range Fourier transform for
all pairs (φ′, z′) in (3); that is

ER

(
Kω, φ′, z′

)
=

∫

R

∫

Kω

{
E

(
Kω, φ′, z′

)
exp (jKωR) dKω

}

×R2 exp (−jKωR) dR

=
∫∫∫

V
I (ρ, φ, z) exp (−j2KωR) dr (4)

In practice situations, the direct coupling wave is always present
in the received signal due to quasi monostatic measurements. In
addition, undesired echoes reflected from the targets beyond the region
of interest are always received, too. Fortunately, range gating can be
used to remove the antenna direct coupling and the undesired targets
in the slant-range domain in (4) before Fourier transform. It uses a
windowing function to filter the slant-range domain signal in (4) and
only selects the signal of interest. To further reduce the computational
load and data volume, one could subsample ER (Kω, φ′, z′) in the Kω

domain on the basis of no aliasing. Then, the useful signal reflected
from the human body could be picked up for further processing at the
subsampled set.

Since the measurement is performed at a fixed cylindrical radius
ρ′0, when determining the 3D microwave reflectivity map associated
with a person, we use an integral resembling inverse transform of (4)
with respect to Kω, φ′ and z′ described in the Appendix; this yields

I (ρ, φ, z) =
∫

z′

∫

φ′

∫

Kω

ER

(
Kω, φ′, z′

)

×exp (+j2KωR)KωdKωdφ′dz′ (5)

It is seen that the expected image could not be directly represented as
a function of x′, y′ and z′ in (5) for the cylindrical scanning geometry.
However, the integral in (5) could not be formulated in the form of the
Fourier transform. Therefore, the image reconstruction is much more
complicated than the case in [1]. According to our knowledge, all the
existing algorithms need high accurate interpolation in wavenumber
domain. The following discussions and derivations are based on the
model in (5).

As for the solution to (5), both Sheen [2, 3] and Soumehk [10]
decomposed the spherical-wave into plane-wave components via two-
dimensional (2D) Fourier transform. The decomposition is performed
in x-y plane, so φ is limited in (−90◦,+90◦) [2, 3, 10]. Thus, only
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a sub-aperture frame with a maximum angular span of 180◦ could
be reconstructed at a time. In this section, we do not perform the
decomposition in the φ domain but calculate the Fourier expansion for
spherical-wave signal exp (+j2KωR) in (5) with respect to elevation
variable z as follows:

exp
(

+j2Kω

√
ρ′2 + ρ2 − 2ρ′ρ cos (φ− φ′) + (z − z′)2

)

=
∫

exp
{

j
√

4K2
ω −K2

z

√
ρ′2 + ρ2 − 2ρ′ρ cos (φ− φ′)

}

× exp
{

jKz

(
z − z′

) }
dKz (6)

Substituting the Fourier expansion in (6) into (5) and interchanging
the order of the integrals over Kz and φ′, the solution to (6) can be
expressed as

I (ρ, φ, z) =
∫

Kz

∫

Kω

{∫

φ′
ER

(
Kω, φ′,Kz

)

×F
(
Kω, φ− φ′,Kz

)
dφ

}
dKω exp [jKzz] dKz (7)

wherein

ER

(
Kω, φ′, Kz

)
=

∫

z′
ER

(
Kω, φ′, z′

)
exp

(−jKzz
′) dz′. (8)

and

F
(
Kω, φ′,Kz

)
= exp

[
j
√

4K2
ω −K2

z

√
ρ′2 + ρ2 − 2ρ′ρ cosφ′

]
Kω (9)

where |φ′| ≤ φA/2.
Because Kω is not mutually orthogonal to Kφ and Kz, the 3D

spectrum I (Kx,Ky,Kz) should be acquired through 3D high accurate
interpolation, as discussed in [2, 10, 11]. In fact, we are usually
interested in forming the image at the given radius bins ρ’s rather
than all the available area. So it is feasible to first obtain the image
frame at radius ρ by setting the proper matched function in (9).
Moreover, the values of its parameters (the frequency Kω = 2πf/C,
the angle sampling interval ∆φ, the elevation sampling interval ∆z,
the radius ρ′ of the cylinder, etc.) are always known for a given
people screening system. Therefore, we can obtain the image at radius
ρ through defining the radius ρ iteratively and using F (Kω, φ′,Kz).
Now, we refer to F (Kω, φ′,Kz) in (9) as the cylinder focusing function
accordingly.

As shown in the above Equations (8) and (9), ER (Kω, φ′,Kz)
is a function of φ′, and F (Kω, φ− φ′,Kz) is a function of (φ− φ′).
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Evidently, the terms inside the { } in (7) represents a convolution
integral in the φ domain; that is

I (ρ, φ, z) =
∫

Kz

∫

Kω

{
ER

(
Kω, φ′,Kz

)

⊗F
(
Kω, φ′, Kz

) }
dKω exp [jKzz] dKz (10)

where ⊗ denotes convolution in the azimuth φ′ domain, and the
convolution can be computed in the Fourier domain for efficiency;
that is, it can be calculated with a complex product in wavenumber
Kφ domain and one-dimensional (1D) inverse Fourier transform with
respect to Kφ via the following formula:

ER

(
Kω, φ′,Kz

)⊗ F
(
Kω, φ′, Kz

)

=
∫

Kφ

Eρ (ρ,Kω, Kφ,Kz) exp [jKφφ] dKφ (11)

and

Eρ (ρ, Kω,Kφ,Kz)
= FTφ [ER (Kω, φ, Kz)]× FTφ [F (Kω, φ, Kz)] (12)

where FTφ denotes the Fourier transform with respect to φ.
Thus, by substituting (11) and (12) into (7), interchanging the

integral order again, a 3D image could be reconstructed via the
following:

I (ρ, φ, z) =
∫

Kz

∫

Kφ

{∫

Kω

Eρ (ρ,Kω,Kφ,Kz) dKω

}

× exp [jKφφ] dKφ exp [jKzz] dKz (13)

The above 1D integral with respect to Kω can be converted into a
summation over the available discrete values of Kω instead of spatial
frequency interpolation from Kω to (Kx,Ky, Kz) domain. In its
discrete form of (13), the target function can be formed via

I (ρ, φ, z) =

{
IFTKφ,Kz

[∑

Kω

Eρ (ρ,Kω,Kφ,Kz)∆Kω

]}
(14)

where IFTKφ,Kz indicates the inverse Fourier transform with respect to
Kz and Kφ. Usually, the computation can be efficiently implemented
via Fast Fourier Transform (FFT) and Inverse Fast Fourier Transform
(IFFT) codes. With the coherent summation with respect to Kω inside
[ ], we can obtain the reflectivity spectrum of the cylinder’s surface at
fixed radius ρ. Subsequently, we can obtain the reflectivity distribution
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on the cylinder of radius ρ by simply applying 2D IFT with respect to
spatial frequency Kz and angular frequency Kφ.

Repeating the operations involved from (12) to (14), the target
function at the individual radius bins ρ’s could be recovered. Then, the
resulting image on the cylinder can be assembled to form the complete
3D reflectivity image I (ρ, φ, z). If the backscattering of the targets is
not homogenous within 360◦, we can obtain the images of high quality
with the focusing function F (Kω, φ− φ′, Kz) through adjusting proper
spans of Kφ which is determined by the azimuth support of the target.
It should be noted that the algorithm is suitable for sub-aperture image
formation if necessary.

In above mathematical derivations, we have not performed any
interpolations in wavenumber domains, namely, our algorithm is free
of interpolation, and thus it does not suffer from the errors due to
the truncation of interpolation kernel. Also we have not made near-
field Fresnel approximation or far-field approximation. Therefore,
the 3D image of the human body could be reconstructed accurately.
Especially, as the focusing functions F (Kω, φ′,Kz) at different radius
ρ in (9) are independent with each other, they can be calculated
and stored on disk in advance. This enables the use of parallel
implementation of the algorithm, so we can obtain the cylindrical
frame of different radius simultaneously. If we would like to display the
image, measure the head-to-toe body (waistline, circumference, etc.) in
Cartesian coordinates system and calculate physical measurements for
developing better-fitting clothing, a geometric transformation between
the cylindrical coordinates and Cartesian coordinates system can be
applied via:

{
x = ρ cosφ
y = ρ sinφ
z = z

(15)

This geometric transform is performed in the image domain of interest.
So, it does not need for special treatment for high phase-preserving
accuracy, and the polynomial interpolation is usually enough.

2.2. Reconstruction Procedure

This section deals with the practical implementation of the spherical-
wave 3D imaging algorithm. The whole procedure to reconstruct a 3D
reflectivity image of a person is summarized in the flowchart in Fig. 2,
and the approach may be split into the following steps:

Step 1: Perform the Inverse Fourier Transform (IFT) of
the measured echoes (frequency domain data) with respect to Kω.
Compensate for the free space propagation losses, and reduce the
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E  (ρ , K  , K  )ρ zφ

Figure 2. Block diagram representation of the spherical-wave 3D
imaging algorithm.

coupling and undesired targets through windowing the signal in the
slant-range domain.

Step 2: Obtain the 2D Fourier Transform (FT) of ER(R,φ′, z′)
acquired in step 1 with respect to R and z′.

Step 3: Calculate the FT of the signal ER (Kω, φ′, Kz) with
respect to the azimuth angle φ′ for each frequency wavenumber Kω

and each elevation spatial frequency Kz.
Step 4: Evaluate the FT of the focusing function F (Kω, φ,Kz)

with respect to φ at a desired radius ρ = ρn, the elevation spatial
frequency Kz and the frequency wavenumber Kω. To alleviate the
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computational load, we can also use the results stored on disk in
advance.

Step 5: Take the complex product of the results from Step 3 and
Step 4 in the azimuth wavenumber domain. Sum the resulting product
over the available frequencies Kω to yield the marginal FT of the target
function at the fixed radius ρn.

Step 6: Perform the 2D IFT of the summation with respect to
Kφ and Kz to obtain the reflectivity image I (x, y, z) of the cylinder at
the fixed radius ρn.

Step 7: Repeat Steps 4 to 6 for all the available radii ρ’s, and
then assemble the results together to form a 3D image of the human
body. The main merit of this step is in its rapid implementation by
employing parallel processing, as indicated in the rectangle with dotted
lines in Fig. 2.

Step 8: Display the 3D image projected onto the cylinder, also
the image could be transformed into the Cartesian coordinates system
if necessary, as shown in the rectangle with dashed lines in Fig. 2.

This algorithm has two merits. First, it does not require any
complex 3D interpolation in the 3D wavenumber domain. Second, a
multiprocessor computer can be programmed to form different frames
at the fixed radius in a parallel form; this would greatly reduce the
computational time for image reconstruction.

2.3. Sampling Criteria and Resolutions

According to the Nyquist sampling criterion, the sampling intervals
in the φ′, z′ and Kω directions depend on the extent of the volume
occupied in the spatial frequency domain synthesized with motion
along cylindrical surface. The sampling criterion under near-field
condition using the cylindrical scanning geometry has been given by
Fortuny [11], but the field of view is confined to a small specific angle.
For human body imaging, the field of view is sometimes expected
to reach as large as 360◦, and the existing sampling constraints for
acquiring the echoed data will cause severe aliasing problem associated
with the image reconstruction. Now, we continue with discussion and
analysis including the sampling constraints and resolving capabilities
under the cylindrical scanning geometry condition.

As for the direction of propagation, the frequency domain support
band of the transmitted signal is determined by

ΩKω = [2Kω min, 2Kω max] (16)

where Kω min and Kω max are the wavenumbers at the minimum and
maximum frequencies, respectively. To sample the echoed signal
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without aliasing, the following Nyquist sampling constraint should be
satisfied,

Rmax

Kω max−Kω min
∆Kω

≤ 2π

2 [Kω max −Kω min]

⇒ ∆Kω ≤ π

Rmax
⇒ ∆f ≤ C

2Rmax
, (17)

where ∆f is the frequency sampling interval, Rmax denotes the
maximum observed distance within the antenna beam pattern.

As for the elevation direction, the samples are realized with an
antenna array. However, the whole bandwidth is imposed by the size
of the individual antenna. The wavenumber support band ΩKz′ is

ΩKz′ =
[
−2Kω sin

(
φZ

2

)
, 2Kω sin

(
φZ

2

)]
(18)

Based on the above wavenumber support band, the Nyquist
sampling spacing ∆z′ in the z′ domain for gathering echoed signal
must satisfy the following inequality:

∆z′ ≤ 2π

4Kω sin
(

φZ
2

) ⇒ ∆z′ ≤ 2π

4Kω max sin
(

φZ
2

) =
λmin

4 sin
(

φZ
2

) (19)

where λmin is the smallest wavelength at the highest frequency Kω max.
The worst-case scenario corresponds to the case of φZ = 180◦ for which
the Nyquist sampling spacing in the z′ domain is

∆z′ ≤ λmin

4
(20)

As for the azimuth direction, we can approximate the instanta-
neous azimuth angular frequency of the signal ER (Kω, ρ′0, φ′,Kz) ob-
tained in Step 2 via

Kφ′ =
∂

∂φ′
{
arg

[
ER

(
Kω, ρ′0, φ′,Kz

)]}

≈ ρρ′ sin (φ− φ′)
√

4K2
ω −K2

z√
ρ′2 + ρ2 − 2ρρ′ cos (φ− φ′)

(21)

Considering the earlier assumption that the backscattering of a point
target is homogeneous and isotropic in spans of φA, and φA ∈ [0◦, 360◦],
the azimuth spectral support can be expressed as:

ΩKφ′ =
[
Kφ′

∣∣
φ′=Kφ′ min

, Kφ′
∣∣
φ′=Kφ′ max

]
(22)
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where

φ′Kφ′ max =
{

φ− γ, φA ∈ [2γ, 2π]
φ− φA/2, φA ∈ [0, 2γ]

(23)

φ′Kφ′ min =
{

φ + γ, φA ∈ [2γ, 2π]
φ + φA/2, φA ∈ [0, 2γ]

(24)

and γ = arccos (ρ/ρ′0). As the observed area ρ = ρmax is always smaller
than the radius ρ′0 of the cylinder, γ is limited to the interval (0◦, 90◦).
Then, the Nyquist sampling spacing in the φ′ domain should satisfy

∆φ′ ≤ 2π

Bφ′
∣∣
ρ=ρmax

=





2π

2ρ
√

4K2
ω−K2

z

, φA ∈ [2γ, 2π]

π
√

ρ2+ρ′20−2ρρ′0 cos(φA/2)

ρ′0ρ sin(φA/2)
√

4K2
ω−K2

z

, φA ∈ [0, 2γ]
(25)

To choose an azimuth angular sample spacing suitable for all the
available Kω and φA, the above constraint must be satisfied for the
worst case, that is, the smallest wavelength λmin and the isotropic
backscattering angle φA (φA > 2γ); this yields

∆φ′ ≤ 2π

2ρ
√

4K2
ω −K2

z

⇒ ∆φ′ ≤ π

2ρmaxKω max
=

λmin

4ρmax
(26)

The above inequality indicates that the azimuth sampling interval is
mainly determined by λ/4 and the scanning radius, which is usually
enough for full-body data acquisition and alias-free reconstruction.

The wavenumber support band and the sampling constraints
discussed above rely on the dimensions of the volume occupied in
the 3D wavenumber domain. Therefore, the spatial resolutions of
the resulting 3D reflectivity image I(ρ, φ, z) are dictated by the
signal bandwidth, the center frequency, the extent of the synthetic
aperture and the homogeneous properties of the targets. The achieved
−3 dB resolutions in polar-radius ρ, azimuth φ and height z can be
approximated as:

δρ ≈ 0.886π

Kω max −Kω min
(27)

δφ ≈
{

0.886λc
4 , φA ∈ [2γ, 2π]

0.886λc
4 sin(φA/2)β, φA ∈ [0, 2γ]

(28)

δz ≈ 0.886λc

4 sin (φZ/2)
(29)

with β =
√

cos2 γ + 1− 2 cos γ cos (φA/2), γ = arccos (ρ/ρ′0) and λc is
the wavelength at the center frequency fc. Note that all the units of δρ,
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δφ and δz are meters. In practice, due to the side lobes of the radiation
patterns, the final resolutions are usually slightly poorer than above
theoretical resolutions.

In summary, as for the human body imaging with cylindrical
scanning geometry, the sampling intervals in the measurement are
fixed according to the upper bounds in (17), (19) and (25). The
corresponding spatial resolutions of resulting images are determined
by (27), (28) and (29).

3. SIMULATION RESULTS

In this section, we present two numerical simulation examples based on
cylindrical configuration to illustrate the performance of our algorithm.
The parameters used in the simulation experiments are listed in
Table 1. For the sake of simplicity, the losses due to the antenna
pattern are not considered here.

In the first numerical simulation, to illustrate the capability of
reconstructing the image on the cylinder of particular radius with the
proposed algorithm, 18×17 point scatterers are evenly distributed on a
cylinder of radius ρ = 0.20m with spacings 20◦ and 0.10m in azimuth
and elevation, respectively. As shown in Fig. 3(a), a sketch of point
targets in the 3D space is depicted, and the projection of them onto
the cylinder of radius ρ = 0.20m is also shown in Fig. 3(b). All the
scatters have the same radar cross section, and all the backscattering
angles φA of the model in azimuth are approximated as 30◦. That is

Table 1. Measurement parameters used in the simulations.

Parameter Value
Frequency Range (GHz) 35.000 ∼ 40.000
Radius of Cylindrical Aperture (m) 1.500
Frequency Sampling Interval (MHz) 50.000
Azimuth Scattering Angle φA (◦) 30.000
Azimuth Sampling Interval (◦) 0.358
Elevation Beam Width φZ (◦) 30.000
Elevation Sampling Interval (cm) 0.600
Range Direction Resolution (cm) 2.658
Azimuth Direction Resolution (cm) 0.597
Elevation Direction Resolution (cm) 0.685
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to say, although the targets are illuminated within 360◦, the echoed
signal reflected from each target is generated with an angular span
of ±15◦. Then, the TX/RX antenna array synthesizes a cylindrical
aperture of radius ρ′0 = 1.5m within the region −15◦ ≤ φA ≤ +15◦ and
−15◦ ≤ φZ ≤ +15◦ for each point scatter. The corresponding azimuth
and elevation sampling spacings are selected according to (19) and
(25). The object is illuminated in the frequency range 35 to 40 GHz,
sweeping 101 frequency points with a step of 50 MHz. With these
parameters the expected −3 dB resolutions along the three main axes
are given in the last three rows of Table 1.

The focusing function F (Kω, φ′, Kz) is calculated with (9), and
corresponding image frame on the cylinder of radius 0.20m is formed,
as shown in Fig. 4(a). Subsequently, the 3D image inside a cylinder of
dimensions 0.3m (polar-radius) ×360◦ (azimuth) × 1.7m (elevation)
is reconstructed with the proposed algorithm and demonstrated in
Fig. 4(b). The reflectivity values as well as the position of the point
targets are all in perfect agreement with the simulated model. Since the
main lobe of the Point Spread Function (PSF) in polar-radius which
is dominated by the bandwidth of the transmitted signal is wider than
those in azimuth and elevation, the targets in the discrete image are
not the ideal points. Therefore, when the image is directly projected
onto the azimuth-elevation plane, the unexpected main lobes would
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Figure 3. (a) Simulated model used in the simulation with an
ensemble of 17 × 18 = 306 point targets and (b) the projection of
targets onto the cylinder of radius ρ = 0.20 m.
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Figure 4. (a) The 2D image on the cylinder of radius 0.20 m; (b)
Iso-surfaces of the 3D image processed by the proposed algorithm;
(c)–(d) Direct projection of (b) onto the front and back plane; (e)
Iso-surfaces of 3D image with maximum values extraction along the
polar-radius direction; (f)–(g) Projection of (e) onto the front and back
plane. The pixel spacings ∆φ = 0.349 rad., ∆z = 0.60 cm in (a) and
∆x = ∆y = 0.50 cm, ∆z = 0.60 cm in (b)–(g).

impact on the quality of the projected image, and only the targets in
the middle columns could be observed clearly, as shown in Figs. 4(c)–
(d).
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On the one hand, as for people screening system, resolutions in
azimuth and elevation are much easier achieved than that in polar-
radius. Thus the main lobe of PSF in polar-radius is much wider
than those in the other two directions, as shown in the upper left of
Fig. 5. On the other hand, PSF of a target with cylindrical aperture
is shift-varying [20], namely, the orientation of PSF varies in azimuth,
as shown in Fig. 5. Therefore, when the 3D image is projected onto
2D plane directly [1], the main lobe of the PSF in polar-radius would
possibly be scattered due to the shift-varying properties of PSF, as
depicted in Fig. 5 (e.g., ‘A’ is directly projected and shown as ‘C’) and
Figs. 4 (c)–(d).

Here, we exploit a method to improve the quality of the projected
images. In practice, people can be arranged to stand in the middle of
the cylinder for screening. Furthermore, the systems are not capable
of penetrating human tissues but acquiring the information of body
surface and concealed items. So the number of targets of interest is
always less than the number of resolution cell in polar-radius. Here, we
pick up these targets via extracting the maximum value of the target
in polar-radius. Their absolute values should be greater than those of
pixel points from a small neighborhood, and moreover, the distance
between any two pixel points is larger than the width of main lobe of
the impulse response. Then the 3D image can be projected not only
onto spread cylinder of radius ρ, but also onto arbitrary vertical planes
using the maximum values projection. This procedure is depicted in
Fig. 5. Taking target ‘A’ as an example, we select it at first in polar-
radius, pick up the maximum value (target ‘B’) and then project it onto
the vertical plane (target ‘D’). As shown in Figs. 4(e)–(g), the quality
of the resulting images is greatly improved compared with Figs. 4(b)–
(d).

PSF

O

ρ 

O

ρ

A B

C D

Figure 5. An approach to display the resulting 3D image.
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(a) (b) (c)

Figure 6. (b) Side view and (c) front view of (a) the human body
model with an ensemble of 816 point targets.

In the second numerical simulation, a human body model
consisting of 816 unit amplitude point scatters is confined within a
box of dimensions 25.0 cm × 50.0 cm × 170.0 cm. Fig. 6(a) shows its
sketch with pixel spacings 2.5 cm and 5.0 cm on horizontal plane and in
elevation, respectively. Figs. 6(b)–(c) give the side and front views of
the model, respectively. By using the same simulation parameters as in
Table 1, the image reconstructed by the proposed algorithm is shown in
Figs. 7(a)–(c). Then with the above-mentioned imagery representation
method, the iso-surface of the 3D image and the projected images
corresponding to the front and side views are shown in Figs. 7(d)–(f),
respectively.

In order to demonstrate the performance of the proposed imaging
algorithm, the 3D resolutions, the Peak Side Lobe Rates (PSLR) and
the Integral Side Lobe Rates (ISLR) are all evaluated, as indicated
in Table 2. The PSLR is the ratio between the height of the largest
sidelobe Aside and the height of the main lobe Amain; that is

PSLR = 20 log10

{
Aside

Amain

}
(30)

The ISLR is often used to analyze the sidelobe power of PSF. Assume
that the “main lobe” power is Pmain and the total power Ptotal, the
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ISLR is then

ISLR = 10 log10

{
Ptotal − Pmain

Pmain

}
(31)
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Figure 7. (a) Iso-surfaces of the 3D image processed by our algorithm
in the numerical simulation with 816 point targets; (b)–(c) Direct
projection of (a) onto the side and front plane; (d) Iso-surfaces of
the 3D image with maximum values extraction in the polar-radius
direction; (e)–(f) Projections of (d) onto the side and front plane.
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Figure 8. (a) Azimuth, (b) elevation and (c) polar-radius profiles of
the 3D image of one target obtained in the simulation.
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Figure 9. The scatter response for the case φA = 30◦ (a) and for
the case φA = 5.5◦ (b) on the azimuth and polar-radius plane. The
displayed dynamic range is 40 dB.

where the numerator is the total power of the sidelobes. Usually, the
null-to-null of the PSF can be defined as the main lobe width. For a
sinc function resulting from the IFT of a uniform spectrum, the typical
PSLR and ISLR are about −13 dB and −10 dB, respectively.

Figure 8 shows azimuth, elevation and polar-radius profiles of a
point target in Fig. 4(b) and Fig. 7(a). Note that no window is used
in the reconstruction. Since the theoretical resolutions are calculated
at the center frequency fc = 37.5GHz, this makes only a minor
difference between the measurements and the expected ones. As we
pointed out earlier, the angular extents φA and φZ exceed the spherical
sector required for equal resolutions in the polar-radius, azimuth and
elevation directions. The resolution in polar-radius is worse than those
in the other two directions. Thus the power of the side lobes of
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Figure 10. The profiles of the targets on the horizontal plane
z = 1.3911m directly projected onto the vertical plane, as in (a),
(c) and (e), are improved and displayed in (b), (d) and (f) with the
discussed method, respectively. The displayed dynamic range of the
profiles is 40 dB.
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Table 2. The measured PSLR, ISLR and resolutions in the ρ-axis,
φ-axis and z-axis.

Measured Parameter Azimuth Polar-radius Elevation
PSLR (dB) −14.019 −17.712 −13.084
ISLR (dB) −10.385 −17.498 −10.349

Resolution (cm) 0.591 2.512 0.674

PSF in the horizontal plane spreads in azimuth in Fig. 9(a) but not
concentrates in polar-radius in Fig. 9(b). Hence, the PSLR and ISLR
in polar-radius in Table 2 show a deviation from above typical values.
But they do not produce any effect on the final image quality. From
the point view of the indicators in Table 2, experimental results show
a good performance in terms of focusing capabilities.

To demonstrate the validity of our approach for image display, we
compare Fig. 4(c) and Figs. 7(b)–(c) with Fig. 4(g) and Figs. 7(e)–
(f) at z = 1.3911 m, respectively. The directly projected images are
shown in Figs. 10(a), (c), (e). Because of the worse resolutions in polar-
radius and the shift-varying properties of PSF, the directly projected
images are not very well. With the above approach the side lobes of
the targets in polar-radius are decreased by greater than 10 dB, and
the targets in the projected images can be easily separated, as shown
in Figs. 10(b), (d), (f). Therefore, the method of image display can be
used to improve the quality of the resulting images obtained within a
cylindrical scanning geometry.

4. CONCLUSION

This paper presents a 3D imaging algorithm especially tailored for
accurately reconstructing the 3D image of the human body in the
case of cylindrical scanning geometry. The algorithm takes into
account the free space propagation losses, the wavefront curvature
and the case that the backscattering is not strictly isotropic within
360◦ by adjusting extent of φA. The core of the algorithm is the
multiplication with the cylinder focusing function, followed by the
coherent summation over the measured frequency ranges instead of the
3D frequency interpolation. In addition, the algorithm has the merit
of parallel implementation without suffering from any approximations
and the truncation errors. Furthermore, the sampling criteria and
the resolutions for cylindrical configuration are deduced in detail.
Finally, two numerical simulations are performed and the approach
for better display of 3D image is presented. The measured indicators
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of resulting images confirm the accuracy of the proposed algorithm
with the cylindrical synthetic aperture for human body imaging.
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APPENDIX A. SOLUTION OF THE INTEGRAL USING
FOURIER TRANSFORM

Fourier transforms are for converting a function between space and
spatial frequency domains. Here, the 3D microwave reflectivity map
associated with a person can be obtained using Fourier Transform.

Recall the expression for the response measured at transceiver
position (ρ′0, φ

′, z′) in (4)

ER

(
Kω, φ′, z′

)
=

∫ ∫ ∫

V
I (ρ, φ, z) exp (−j2KωR) dr (A1)

Taking the Fourier transform of both sides in (A1) with respect to x′,
y′ and z′, we can write∫∫∫

V′
ER

(
Kω, φ′, z′

)
exp

(−jKxx′ − jKyy
′ − jKzz

′) dx′dy′dz′

=
∫∫∫

V′

{∫∫∫

V
I (x, y, z) exp (−j2KωR) dr

}

× exp
(
−jKxx′ − jKyy

′ − jKzz
′
)

dx′dy′dz′

=
∫∫∫

V
I (x, y, z)

{∫∫∫

V′
exp (−j2KωR)

× exp
(−jKxx′ − jKyy

′ − jKzz
′) dx′dy′dz′

}
dxdydz

= C1
∫∫∫

V
I (x, y, z) exp

[
−j (Kxx + Kyy + Kzz)

]
dxdydz(A2)

where V′ denotes the cylindrical synthetic aperture. Kx, Ky and
Kz are the Fourier-transform variables corresponding to x, y and z,
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respectively. These three wavenumbers are related with the frequency
wavenumber Kω through the following equations:

Kx = Kr cos (φ) = Kr
(x− x′)

r
(A3)

Ky = Kr sin (φ) = Kr
(y − y′)

r
(A4)

Kz =
√

4K2
ω −K2

r (A5)

Kr =
√

K2
x + K2

y =
√

4K2
ω −K2

z (A6)

r =
√

(x− x′)2 + (y − y′)2 (A7)

The triple integral in the right-hand side of (A2) represents a 3D
Fourier transform of the 3D microwave reflectivity function I (x, y, z).
Therefore, an estimate of I (x, y, z) can be obtained by using a 3D
inverse Fourier transform; that is

I (x, y, z) =
1

C1

∫∫∫

K

{∫∫∫

V′
ER

(
Kω, φ′, z′

)

× exp
(−jKxx′ − jKyy

′ − jKzz
′) dx′dy′dz′

}

× exp
[
j (Kxx + Kyy + Kzz)

]
dKxdKydKz

=
1

C1

∫

Kz

∫

φ

∫

Kω

{∫∫∫

V′
ER

(
Kω, φ′, z′

)

× exp
(−jKxx′ − jKyy

′ − jKzz
′) ρ′dρ′dφ′dz′

}

× exp
[
j (Kxx + Kyy + Kzz)

]
KωdKωdφdKz

=
ρ′0
C1

∫

Kz

∫

φ

∫

Kω

{∫∫

S
ER

(
Kω, φ′, z′

)

× exp
(−jKxx′ − jKyy

′ − jKzz
′) dφ′dz′

}

× exp
[
j (Kxx + Kyy + Kzz)

]
KωdKωdφdKz (A8)

After rearranging the components of the above integral, we obtain

I (x, y, z)

=
ρ′0
C1

∫

z′

∫

φ′

∫

Kω

ER

(
Kω, φ′, z′

) {∫

φ

∫

Kz

exp
[
jKx

(
x− x′

)]

× exp
[
jKy

(
y − y′

)
+ jKz

(
z − z′

)]
dφdKz

}
KωdKωdφ′dz′ (A9)
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In order to simplify the evaluation in (A9), the integral inside { }
is further derived by substituting (A3)–(A7) into above identity.

∫

φ

∫

Kz

exp
[
jKx

(
x− x′

)
+ jKy

(
y − y′

)
+ jKz

(
z − z′

)]
dφdKz

=
∫

φ

∫

Kz

exp
[
jKr cos (φ)

(
x− x′

)]

× exp
[
jKr sin (φ)

(
y − y′

)
+ jKz

(
z − z′

)]
dφdKz

=
∫

φ

∫

Kz

exp
[
jKrr cos (φ)

(x− x′)
r

]

× exp
[
+jKrr sin (φ)

(y − y′)
r

+ jKz

(
z − z′

)]
dφdKz

=
∫

φ

∫

Kz

exp
[
jKrr cos2 (φ)

]

× exp
[
jKrr sin2 (φ) + jKz

(
z − z′

)]
dφdKz

= ∆φ

∫

Kz

exp
[
jKrr + jKz

(
z − z′

)]
dKz

= ∆φ

∫

Kz

exp
[
j
√

4K2
ω −K2

z

√
(x− x′)2 + (y − y′)2

]

× exp
[
jKz

(
z − z′

)]
dKz (A10)

This results in the expression∫

φ

∫

Kz

exp
[
jKx

(
x− x′

)
+ jKy

(
y − y′

)
+ jKz

(
z − z′

)]
dφdKz

= ∆φ exp (j2KωR) (A11)

By substituting (A11) in (A9), the reconstruction for I (x, y, z)
takes the form

I (x, y, z)

=
∆φρ′0
C1

∫

z′

∫

φ′

∫

Kω

ER

(
Kω, φ′, z′

)
exp (j2KωR)KωdKωdφ′dz′ (A12)

Since C1, ρ′0 and ∆φ are constants and only are related to the size
of cylindrical synthetic aperture, their contributions in the image
reconstruction are negligible. Therefore, we can obtain the following

I (ρ, φ, z)=
∫

z′

∫

φ′

∫

Kω

ER

(
Kω, φ′, z′

)
exp (j2KωR)KωdKωdφ′dz′ (A13)
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