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Abstract—Using a building block approach which combines a
transverse resonance method with a mode-matching technique, a
rigorous analysis of a lossless bi-isotropic H-guide is presented. First,
the modal equation of a parallel-plate waveguide containing the inner
medium of the H-guide is obtained. Then, a mode matching technique
is used to develop a full-wave analysis of the H-guide. The influence of
nonreciprocity on the guidance properties of the structure is discussed.

1. INTRODUCTION

The concept of a nonreciprocal isotropic medium has been introduced
by Tellegen as early as 1948. It has resurged in the mid 90’s,
giving rise to a major debate on whether linear bi-isotropic media can
actually be nonreciprocal. In a linear bi-isotropic medium, the Tellegen
parameter κ affects the phase of a propagating electric field whereas
the chiral parameter χ affects its polarization. A linearly polarized
wave propagating in a Tellegen medium would then present an angle
between the electric and magnetic fields equal to π/2 + ϑ [1] (where
ϑ is a parameter characterizing the nonreciprocity of the medium).
Several claims that this nonreciprocity would violate the so-called
Post constraint have been proven wrong: there is no such thing as
a Post constraint for actual media [2]. Furthermore, by resorting to a
field transformation that redefines fields in such a way that a uniform
Tellegen material in free space will look like a reciprocal isotropic
medium, will cause the surrounding free space to look like a Tellegen
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medium: only in uniform and unbounded media can we state that,
through a field transformation, the Tellegen parameter in bi-isotropic
constitutive relations vanishes and hence it cannot have any impact on
wave propagation [3]. Finally, there is some experimental evidence of
the effect of the nonreciprocal Tellegen magnetoelectric parameter [4].

The influence of nonreciprocity on the propagation features of
closed metallic waveguides, circular rods, open slab waveguides, and
others, has already been discussed in the literature [1, 5–10]. Moreover,
a full-wave analysis of an H-guide containing chiral media has also
been presented [11]. Similarly to the chiral case, there is no closed-
form analytical solution, as in [12], to the modal analysis of an H-
guide containing bi-isotropic media: the coupled modal equations, that
describe the transverse electromagnetic field for such magnetoelectric
isotropic media in H-guides, preclude such a closed-form analytical
solution. In fact, to the authors’ knowledge, no work addressing H-
guides containing bi-isotropic, or specifically Tellegen media, has been
published so far.

In this article, a rigorous analysis of a bi-isotropic H-guide, as
shown in Figure 1, is presented. The approach is based on a transverse
resonance method combined with a mode-matching technique. This
work may then be considered as an extension of the method used
in [11] for chiral media, in order to investigate the general bi-isotropic
case by including the effect of nonreciprocity. In this building-block
approach, the modal equation of a parallel-plate waveguide containing
a lossless bi-isotropic medium is obtained in the first place. Then, using
a mode-matching technique, a full-wave analysis of the bi-isotropic
H-guide is developed. The guidance properties of this structure are
then analyzed and its potential applications discussed. It is shown
that, nonreciprocity introduces several changes in both the elementary
structure and the H-guide. Namely, the elementary parallel-plate
Tellegen waveguide can only support a set of TE modes and a
set of Hybrid modes, unlike when both chirality and nonreciprocity
are present (all propagating modes become hybrid). Furthermore,
for the range of parameters herein considered, an increase in the
nonreciprocity parameter, introduces a proportional shift in the cutoff
frequencies of modes supported by the H-guide (which is not similar
to the shift caused by chirality). Moreover, an increase in the
nonreciprocity parameter also increases the velocities of propagating
modes. Namely, for any given mode, there is a bound on the magnitude
of the Tellegen parameter, beyond which the mode is at cutoff. These
new features cannot be found in the corresponding reciprocal grounded
chiroslabguide (e.g., [8, 13, 14]).
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Figure 1. Bi-isotropic H-guide. Figure 2. Bi-isotropic parallel-
plate waveguide.

2. DISPERSION DIAGRAMS OF THE ELEMENTARY
STRUCTURES

The first step of the building block approach, to address an H-guide
filled with a bi-isotropic medium, is to obtain the modal equation of
a parallel–plate waveguide, Figure 2, filled with the same medium.
This elementary structure, is a closed waveguide where only discrete
modes can propagate. In this section, the general case of a parallel-
plate waveguide filled with a bi-isotropic medium is first addressed.
Moreover, the specific case of a Tellegen medium is also analyzed.
Dispersion diagrams of the modal solutions are presented for each case.

2.1. Waveguide Filled with a Bi-isotropic Medium

For bi-isotropic media, considering plane wave propagation of the form
exp [i (k · r− ω t)], the constitutive relations can be written, in the
frequency domain, as [1]

D = ε0εE +
√

ε0µ0ξH, (1a)
B = µ0µH +

√
ε0µ0ζE, (1b)

where ξ = κ + iχ and ζ = κ− iχ. An unbounded bi-isotropic medium
has two eigenwaves with orthogonal polarizations: a right handed
circularly polarized (RCP) wave and a left handed circularly polarized
(LCP) wave. One can then use the Bohren decomposition to write the
total electromagnetic field in terms of these two waves (as they form
an orthogonal base): E = E+ + E−, H = H+ + H−. The constitutive
relations (1a) and (1b) can then be rewritten as,

D± = ε0ε±E±, (2a)
B± = µ0µ±H±, (2b)
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where
ε± = ε [cos (ϑ)± χ/n] exp (∓iϑ) , (3a)
µ± = µ [cos (ϑ)± χ/n] exp (±iϑ) , (3b)

and sin (ϑ) = κ
/√

εµ is the parameter of nonreciprocity. Since each
wave observes the Maxwell equations, one can write,

∇×E± = iωµ0µ±H±, (4a)
∇×H± = −iωε0ε±E±. (4b)

For a structure layered along x and unbounded along y, one has
∇ = ∂/∂xx̂ + iβ/k0 ẑ. Choosing Ey and Z0Hy as the supporting field
components, the other fields can be written as

E±
x =

1
ε±

β

k0
Z0H

±
y , (5a)

Z0H
±
x = − 1

µ±
β

k0
E±

y , (5b)

E±
z = i

1
ε±

1
k0

∂

∂x
Z0H

±
y , (6a)

Z0H
±
z = −i

1
µ±

1
k0

∂

∂x
E±

y , (6b)

and the following wave equations are derived

∂2

∂x2

{
E±

y

H±
y

}
= − (

n±k2
0 − β2

) {
E±

y

H±
y

}
, (7)

where n± = √
ε±µ± =

√
εµ− κ2±χ. From the Bohren decomposition,

the total fields are given by
Ey = E+

y + E−
y , (8a)

Z0Hy = −i
(
Y+E+

y + Y−E−
y

)
, (8b)

where Y± =
√

ε±/µ± =
√

ε/µ exp (∓iϑ), E±
y (x) = A± sin (h±x + φ)

and h± = n±k2
0 −β2. Given the symmetry of the structure, the modal

solutions can be split into even (φ = π/2) and odd (φ = 0) modes.
The structure has two perfectly conducting planes placed at x = ±b,
enforcing that Ey (x = ±b) = 0 and Ez (x = ±b) = 0. Enforcing these
boundary conditions results in the modal equations for odd and even
modes, respectively,

n+
h−
k0

sin (h+b) cos (h−b) + n−
h+

k0
cos (h+b) sin (h−b) = 0, (9)

n+
h−
k0

cos (h+b) sin (h−b) + n−
h+

k0
sin (h+b) cos (h−b) = 0. (10)
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(a) (b)

Figure 3. Parallel-plate bi-isotropic waveguide: (a) dispersion
diagram (ε = 2, µ = 1, χ = 0.2 and κ = 0.2); (b) influence of
the nonreciprocity parameter κ in the modal solutions (χ = 0.2,
b/λ = 0.2).

In Figure 3(a) the dispersion diagram of a bi-isotropic parallel-
plate guide is shown, whereas in Figure 3(b) the influence of the
nonreciprocity parameter in the behavior of modal solutions can be
observed: an increase in the value of κ, increases the mode velocities.
This causes any given mode to be at cutoff, when κ is set beyond a
critical value. By setting κ = 0 into (9) and (10) the case of a waveguide
filled with a chiral medium is obtained [11]. Note that, all the modal
solutions supported by the bi-isotropic, reciprocal or nonreciprocal,
parallel-plate waveguide are hybrid.

2.2. Waveguide Filled with a Tellegen Medium

For Tellegen media (χ = 0), one has that

h− = h+ = h, (11a)
n− = n+ = nκ. (11b)

Replacing (11a) and (11b) into (5a), (5b), (6a), (6b) and (8a), (8b),
one obtains for the field components

Ey = (A+ + A−) sin (hx + φ) , (12a)
Z0Hy = −i (Y+A+ − Y−A−) sin (hx + φ) , (12b)

Ex = −i
1
n

β

k0
(A+ −A−) sin (hx + φ) , (13a)

Z0Hx = − β

k0

(
1

µ+
A+ +

1
µ−

A−

)
sin (hx + φ) , (13b)
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Ez =
1
nκ

h

k0
(A+ −A−) cos (hx + φ) , (14a)

Z0Hz = −i
h

k0

(
1

µ+
A+ +

1
µ−

A−

)
cos (hx + φ) . (14b)

Defining AE and AH as

AE = A+ + A−, (15a)
AH = −i (Y+A+ − Y−A−) , (15b)

the field components can be written as

Ey = AE sin (hx + φ) , (16a)
Z0Hy = AH sin (hx + φ) , (16b)

Ex =
1
n2

κ

β

k0
(κAE + µAH) sin (hx + φ) , (17a)

Z0Hx = − 1
n2

κ

β

k0
(εAE + κAH) sin (hx + φ) , (17b)

Ez = i
1
n2

κ

h

k0
(κAE + µAH) cos (hx + φ) , (18a)

Z0Hz = −i
1
n2

κ

h

k0
(εAE + κAH) cos (hx + φ) . (18b)

Again, given the symmetry of the structure, the modal solutions can
be split into odd and even (φ = 0 or φ = π/2, respectively). The types
of modes supported by this structure are now discussed.

2.2.1. TE Modes

In order to check for the existence of TE modes, one must enforce that
Ez (x) = 0. From (18a), this results in

AH = −κ/µAE . (19)

The field components can then be rewritten as

Ey = AE sin (hx + φ) , (20a)

Z0Hy = −κ

µ
AE sin (hx + φ) , (20b)

Z0Hx = − 1
µ

β

k0
AE sin (hx + φ) , (21a)

Z0Hz = −i
1
µ

h

k0
AE cos (hx + φ) , (21b)
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and Ex (x) = 0. Enforcing the boundary condition Ey (x = b) = 0 in
(20a) results in

sin (hb + φ) = 0. (22)

The modal Equation (22) can be explicitly solved for odd and even
modes respectively

sin (hb) = 0 ⇒ h =
mπ

b
, m ≥ 1, (23)

cos (hb) = 0 ⇒ h =
π

2b
+

mπ

b
, m ≥ 0. (24)

For m = 0 only the even mode exists, since, for the odd mode, from
(16a) and (16b), Ey = Hy = 0, and all the field components become
null everywhere.

2.2.2. TM Modes

In this section, it is shown that this structure does not support TM
modes. Enforcing Hz = 0 in (18b) results in

AH = −ε/κAE , (25)

and the following field components are obtained

Ey = AE sin (hx + φ) , (26a)

Z0Hy = − ε

κ
AE sin (hx + φ) , (26b)

Ex = −1
κ

β

k0
AE sin (hx + φ) , (27a)

Ez = −i
1
κ

h

k0
AE cos (hx + φ) . (27b)

Enforcing the boundary condition Ey (x = b) = 0 in (26a) results in

sin (hb + φ) = 0. (28)

But enforcing the boundary condition Ez (x = b) = 0 in (27b), and
using (28), one obtains AE = 0 and consequently all the field
components become null everywhere. Therefore, this structure does
not support TM modes.

2.2.3. Hybrid Modes

As it was verified in Section 2.2.1, it is not possible to have
simultaneously AE 6= 0 and AH 6= 0 unless Ez = 0 everywhere. In fact,
enforcing the boundary conditions Ey (x = b) = 0 and Ez (x = b) = 0
in (16a) and (18a) requires that AH = −κ/µAE , which leads to TE
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modes. Therefore, to check for the existence of hybrid modes, only
the remaining possible values for AE and AH must be considered:
(i) AH = 0 and AE 6= 0; (ii) AE = 0 and AH 6= 0.

For case (i), replacing AH = 0 and AE 6= 0 in (16a)–(18b) results
in

Ey = AE sin (hx + φ) , (29a)
Z0Hy = 0, (29b)

Ex =
1
n2

κ

β

k0
κAE sin (hx + φ) , (30a)

Z0Hx = − 1
n2

κ

β

k0
εAE sin (hx + φ) , (30b)

Ez = i
κ

n2
κ

h

k0
AE cos (hx + φ) , (31a)

Z0Hz = −i
1
n2

κ

ε
h

k0
AE cos (hx + φ) . (31b)

Enforcing the boundary condition Ey (x = b) = 0 results in (28).
But, enforcing Ez (x = b) = 0 in (31a) imposes that AE = 0 and
consequently all the fields become null everywhere. Therefore, this
structure does not support modes with AH = 0 and AE 6= 0.

For case (ii), replacing AE = 0 and AH 6= 0 in (16a)–(18b),
results in a family of hybrid modal solutions, with the following field
configuration

Ey = 0, (32a)
Z0Hy = AH sin (hx + φ) , (32b)

Ex =
µ

n2
κ

β

k0
AH sin (hx + φ) , (33a)

Z0Hx = − κ

n2
κ

β

k0
AH sin (hx + φ) , (33b)

Ez = i
µ

n2
κ

h

k0
AH cos (hx + φ) , (34a)

Z0Hz = −i
κ

n2
κ

h

k0
AH cos (hx + φ) . (34b)

Note that, these hybrid modes cannot be written as a combination
of the previously found TE modes. Also, the previous TE modes
cannot be written as a combination of these hybrid modes. Enforcing
the boundary condition Ez (x = b) = 0 in (34a), results in the modal
equation,

cos (hb + φ) = 0, (35)
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(a) (b)

Figure 4. Dispersion diagram of a parallel-plate waveguide filled with:
(a) a Tellegen medium (ε = 2, µ = 1 and κ = 0.2); (b) air.

which leads to the same modal solutions as (23)–(24). However, with
this field configuration, the odd modes are given by (24) and the even
modes by (23). Setting h = 0, allows to obtain a TEM even mode

Ey = 0, (36a)
Z0Hy = AH , (36b)

Ez = 0, (36c)
Z0Hz = 0, (37a)

Ex =
µ

n2
κ

β

k0
AH , (37b)

Z0Hx = − κ

n2
κ

β

k0
AH . (37c)

The dispersion diagram of a parallel-plate waveguide, with κ = 0.2,
is shown in Figure 4(a). Note that, setting κ = 0 in (20a)–(21b),
reduces the TE modal solutions, of the Tellegen waveguide, to the TE
modes of the isotropic waveguide. Similarly, setting κ = 0 in (33a)–
(34b), reduces the hybrid modes, of the Tellegen waveguide, to the
TM modes of the isotropic waveguide (the TEM mode in (36a)–(37c)
is also reduced to the TEM mode of the isotropic waveguide).

2.2.4. Waveguide Filled with an Isotropic Medium

When using a building block approach for the analysis of the H-guide,
the external region is a parallel plate waveguide filled with air. The well
known modal equations for this structure can be obtained by enforcing
the boundary conditions to the field components (16a)–(18b) (with
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κ = 0), which results in

sin (hb) = 0 ⇒ h =
kπ

b
, (38)

for TE (TM) odd (even) modes and

cos (hb) = 0 ⇒ h =
π

2b
+

kπ

b
, (39)

for TE (TM) even (odd) modes. For h = 0 a TEM mode is obtained.
For the sake of comparison, the modal solutions of an air filled

parallel plate waveguide are depicted in Figure 4(b).

3. THE BI-ISOTROPIC H-GUIDE

Having solved the modal equations of the elementary structures in
the previous section, the modal equation of the H-guide can now be
derived. The next steps of the building block approach are addressed
in separate sub-sections. First, orthogonality relations will be obtained
for the modal solutions in the inner and outer regions of the H-guide.
Unlike what can be done for the chiral H-guide [8] (or for the uniaxial
ridge waveguide [15]), one must resort to the formalism proposed
in [16]. Next, the scattering matrix of a step discontinuity at a parallel-
plate waveguide is derived. A mode matching technique is then applied
at the step discontinuity. Finally, a transverse resonance method is
used to derive the modal equation of the H-guide. Note that, the
procedures to obtain the scattering matrix at the step discontinuity,
and to apply the transverse resonance method in order to obtain the
modal equation of the H-guide are the same as those presented in [11].
Therefore, only the main differences in the formalism are highlighted.

3.1. Orthogonality Relations

Following [16], and defining an adjoint waveguide

εa = ε∗, µa = µ∗, ξa = ξ∗, ζa = ζ∗, (40)

and a complex inner product

〈u,ua〉 =
∫

I

(u∗1u
a
1 − u∗2u

a
2) dx, (41)

it is possible to derive∫

I

(
E∗

xm∗Z0H
a
yn
− Z0H

∗
xm∗E

a
yn

)
dx = βmδmn, (42)
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where Hxm∗ , Exm∗ are the field components of the original waveguide,
whereas Ea

yn
and Ha

yn
are the field components of the adjoint waveguide

(and δmn is the Kronecker delta). For the particular case of lossless
media, the original and adjoint waveguides are identical [16], and
(42), which is a biorthogonality relation, can be reduced to a plain
orthogonality relation∫

I

(
E∗

xm
Z0Hyn − Z0H

∗
xm

Eyn

)
dx = βmδmn, (43)

or, since the fields can be written as sums of sine and co-sine functions∫

I

(
ExmZ0H

∗
yn
− Z0HxmE∗

yn

)
dx = βmδmn. (44)

These relations will be used to derive the modal equation of the H-
guide.

3.2. Scattering Matrix

In this section, the scattering matrix for oblique incidence at a step
discontinuity in a parallel-plate waveguide, is presented. In order
to account for oblique incidence, two coordinate systems will be
considered, that of the structure (x, y′, z), with y′ = y + l, and that of
the wave (x, u, v). These can be easily related, see Figure 5. In order to
properly enforce the boundary conditions to the step, one must take
into account that, in general, many sets of modes can propagate in
either side of the step. Enforcing the boundary conditions, for the

Figure 5. Step discontinuity.
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tangential fields, at y = l, results in [11]
+∞∑

n=1

(an + bn) Exn =
+∞∑

p=1

cpĒxp , (45)

−
+∞∑

n=1

(an − bn) cos (θn) Eun +
+∞∑

n=1

(an + bn) sin (θn) Evn

=
+∞∑

p=1

cp

[− cos
(
θ̄p

)
Ēup + sin

(
θ̄p

)
Ēvp

]
, (46)

+∞∑

n=1

(an + bn) Z0Hxn =
+∞∑

p=1

cpZ0H̄xp , (47)

−
+∞∑

n=1

(an − bn) cos (θn) Z0Hun +
+∞∑

n=1

(an + bn) sin (θn) Z0Hvn

=
+∞∑

p=1

cp

[− cos
(
θ̄p

)
Z0H̄up + sin

(
θ̄p

)
Z0H̄vp

]
, (48)

where the notation Ē, H̄ is used whenever fields are defined in the
external region.

3.3. Mode-matching

In order to derive a matrix equation from the boundary conditions it
is first necessary to implement a mode matching technique at the step
discontinuity. Applying (43) to each side of the step, it is possible to
obtain a normalized field amplitude for each mode

Omn =

b∫

−b

(
E∗

xm
Z0Hyn − Z0H

∗
xm

Eyn

)
dx =

βm

k0
δmn, (49)

Ōmn =

b∫

−b

(
Ē∗

xm
Z0H̄yn − Z0H̄

∗
xm

Ēyn

)
dx =

β̄m

k0
δmn. (50)

Multiplying (45) by Z0H̄
∗
um

and subtracting from (47) multiplied by
Ē∗

um
results in

+∞∑

n=1

(an+bn)
[
ExnZ0H̄

∗
um
−Z0HxnĒ

∗
um

]
=

+∞∑

p=1

cp

[
ĒxpZ0H̄

∗
um
−Z0H̄xpĒ

∗
um

]
.

(51)
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Now, integrating (51) between −b and b, and using (44), the amplitude
coefficients of the transmitted waves are obtained

cm =
1

β̄m

∞∑

n=1

(an + bn) Pnm, (52)

where

Pnm =

b∫

−b

(
ExnZ0H̄

∗
um
− Z0HxnĒ∗

um

)
dx. (53)

On the other hand, multiplying (48) by Ē∗
xm

and subtracting from (46)
multiplied by Z0H̄

∗
xm

, one arrives at

−
∞∑

n=1

(an − bn) cos θn

(
Ē∗

xm
Z0Hun − Z0H̄

∗
xm

Eun

)

+
∞∑

n=1

(an + bn) sin θn

(
Ē∗

xm
Z0Hvn − Z0H̄

∗
xm

Evn

)

=
∞∑

p=1

cp

[− cos θ̄p

(
Ē∗

xm
Z0H̄up − Z0H̄

∗
xm

Ēup

)

+sin θ̄p

(
Ē∗

xm
Z0H̄vp − Z0H̄

∗
xm

Ēvp

)]
. (54)

Finally, integrating (54) between −b and b, taking into account (43)
and (52), it is possible to obtain

−
∞∑

n=1

(an − bn) cos θnQmn +
∞∑

n=1

(an + bn) sin θnRmn

=− cos θ̄m

∞∑

n=1

(an+bn) Pnm+
∞∑

p=1

1
β̄p

sin θ̄pSmp

∞∑

n=1

(an+bn) Pnp, (55)

where

Qmn =

b∫

−b

(
Ē∗

xm
Z0Hun − Z0H̄

∗
xm

Eun

)
dx, (56)

Rmn =

b∫

−b

(
Ē∗

xm
Z0Hvn − Z0H̄

∗
xm

Evn

)
dx, (57)

Smp =

b∫

−b

(
Ē∗

xm
Z0H̄vp − Z0H̄

∗
xm

Ēvp

)
dx. (58)
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It is possible to write (55) in a simpler matrix form [11]

(C + D) · a = (C−D) · b, (59)

where

a = [a1, a2, . . . , an]T , b = [b1, b2, . . . , bn]T , (60)
Cmn = cos θnQmn, (61)

Dmn = − sin θnRmn − cos θ̄mPnm +
∞∑

p=1

1
β̄p

sin θ̄pSmpPnp. (62)

The analytical calculations to explicitly obtain the internal products
defined in (49), (50), (56)–(58) are presented in Appendix A.

3.4. Transverse Resonance

In this section, the transverse resonance method is applied to derive
the modal equation of the H-guide. From Figure 1, one can identify
y = 0 as a symmetry plane, hence, the propagating modes can be split
into odd and even solutions. Defining

L = diag
(
ei2ky1 l, ei2ky2 l, . . . , ei2kyn l

)
, (63)

it is possible to obtain, a = −L ·b and a = L ·b. One can then define
a reflection matrix, such that,

←
Γ = ΓL, where L = ±1 for even and

odd modes respectively, thereby arriving at

a =
←
Γ · b. (64)

Replacing (64) into (59), it is possible to write the modal equation for
the bi-isotropic H-guide as

det


I +

D ·
(←
Γ + I

)

C ·
(←
Γ− I

)

 = 0. (65)

Numerical results of this modal equation are presented and discussed
in the following section.

3.5. Numerical Results

In this section, some numerical results are presented for the case of
a Tellegen H-guide and for the most general case of a bi-isotropic H-
guide. The numerical results have been obtained taking into account
the contribution of all the elementary modes above cutoff for each
region.
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Figure 6. Dispersion diagram of an isotropic H-guide (ε = 2, µ = 1
and b/λ = 0.3).

(a) (b)

Figure 7. Tellegen H-guide (ε = 2, µ = 1, b/λ = 0.3): (a) dispersion
diagram (κ = 0.2); (b) operational diagram.

To assess the present method, the dispersion diagram of an
isotropic H-guide has been obtained and is presented in Figure 6 (using
square dots) and compared with the numerical results of the modal
equation (full lines) which, in this case, can be expressed as an exact
closed form expression. The agreement is very good for the TEop

modes and quite good for the hybrid modes improving as the frequency
increases above cutoff.

The dispersion diagram of a Tellegen H-guide is presented in
Figure 7(a). Given that the modes are all hybrid, they are numbered
as Hn, starting from the mode with the lowest cutoff frequency. As for
the chiral H-guide [11], a mode with zero cutoff frequency exists and
mode coupling effects (e.g., modes H2 and H3) are present.
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(a) (b)

Figure 8. Bi-isotropic H-guide (χ = 0.2, ε = 2, µ = 1, b/λ = 0.3):
(a) dispersion diagram (κ = 0.2); (b) influence of the nonreciprocity
parameter κ in the modal solutions H0 and H1 (χ = 0.2 and l/λ = 0.3).

(a) (b)

Figure 9. Operational diagrams of a bi-isotropic H-guide (ε = 2,
µ = 1, b/λ = 0.3): (a) κ = 0.2; (b) χ = 0.2.

The operational diagram depicted in Figure 7(b) shows the effect
of the non reciprocity parameter on the cutoff frequency of the guided
modes (the vertical dashed line corresponds to κ = 0.2, as used in
the numerical calculations for the dispersion diagram). For this set
of parameters, the increase of the value of κ increases the cutoff
frequencies which seems to be a different effect as caused by the
chirality parameter [11].

The dispersion diagram for a bi-isotropic H-guide is presented in
Figure 8(a). Choosing l/λ = 0.3, Figure 8(b) shows the effect of the
nonreciprocity parameter on the values of the propagation constants for
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the first two modes H0 and H1 (n+ is added for the sake of comparison):
an increase in the value of κ, increases the mode velocities. In fact, a
critical value of the non-reciprocity parameter, κc, can be defined such
that a mode reaches cutoff for κ > κc. This result is similar to that
obtained in section two for the elementary structure — the bi-isotropic
parallel plate waveguide. Moreover, this effect has been reported to
occur in waveguides containing anisotropic media [17], whereas in our
case, this is observed in an isotropic non-reciprocal waveguide. The
operational diagrams for this structure are depicted in Figures 9(a)
and 9(b), where one of the κ/χ parameters has been fixed, with the
same values used in Figure 8(a).

4. CONCLUDING REMARKS

A rigorous analysis of lossless bi-isotropic and Tellegen H-guides has
been presented using a building block approach and the transverse
resonance method combined with a mode matching technique. In
the reciprocal limit of our general approach, one obtains the results
presented in [11]. The effects of nonreciprocity were then analyzed in
detail. Namely, it was shown that, in the Tellegen limit, the elementary
parallel-plate waveguide can only support a set of TE modes and a set
of Hybrid modes. Moreover, when both chirality and nonreciprocity
are present, all propagating modes are hybrid (similarly to the chiral
limit). Dispersion and operational diagrams, for the H-guides, are
then presented, and the effects of the nonreciprocity and chirality
parameters discussed. In was shown that, for this range of parameters,
an increase in the nonreciprocity parameter, introduces a proportional
shift in the cutoff frequencies (which seems to be a different effect
than the one caused by chirality). Moreover, it was observed that, an
increase in the nonreciprocity parameter also increases the propagating
mode velocities. Moreover, for any propagating mode, there is a bound
on the magnitude of the Tellegen parameter beyond which that mode
is at cutoff. The results put in evidence that new degrees of freedom
can be explored for the design of devices based in these waveguides.
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APPENDIX A. MODE-MATCHING COEFFICIENTS

In this appendix, the coefficients required for the application of the
mode matching technique are explicitly obtained. In Section A.1, the
specific case of a Tellegen H-guide, i.e., χ = 0, is addressed. The field
components are presented and the mode matching coefficients obtained
through the internal products previously defined. In Section A.2, the
same is obtained but for the more general case of a bi-isotropic H-guide.

A.1. Tellegen H-guide

In order to properly obtain the mode matching coefficients, it is
necessary to consider the field components of the modal solutions,
inside and outside the slab. As it can be seen from section two, a
parallel-plated Tellegen waveguide supports odd and even TE modes,
hybrid modes, and a fundamental TEM mode, with h = 0. It is
important to recall that this formalism only allows to address surface
modes, hence h is real or purely imaginary. Furthermore

b∫

−b

sin (hx) cos
(
h̄x

)
dx = 0, (A1)

holds for any values of h and h̄.
The following relations will be used when explicitly obtaining

coefficients
b∫

−b

sin (hx) sin
(
h̄x

)
dx=2

h̄ cos
(
h̄b

)
sin (hb)− h cos (hb) sin

(
h̄b

)

h2 − h̄2
, (A2)

b∫

−b

cos (hx) cos
(
h̄x

)
dx=2

h cos
(
h̄b

)
sin (hb)− h̄ cos (hb) sin

(
h̄b

)

h2 − h̄2
, (A3)

which reduce to
b∫

−b

sin2 (hx + φ) dx = b− cos (2φ) sin (2hb)
2h

, (A4)

for h = h̄. The mode matching coefficients, which are different for
each set of modes that the Tellegen waveguide supports, can now be
obtained. When the modal solutions, on the Tellegen region, are of
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the TE type, one can arrive at

Pnm =
1
µ

βn

k0
AEnĀ∗m

b∫

−b

sin∗
(
h̄mx + φ̄m

)
sin (hnx + φn) dx, (A5)

Qmn =
β̄m

k0

(
1
µ̄

Ā∗mAEn −
1
ε̄

κ

µ
B̄∗

mAEn

)

b∫

−b

sin∗
(
h̄mx + φ̄m

)
sin (hnx + φn) dx, (A6)

Rmn =−i
1
µ

1
ε̄

β̄m

k0

hn

k0
B̄∗

mAEn

b∫

−b

sin∗
(
h̄mx+φ̄m

)
cos(hnx+φn)dx, (A7)

Smp = i
1

ε̄ µ̄

β̄m

k0

h̄p

k0

(
Ā∗mB̄p − B̄∗

mĀp

)

b∫

−b

sin∗
(
h̄mx + φ̄m

)
cos

(
h̄px + φ̄p

)
dx. (A8)

Moreover, from the orthogonality relations, one also obtains

Ōmn =
β̄m

k0

(
B̄∗

mB̄n
1
ε̄

+ Ā∗mĀn
1
µ̄

)

b∫

−b

sin∗
(
h̄mx + φ̄m

)
sin

(
h̄nx + φ̄n

)
dx =

β̄m

k0
δmn, (A9)

Omn =
1
µ

βm

k0
A∗Em

AEn

b∫

−b

sin∗ (hmx + φm) sin (hnx + φn) dx =
βm

k0
δmn, (A10)

from where it can be concluded that

m = n ⇒





TE,
∣∣Ā∣∣2 = µ̄

b∫
−b

sin∗(h̄mx+φ̄m) sin(h̄nx+φ̄n)dx

TM,
∣∣B̄∣∣2 = ε̄

b∫
−b

sin∗(h̄mx+φ̄m) sin(h̄nx+φ̄n)dx

, (A11)
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m = n ⇒ |AE |2 =
µ

b∫
−b

sin∗ (hx + φ) sin (hx + φ) dx

. (A12)

When the modal solutions, on the Tellegen region, are hybrid, one
obtains

Pnm=
1
n2

κ

βn

k0
AHn

(
µB̄∗

m+κĀ∗m
) b∫

−b

sin(hnx+φn) sin∗
(
h̄mx+φ̄m

)
dx, (A13)

Rmn=i
1
n2

κ

β̄m

k0

hn

k0

(
Ā∗m

µ

µ̄
−B̄∗

m

κ

ε̄

) b∫

−b

sin∗
(̄
hmx+φ̄m

)
cos(hnx+φn)dx, (A14)

Qmn=
1
ε̄

β̄m

k0
AHnB̄∗

m

b∫

−b

sin∗
(
h̄mx + φ̄m

)
sin (hnx + φn) dx, (A15)

Since,

Omn =
µ

n2
κ

βm

k0
A∗Hm

AHn

b∫

−b

sin∗(hmx+φm)sin(hnx+φn)dx=
βm

k0
δmn, (A16)

one has,

m = n ⇒ |AH |2 =
n2

κ

µ
b∫
−b

sin∗ (hmx + φm) sin (hnx + φn) dx

. (A17)

Note that, Smp and Ōmn are the same as in the previous case. For the
TEM modal solution on the Tellegen waveguide, i.e., for h = 0, one
has that Rmn = 0, (Smp and Ōmn are again the same) and

Pnm =
1
n2

κ

βn

k0
AHn

(
µB̄∗

m + κĀ∗m
) b∫

−b

sin∗
(
h̄mx + φ̄m

)
dx, (A18)

Qmn =
1
ε̄

β̄m

k0
AHnB̄∗

m

b∫

−b

sin∗
(
h̄mx + φ̄m

)
dx. (A19)

Finally, taking into account

Omn =
µ

n2
κ

βm

k0
A∗Hm

AHn

b∫

−b

dx =
βm

k0
δmn, (A20)
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one can obtain,

m = n ⇒ |AH |2 =
n2

κ

2µb
. (A21)

A.2. Bi-isotropic H-guide

In order to obtain the mode matching coefficients, the field
components, as shown in section two and (A1)–(A4) are required.
Again, Smp and Ōmn are the same as in the previous cases.
Accordingly, and after some algebra, one arrives at the following
expressions for the mode matching coefficients,

Pnm = A+n
βn

k0

(
Ā∗m

1
µ+

−iB̄∗
m

1
n+

) b∫

−b

sin(h+nx+φn) sin∗
(
h̄mx+φ̄m

)
dx

−RnA+n
βn

k0

(
Ā∗m

1
µ−

+iB̄∗
m

1
n−

) b∫

−b

sin(h−nx+φn)sin∗
(
h̄mx+φ̄m

)
dx,

(A22)

Qmn = A+n
β̄m

k0

(
Ā∗m

1
µ̄
−iB̄∗

m

1
ε̄
Y+

) b∫

−b

sin∗
(
h̄mx+φ̄m

)
sin (h+nx+φn)dx

−RnA+n
β̄m

k0

(
Ā∗m

1
µ̄

+ iB̄∗
m

1
ε̄
Y−

)

b∫

−b

sin∗
(
h̄mx + φ̄m

)
sin (h−nx + φn) dx, (A23)

Rmn = A+n
β̄m

k0

h+n

k0

(
Ā∗m

1
µ̄

1
n+

− iB̄∗
m

1
ε̄

1
µ+

)

b∫

−b

cos (h+nx + φn) sin∗
(
h̄mx + φ̄m

)
dx

+A+nRn
β̄m

k0

h−n

k0

(
Ā∗m

1
µ̄

1
n−

+ iB̄∗
m

1
ε̄

1
µ−

)

b∫

−b

cos (h−nx + φn) sin∗
(
h̄mx + φ̄m

)
dx, (A24)
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where
Rm =

sin (h+mb + φm)
sin (h−mb + φm)

. (A25)

Finally, taking into account that

Omn=A∗+mA+n
βm

k0





b∫

−b

[Y+f+n(x)+RnY−f−n(x)]
[

1
n∗+

f∗+m(x)+
R∗

m

n∗−
f∗−m(x)

]

+
[

1
µ∗+

f∗+m(x)−R∗
m

µ∗−
f∗−m(x)

]
[f+n(x)−Rnf−n(x)]dx

}
=

βm

k0
δmn,(A26)

where
f±m (x) = sin (h±mx + φm) , (A27)

one can obtain, for m = n,

1
|A+|2

=
(

Y+

n∗+
+

1
µ∗+

) b∫

−b

f∗+(x)f+(x)dx+R

(
Y−
n∗+

− 1
µ∗+

) b∫

−b

f∗+(x)f−(x)dx

+R∗
(

Y+

n∗−
− 1

µ∗−

) b∫

−b

f∗−(x)f+(x)dx

+|R|2
(

Y−
n∗−

+
1

µ∗−

) b∫

−b

f∗−(x)f−(x)dx. (A28)
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