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Abstract—Recent research demonstrates that sparse beam pattern
constraint can suppress the sidelobe level of the linear constraint
minimum variance beamformer. Here we improve the standard beam
pattern by replacing it with a combination of a total difference
minimization constraint on the mainlobe and a standard C1 norm
minimization constraint on the sidelobe. As the new constraint
matches the practical beam pattern better, the sidelobe level is further
suppressed, while the robustness against the mismatch between the
steering angle and the direction of arrival (DOA) of the desired signal,
is maintained.

1. INTRODUCTION

Beamforming is used for enhancing a desired signal while suppressing
noise and interference at the output of an array of sensors [1]. The
linear constraint minimum variance (LCMV) beamformer is one of
the most popular. It selects the weight vector to minimize the array
output power subject to the linear constraint that the signal of interest
(SOI) does not suffer from any distortion. It enjoys high resolution
and interference rejection capability. To enhance the robustness in
the presence of array steering vector errors, doubly constrained robust
capon beamformer was proposed to use a norm constraint on the weight
vector to improve the robustness [2]. To achieve a faster convergence
speed and a higher steady state signal to interference plus noise
ratio (SINR) [3] constrains its weight vector to a specific conjugate
symmetric form. In [4], fully complex-valued radial basis function
(RBF) network with the fully complex-valued activation function is
used in LCMV beamformer to short the convergence period.
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However, high sidelobe is another drawback, which would result
in deep degradations in the case of unexpected interferences or an
increase in noise power [5]. In order to provide sidelobe suppression
for an LCMV beamformer, a sparse constraint on the beam pattern
was recently proposed in [6, 7]. The sparse beam pattern is added on
all the array gains in the beam pattern. However, the expected beam
pattern would enjoy most of the high array gains in the mainlobe.
That is the array gains in the mainlobe is not sparse but dense. To
match the practical beam pattern better, this letter proposed a new
constraint on the beam pattern to encourage dense distribution in the
mainlobe and sparse distribution in the sidelobe. The high sidelobe
level problem can be alleviated.

2. MEASUREMENT MODEL

Assuming that the signal sources are narrowband, the signal received
by a uniform linear array (ULA) with M sensors can be represented
by an M -by-1 vector [1, 8]:

x(k) = s(k)a(θ0) +
J∑

j=1

βj(k)a(θj) + n(k) (1)

where k is the index of time, J is the number of interference sources,
s(k) and βi(k) (for j = 1, . . . , J ) are the amplitudes of the SOI and
interfering signals at time instant k, respectively, θl (for l = 0, 1, . . . ,
J ) are the DOAs of the SOI and interfering signals, with d being the
distance between two adjacent sensors and λ being the wavelength of
the SOI, and n(k) is the additive white Gaussian noise (AWGN) vector
at time instant k.

The output of a beamformer for the time instant k is then given
by

y(k) = wHx(k) = s(k)wHa(θ0) +
J∑

j=1

βj(k)wHa(θj) + wHn(k) (2)

where w is the M -by-1 complex-valued weighting vector of the
beamformer.

3. THE PROPOSED BEAMFORMER

The sparse LCMV beamformer is designed to minimize the total array
output energy, subject to a linear distortionless constraint on the SOI,
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and encourage spare distabution of the array gains in the beam patern,
and the corresponding weighting vector of the is given by [6]

wS = arg min
w

(
wHRxw + γ

∥∥wHA
∥∥

1

)
, s.t.wHa(θ0) = 1 (3)

where Rx is the M -by-M covariance matrix of the received signal
vector x(k), and wHa(θ0) = 1 is the distortionless constraint applied
on the SOI. γ is the factor that controls the tradeoff between the
minimum variance constraint on the total array output energy and
the sparse constraint on the beam pattern, the M -by-N matrix A
consists of N steering vectors for all possible interference with DOA in
the range of [−90◦, θ0) ∪ (θ0, 90◦], with θ0 being the DOA of the SOI
as defined in (1), i.e.,

A =




1 1 . . . 1
ejϕ1 ejϕ2 . . . ejϕN

...
...

. . .
...

ej(M−1)ϕ1 ej(M−1)ϕ2 . . . ej(M−1)ϕN


 (4)

ϕl =
2πd

λ
sin θl, for l = 1, . . . , N (5)

and ‖x‖1 = (
∑

i |xi|) is the C1 norm of a vector x. It provides a
measurement of sparsity for x. In general, the C1 norm is approximate
to the C0 norm which is the standard sparse constraint. For most of
time, the smaller the value of the C1 norm is, the sparser the vector x
is. It means that the number of trivial entries in x is larger [9]. The
sparse LCMV beamformer (3) is a second order cone programming
(SOCP), and can be solved efficiently.

In the perspective of the beam pattern, all the array gains wHA in
all the possible values of DOA are encouraged to be sparse by C1 norm
minimization. However, the array gains are not in common sparse
distribution, but in dense distribution in the mainlobe and in sparse
distribution in the sidelobe. To let the beam pattern more properly,
the constraint is refined to encouraged dense cluster distribution in the
mainlobe and sparse distribution in the sidelobe. As the total difference
minimization can enforce a dense cluster structure, we incorporate it
and improve the sparse constraint only on the sidelobe. Then we can
obtain the total difference base linear constraint minimum variance
(TD-LCMV) beamformer as:

wTD =arg min
w

[
wHRxw+γ2

I∑

i=1

∥∥∥Di

(
wHAM

)T
∥∥∥

1
+γ3

∥∥wHAS

∥∥
1

]

s.t.wHa(θ0) = 1 (6)
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where

Di =
[

Di,F

Di,B

]
(7)

Di,F =




−1 1 0 . . . 0 0 0
0 −1 1 . . . 0 0 0
...

. . . . . . . . . . . . . . .
...

0 0 0 . . . 0 −1 1
0 0 0 . . . 0 0 −1




(8)

Di,B =




1 −1 0 . . . 0 0 0
0 1 −1 . . . 0 0 0
...

. . . . . . . . . . . . . . .
...

0 0 0 . . . 0 1 −1
0 0 0 . . . 0 0 1




(9)

AM = [ a (θ−b) . . . a(θ0) . . . a(θ+b) ] (10)
AS = [ a(θ−90) . . . a(θ−b−1) a(θ+b+1) . . . a(θ+90) ] (11)

Di,F and Di,B are the i -th forward and backward differential matrix;
1 is a 1-by-i row vector with all the elements being ones; and −1
is a 1-by-i row vector with all the elements being −1. AM and
AS are sub-matrices of the steering matrix A. AM is composed of
2b + 1 steering vectors with the sampled angles in the mainlobe;
while AS is constituted with the rest of the steering vectors in A.
The product wHAM indicates array gains of the mainlobe in the
beam pattern, and wHAS indicates array gains of the sidelobe. The
minimization of the total difference

∑
i

∥∥∥Di

(
wHAM

)T
∥∥∥

1
enforces dense

cluster distribution, while the minimization of
∥∥wHAS

∥∥
1

enforces
sparse distribution. γ2 and γ3 are the weighting factors that controls
the tradeoff among the minimum variance constraint on the total array
output energy and the dense cluster mainlobe constraint and the sparse
sidelobe constraint on the beam pattern; b is an integer representing
the bounds of the mainlobe width. Since the objective function of (6)
is convex too, the optimal w can be solved out by standard software
packages [10, 11].

4. SIMULATION RESULTS

In the simulations, a ULA with 8 half-wavelength spaced antennas
is considered. The AWGN at each sensor is assumed spatially
uncorrelated. The DOA of the SOI is set to be 0◦, and the DOAs of
three interfering signals are set to be −30◦, 30◦, and 70◦, respectively.
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The signal to noise ratio (SNR) is set to be 10 dB, and the interference
to noise ratios (INRs) are assumed to be 20 dB, 20 dB, and 40 dB in
−30◦, 30◦, and 70◦, respectively. 100 snapshots are used for each
simulation. Without loss of generality, here we only use the first order
differential matrix, i.e., I = 1; b is set to be 15; and γ1, γ2, γ3 are all
set to be 10. The matrix A consists of all steering vectors in the DOA
range of [−90◦, 90◦] with the sampling interval of 1◦.

To evaluate the performance in detail. The signal to interference
and noise ratio (SINR) is calculated via the following formula:

SINR =
σ2

sw
Ha(θ0)aH(θ0)w

wH

(
J∑

j=1
σ2

ja(θj)aH(θj) + Q

)
w

(12)

where σ2
s and σ2

j are the variances of the SOI and j -th interference,
Q is a diagonal matrix with the diagonal elements being the noise’s
variances.

Figure 1 shows beam patterns of the standard LCMV beamformer,
the sparse LCMV beamformer (3), and the TD-LCMV beamformer (6)
of 1000 Monte Carlo simulations. It is obvious that the best sidelobe
suppression performance is achieved by the TD-LCMV beamformer
(6). the TD-LCMV beamformer has the lowest array gain level in
sidelobe area, and provides the deepest nulls in the directions of
interference, i.e., −30◦, 30◦ and 70◦. The average received SINR
by the standard LCMV beamformer, the sparse LCMV beamformer
(3) and the TD-LCMV beamformer (6) are 1.8461 dB, 4.2603 dB and
5.3487 dB.

Figure 2 shows beam patterns of the mentioned beamformers,
with each beamformer having a 4◦ mismatch between the steering
angle and the DOA of the SOI [12]. we can see that the TD-LCMV
beamformer (6) further suppresses sidelobe levels and deepens the nulls
for interference avoidance, and has almost the same robustness against
mismatch as the sparse LCMV beamformer. The average received
SINR by the sparse LCMV beamformer (3) and the TD-LCMV
beamformer (6) are 0.0011 dB, 2.1277 dB and 3.77181 dB respectively.

Thus, our proposed beamformer provides improvements in terms
of sidelobe suppression, nulling for interference avoidance, and the
robustness against the DOA estimation errors, with respect to existing
beamformers.
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Figure 1. Normalized beam
patterns of the standard LCMV
beamformer, the sparse LCMV
beamformer and the TD-LCMV
beamformer, without mismatch
between the steering angle and
the DOA of the SOI.
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Figure 2. Normalized beam
patterns of the standard LCMV
beamformer, the sparse LCMV
beamformer and the TD-LCMV
beamformer, each having a 4◦
mismatch between the steering
angle and the DOA of the SOI.

5. CONCLUSION

The proposed robust block sparse beamformer shows improvement to
the sparse LCMV beamformer. It outperforms the standard LCMV
beamformer and the sparse LCMV beamformer in terms of sidelobe
suppression, nulling for interference avoidance.

In the future, the efficient way to solve the proposed TD-LCMV
can be investigated. Furthermore, This work may be extended into
a more practical OFDMA scenario with multi-clusters. Then, the
objective is modified to select the best subcarrier. OFDM resource
allocation and/or scheduling algorithms may also come into play.
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