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Abstract—In this paper, the synthesis of sub-arrayed monopulse
planar arrays providing an optimal sum pattern and best compromise
difference patterns is addressed by means of an innovative clustering
approach based on the Ant Colony Optimizer. Exploiting the similarity
properties of optimal and independent sum and difference excitation
sets, the problem is reformulated into a combinatorial one where the
definition of the sub-array configuration is obtained through the search
of a path within a weighted graph. Such a weighting strategy allows
one to effectively sample the solution space avoiding bias towards
sub-optimal solutions. The sub-array weight coefficients are then
determined in an optimal way by exploiting the convexity of the
problem at hand by means of a convex programming procedure.
Representative results are reported to assess the effectiveness of
the weighted global optimization and its advantages over previous
implementations.

1. INTRODUCTION

Monopulse radars present several advantages over other search-and-
track systems [1] based on conical scan or lobe switching approaches [2].
Indeed, tracking the angular positions of high-speed targets is enabled
just processing a single pulse echo (a monopulse). Moreover, range
measurements are generally more reliable because of echo signals with
higher signal-to-noise ratios are dealt with, the sum beam being always
directed towards the target.

Monopulse radars require the generation of one sum pattern
and a couple of spatially-orthogonal difference patterns to track
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targets both in azimuth and elevation [3]. Several implementations
exploit reflectors or lens antennas [2], even if antenna arrays turn
out to be more convenient for technological (e.g., the main beam
can be electronically steered), implementative (e.g., heavy structures
as reflectors are avoided), and applicative (e.g., arrays can be made
conformal and installed on aircrafts) reasons. However, the complexity
of the underlying beamforming network (BFN) must be properly
taken into account since it unavoidably grows because of the need
to generate more than one pattern and to use a large number of
elements. To overcome these limitations, sub-arraying strategies (e.g.,
sub-array weighting [4] and overlapped sub-arrays [5]) as well as sharing
common weights between the sum and difference channels [6, 7] have
been proposed. The sub-array weighting technique has received the
widest interest as confirmed by the large number of published research
works [8–17]. Generally, the problem is formulated as the synthesis
of an optimal sum beam and the “best” compromise difference
patterns grouping the array elements into suitably weighted sub-
arrays. Towards this purpose, several optimization strategies have been
applied. More specifically, the Simulated Annealing (SA) has been
used in [8] to compute the sub-array weights for a-priori fixed element
groupings, while a Genetic Algorithm (GA) [9] and two different
implementations of the Difference Evolution (DE) algorithm [10, 13]
have been adopted to determine both weights and subarraying.
Moreover, an effective hybrid method has been proposed in [11] to
exploit the convexity of the problem with respect to the sub-array
weights. Whether, on one hand, global optimization is mandatory
to deal with the non-convex part of the problem, on the other, the
“brute force” application of stochastic optimizers turns out being
computationally cumbersome and inefficient because of the exponential
growth versus the number of array elements of the admissible sub-
array configurations. Such a bottleneck has been efficiently solved
in [18] by means of an excitation matching strategy where the sub-
arraying grouping is “guided” by the similarity properties between the
excitations providing the sum pattern and a set of reference excitations
generating an optimal (reference) difference pattern. The dimension
of the solution space has been significantly reduced and the final
partitioning has been obtained by choosing Q− 1 cut points (Q being
the number of sub-arrays) in a sorted list of real values each one related
to an antenna element. In such a way, the admissible set of sub-
array configurations grows polynomially versus the number of elements
with a non-negligible reduction of the solution space if compared to
standard approaches. Furthermore, the essential solution space has
been represented by means of a non-complete binary tree [18] and,
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successively, through a more compact and non-redundant direct acyclic
graph (DAG) [19]. By virtue of its hill climbing behavior (mandatory
for non-convex functionals), the Ant Colony Optimizer (ACO) [20]
has been used to look for the optimal sub-array configuration both
within the solution tree [21] as well as in the DAG [22]. Although the
ACO has shown to outperform the ad-hoc deterministic method called
Border Element Method (BEM) in both linear [18] and planar [19]
problems, it still presents some inefficiencies when large-dimension
problems as for planar architectures. It is worth pointing out that these
drawbacks do not depend on the representation of the solution space
or its dimension, but mainly on the control of the evolution process.
Indeed, if all edges of the DAG have the same probability of being
chosen at the initialization, some paths (i.e., sub-arraying solutions)
turn out having less probability of being explored, while other paths
are privileged. Such a bias is undesired and unavoidably limits the
potentialities of the approach. On the other hand, although the non-
complete binary tree [21] is not affected by such a drawback, it is not
suitable for synthesizing large arrays because of high computational
costs and memory storage requirements. In this work, a new synthesis
approach based on an edge-weighting scheme is proposed to guarantee
each path of the DAG be explored with an equal probability.

The rest of the paper is organized as follows. The synthesis
problem is mathematically formulated in Section 2 where the edge-
weighting scheme for graph searching is presented, as well. Section 3
is devoted to the numerical analysis aimed at describing the behavior
of the proposed approach and assessing its advantages and enhanced
potentialities over previous implementations. Eventually, conclusions
are drawn (Section 4).

2. MATHEMATICAL FORMULATION

Let us consider a monopulse planar array of 2M × 2N elements
displaced on a regular lattice with inter-element spacing dx and
dy along the x and y axes, respectively. The antenna aperture
is subdivided into four symmetrical quadrants whose outputs are
combined to generate the sum and difference mode signals (Fig. 1) for
the estimation of the off-boresight angle (OBA), namely the direction
of the target with respect to the electrical axis (i.e., the boresight
direction) of the antenna [2, 3].

The sum mode, used both in transmission (i.e., for the generation
of the radar pulses aimed at sensing the surrounding environment)
and in reception (i.e., for detecting the presence and range of a target
through a monopulse comparator), is obtained by summing the signal
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Figure 1. Sketch of a sub-arrayed monopulse array antenna.

from the four quadrants in phase. Under the assumption of quadrantal
symmetry for the excitations [24], the sum pattern can be expressed
as follows

S (θ, φ) = 4
M∑

m=1

N∑

n=1

αmncos
(

2m− 1
2

ψx

)
cos

(
2n− 1

2
ψy

)
(1)

where αmn, m = 1, . . ., M , n = 1, . . ., N , are real excitation weights.
Moreover, ψx = kdxsinθcosφ, ψy = kdysinθsinφ, k = 2π

λ is the free-
space wavenumber, λ being the wavelength.

The couple of difference mode signals used to determine the
azimuthal and elevation OBA are generated summing in phase reversal
pairs of quadrants of the optimal excitations βmn that afford a desired
difference pattern D (θ, φ). More specifically, the following difference
pattern is synthesized

Daz (θ, φ) = 4j

M∑

m=1

N∑

n=1

βmnsin
(

2m− 1
2

ψx

)
cos

(
2n− 1

2
ψy

)
(2)

to track the target along the azimuthal plane [Daz (θ, φ) = D (θ, φ)],
while the difference pattern for the elevation mode [Del (θ, φ) =
D (

θ, φ + π
2

)
] is given by

Del (θ, φ) = 4j
M∑

m=1

N∑

n=1

βmncos
(

2m− 1
2

ψx

)
sin

(
2n− 1

2
ψy

)
. (3)
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According to the sub-arraying strategy [4], the excitations of the
compromise difference patterns turn out to be

bm,n =αmn

Q∑

q=1

δcmnqwq; m=1, . . . ,M ; n=1, . . . , N ; q=1, . . . , Q (4)

where C = {cmn; m = 1, . . . ,M ; n = 1, . . . , N} with cmn ∈ [0, Q] and
W = {wq; q = 1, . . . , Q} are the degrees of freedom of the problem
at hand. They are two sets of integer values that code the element
grouping and the weights of the corresponding clusters, respectively.
In (4), δcmnq is the Kronecker delta function defined as: δcmnq = 1 if the
element belongs to the q-th sub-array (i.e., cmn = q) and δcm,nq = 0,
otherwise.

Following the guidelines described in [18], given a set of
independent excitations A = {αmn; m = 1, . . . , M ; n = 1, . . . , N}
affording an optimal sum pattern, the solution of the compromise
between sum and difference patterns is obtained by minimizing the
following cost function

Ψ (C) =
1
Γ

M∑

m=1

N∑

n=1

α2
mn



gmn −

Q∑

q=1

δcmnqwq (C)





2

(5)

where gmn , βmn

αmn
, m = 1, . . . ,M , n = 1, . . . , N is the set of optimal

gains and Γ ≤ M × N is the number of radiating/active elements
in each quadrant. Equation (5) defines a ‘least square’ problem and
its solution (i.e., the partition that minimizes the cost function) is a
contiguous partition whose weighting vector W can be analytically
computed as follows

wq (C) =
∑M

m=1 δcmnqαmnβmn∑M
m=1 δcmnqα2

mn

. (6)

since the value minimizing the sum of the square distances in a
contiguous subset is the weighted arithmetic mean of the corresponding
gmn values. In order to determine the “optimal” sub-array
configurations Copt, Eq. (5) is optimized according to the following
procedure:

• Step 1 — Contiguous Partition Method (CPM). Exploiting
the theory in [23] for the definition of contiguous partitions, Copt is
obtained by choosing Q subsets of the optimal gains gmn sorted on
a line [19]. Towards this end, a list L of Γ reference parameters is
generated setting l1 = minm,n {gmn} and lΓ = maxm,n {gmn}. In
such a way, the number of admissible sub-array configurations (or
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Figure 2. DAG representation of the solution space.

contiguous partitions) belonging to the so-called essential solution

space <(ess)† amounts to U (ess) =
(

Γ− 1
Q− 1

)
.

• Step 2 — Solution Space Representation. Thanks to the
sorted list defined at Step 1 , the solutions in <(ess) are coded
into a Direct Acyclic Graph (DAG) [28]. The graph G (Γ, Q, Ψ)
represented in Fig. 2 is characterized by:

– Q rows each one containing V = (Γ−Q + 1) vertexes, V
being the maximum number of elements that can be grouped
in a sub-array;

– a maximum depth Γ equal to the number of levels of the DAG
and to the dimension of the list L as well as the number of
vertexes along each r-th path Pr, r = 1, . . . , U (ess) in G;

– a suitability function Ψ (5) aimed at evaluating the goodness
of each path Pr, r = 1, . . . , U (ess).

The levels of the DAG map one-to-one the elements in L. A
vertex vq,lq , q = 1, . . . , Q, lq = q, . . . , q + V − 1 is identified by its
row index, q, and the depth index, lq. Moreover, its argument,

† Essential with respect to the solution space which can be sampled using standard global
optimizers whose dimension is U = QΓ.
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arg
(
vq,lq

)
= q, indicates the sub-array membership of each array

element of the list L. A path P of Γ vertexes and Γ − 1 edges
codes a trial solution C. As shown in Fig. 2, e+

q,lq
is the edge (if

present) connecting the vertexes vq,lq and vq,lq+1 on the same row
of the DAG, while e−q,lq

is the edge (if admissible) between the
vertexes vq,lq and vq+1,lq on two different rows of the DAG;

• Step 3 — Edge Weighting. In [22], the ACO was used to
explore the DAG for identifying the best sub-array configuration
Copt. Since the quantity of pheromone τ±q,lq

(0), q = 1, . . . , Q,
lq = q, . . . , q + V − 1 was uniformly set, the edges e±q,lq

(0),
q = 1, . . . , Q, lq = q, . . . , q + V − 1 have at the initialization
the same probability of being explored. Because of the DAG
structure and the value of the ratio V

Q , such a choice affects in a
non-negligible way the ACO-based sampling of the DAG. Indeed,
some edges paths have a higher probability of being sampled since
the vertexes could belong to a different number of paths. As
representative examples, the DAGs of the cases (Γ = 8, Q = 3)
and (Γ = 8, Q = 6), both having U (ess) = 21, are reported in
Fig. 3(a) and Fig. 3(b), respectively. By sake of clarity, the number
of solutions to which edge belongs to is indicated.
In order to assure a uniform probability of sampling to each
solution/path and to allow an unbiased search a proper edge
weighting scheme is necessary. Towards this end, the level of
pheromone on each edge is increased/reduced proportionally to
the number of different contiguous partition defined through
that edge. Let us observe that the number of paths leaving
the root vertex v1,1 corresponds to the dimension of the whole

solution space Ω1,1 = U (ess) =
(

Γ− 1
Q− 1

)
, while those departing

from the vertex v1,2 [Fig. 4(a)] and v2,2 [Fig. 4(b)] are Ω1,2 =(
Γ− 2
Q− 1

)
and Ω2,2 =

(
Γ− 2
Q− 2

)
, namely the number of

path through G (Γ− 1, Q,Ψ) and G (Γ− 1, Q− 1,Ψ), respectively.
Generalizing, the number Ω of paths/solutions available from the
generic vertex vq,lq is equal to

Ωq,lq =
(

Γ− lq
Q− q

)
. (7)

Therefore, the edge-weighting scheme is applied at the initializa-
tion (j = 0) as follows: the level of pheromone on edge e+

q,lq
is set
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Figure 3. DAG Analysis (Γ = 8, Q = {3, 6}) — Number of trial
solutions to which the DAG edges belong to when (a) Γ = 8, Q = 3
and (b) Γ = 8, Q = 6.

to

τ+
q,lq

(j) =
Ωq,lq+1

Ωq,lq

(8)

while on the edge e−q,lq

τ−q,lq
(j) =

Ωq+1,lq

Ωq,lq

. (9)

It is worth noting that Ωq,lq = Ωq,lq+1 + Ωq+1,lq .
• Step 4 — DAG ACO-Sampling. Iteratively, the ACO [20, 25]

explores the DAG to find Copt. Each ant of the colony A (j) =
{at (j) ; t = 1, . . . , T}, T being the colony dimension, samples the
graph starting from the root v1,1 and choosing the next edge with
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Figure 4. Edge Weighting Approach— DAG regions admissible from
(a) the vertex v1,1 and (b) the vertex v2,2.

probability

η±q,lq
(j)=

τ±q,lq
(j)

τ+
q,lq

(j)+τ−q,lq
(j)

, q=1, . . . , Q; lq =q, . . . , q+V −1. (10)

The set of vertexes visited by an ant, at (j), from the
root to the end of the graph codes a path Pt (j) ={
vq,lq ; q = 1, . . . , Q; lq = 1, . . . ,Γ

}
of Γ vertexes composed by Γ−1

edges that identifies a trial sub-array configuration Ct (j) =
arg {Pt (j)}. The optimality of each trial solution is quantified
by the value of the cost function in correspondence with
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the corresponding subarray configuration, Ψ (Ct (j)). Such an
information is exploited to update the pheromone level on the
edges of the DAG as

τ±q,lq
(j + 1) ← (1− ρ)

[
τ±q,lq

(j) +
T∑

t=1

H ×Ψmin
j

Ψ(Ct (j))

]
(11)

where either e+
q,lq

or e−q,lq
∈Pt(j) and Ψmin

j =mint=1,...,T {Ψ(Ct(j))}.
Moreover, ρ ∈ (0, 1] and H are positive indexes that control the
pheromone evaporation and deposition on the edges of the DAG.
The algorithm stops when a maximum number of iterations Jmax

is reached or the minimization of the cost function reaches a
stationary point (j = Jstat), then Copt chosen as

Copt = arg [minjmint {Ψ(Ct (j))}] . (12)

3. NUMERICAL RESULTS

A set of numerical experiments has been carried out to point out the
potentialities of the proposed approach as well as its improvements
over previous implementations.

The first example deals with the synthesis of a small array in order
to detail in a comparative fashion the behavior of the edge-weighted
approach versus the uniform technique [22]. The array elements are
located on a regular lattice with M = N = 3 (dx = dy = λ

2 ) and
belong to a circular support of radius R = 1.5λ such that the resulting
arrangement is composed by Γ = 32 radiators (8 for each quadrant).
The excitations of the sum mode (Fig. 5) have been chosen to afford
a Taylor pattern with SLL = −35 dB and n̄ = 6 [24]. As far as the
reference difference beam D (θ, φ) is concerned, a Bayliss pattern with
SLL = −30 dB and n̄ = 7 [24] has been used by setting the excitation
distribution as in Fig. 6.

The compromise difference beam has been synthesized varying
the number of sub-arrays in the range Q ∈ [2, 6] to analyze the
performance of the proposed method. First, the Γ optimal gains have
been computed and the list L generated (Fig. 7) according to the
CPM .

Figure 8 shows the values of the cost function for the best
solutions found by the proposed weighted-graph ACO-based (WG-
ACO) approach and the ACO version in [22] when running 10 different
simulations for each value of Q. The ACO parameters have been set
according to the outcomes from [22]: T = 0.1×U (ess) with a minimum
value equal to Tmin = 5 to exploit the cooperative behavior of the
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colony, Jmax = 1000, H = 1, and ρ = 0.05. It is worth noting that
both methods find the global optimum when Q is smaller than Γ (e.g.,
Q = {2, 3, 4}) as confirmed by the plot in Fig. 9(a) that shows the
cost function values for all the solutions belonging to <(ess) (Γ = 8,
Q = {2, 3, 4}). Nevertheless, the bare ACO does not reach the global
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solution when Q ' Γ (Γ = 8, Q = {5, 6}) since it gets stuck in a
local minimum [Fig. 9(b)]. As a matter of fact, .Ψopt

WG−ACO|Q=5 =
5.023 × 10−4 vs. .Ψopt

ACO|Q=5 = 5.438 × 10−4 and .Ψopt
WG−ACO|Q=6 =

1.685 × 10−4 vs. .Ψopt
ACO|Q=6 = 4.965 × 10−4. The corresponding

paths within the DAG are as follows: .P opt
WG−ACO|Q=5 = {11123445}

vs. .P opt
ACO|Q=5 = {12234445} and .P opt

WG−ACO|Q=6 = {12234556} vs.
.P opt

ACO|Q=6 = {11123456}.
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Table 1. WG-ACO Numerical Results (M = N = 3, Γ = 8,
Q ∈ [2, 6]) — Dimension of the solution space U (ess).

Γ 8
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Figure 10. WG-ACO Numerical Results (Γ = 8, Q = {3, 6}) — Edge
weighting approach as applied to the DAG sampling when (a) Γ = 8,
Q = 3 and (b) Γ = 8, Q = 6. The dotted lines indicates mandatory
choices.

Let us notice that, despite the dimension of the solution space
does not vary from Q = 3 up to Q = 6 (see Table 1), the uniform
ACO is able to get the “best” compromise solution only in the former
case, while sub-optimal solutions are found otherwise. Such a result is
not due to the DAG representation of the solution space, but on the
“control level” of the ACO [25] (i.e., control parameters, initialization
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criteria, constraints, and termination conditions) which exploits the
pheromone update mechanism to sample the solution space looking
for the global optimum. As a matter of fact, still keeping the same
ACO structure presented in [22], but initializing the pheromone levels
through the weighted approach, the reliability of the DAG sampling
has been improved. As an illustrative example, Figure 10 gives a
representation of the relative amount of pheromone on the edges of
the DAG for the case (Γ = 8, Q = 3) [Fig. 10(a)] and the case (Γ = 8,
Q = 6) [Fig. 10(b)]. More in detail, the thickness of the segments
between two vertexes is proportional to the amount of pheromone on
the corresponding edge. Moreover, the dotted lines indicate obliged
choices when only the corresponding path is admissible.

The inefficiencies of the uniform-weight approach is more evident
when U (ess) grows as pointed out by the plots of Ψopt in Fig. 11. The
test case is here concerned with a lattice of dimension 2M × 2N =
20 × 20, a circular boundary R = 5.0λ in radius, and a number of
active elements for each quadrant equal to Γ = 75. The number
of sub-arrays has been varied between Q = 2 and Q = 20. As for
the excitations, the sum excitations was chosen to afford a Taylor
pattern with SLL = −35 dB and n̄ = 6 [24], while reference excitations
was used to generate a Bayliss pattern with SLL = −30 dB and
n̄ = 7 [24]. Concerning the parameters of the ACO, the same setting
of the previous experiment has been used also introducing a maximum
threshold Tmax = 1000 (when T = 0.1×U (ess) > Tmax) on the number
of ants for each iteration to limit the computational time. As expected
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Figure 11. Comparative Assessment (M = N = 20, Γ = 75,
Q ∈ [2, 20], Taylor , SLL = −35 dB, n̄ = 6, Bayliss, SLLref =
−30 dB, n̄ = 7) — Cost function values in correspondence with the
optimal solutions found by the ACO and the WG-ACO versus (a)
the dimension of the solution space, U (ess), and (b) the number of
sub-arrays, Q.
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(Fig. 11), the weighted approach always outperforms the previous
implementation and, for each example (i.e., U ess value or Q value),
solutions with lower cost function values have been determined.

As far as the computational issues are concerned, let us consider
that the CPU -time required to complete an ACO iteration is the same
for both the weighted and uniform scheme. It is also worth noticing
that the improvements from the weighted scheme are not concerned
with the convergence speed, but rely in a more reliable search of the
optimal solution. For completeness and as a representative example,
the case Q = 5 needs Jstat = 85 iterations of the WG-ACO (i.e., a
total CPU -time of 16.34 sec) to sample the solution space of dimension
U (ess) = 1150626, while the uniform approach with the same ACO
parameter setting stops after Jstat = 122 iterations (i.e., a total CPU -
time of 23.28 sec).

3.1. The Hybrid Extension

Although the WG-ACO proved its effectiveness, the computation of
the sub-array weights through (6) does not guarantee the retrieval
of the global optimum solution. Moreover, it does not allow to set
constraints on the desired radiation pattern in a direct fashion [26, 27].
The hybrid method in [11, 29] overcomes such a limitation. Once Copt

was defined by means of the WG-ACO, the optimal weights Wopt can
be computed by means of a convex programming (CP ) strategy [30],
aimed at minimizing

Φ (W) = −Im
{

∂D (θ, φ)
∂γ

}

γ={θ,φ}

∣∣∣∣∣ θ = θ0

φ = φ0

(13)

to the maximize the slope along the boresight direction (θ0, φ0) of the

difference pattern D (θ, φ), subject to Re
{

∂D(θ,φ)
∂γ

}
γ={θ,φ}

∣∣∣∣ θ = θ0

φ = φ0

=

0, D (θ0, φ0) = 0, and |D (θ, φ)|2 ≤M (θ, φ), M (θ, φ) being a positive
upper bound function on the power radiated in the sidelobe region.
Moreover, Re { } and Im { } indicate the real and imaginary part,
respectively. Furthermore, θ ∈ [

0, π
2

]
and φ ∈ [0, 2π].

To show the behavior of the hybrid method (H-WG-ACO), an
array with M = N = 5 elements located on a square grid with
uniform spacing d = λ

2 is used as benchmark geometry. The aperture
radius has been set to R = 2.5λ such that Γ = 19. The same sum
pattern of the previous examples has been kept, while the reference
difference excitations βmn [Figs. 12(a) and (b)] have been generated
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by applying the procedure in [30] to synthesize the optimal difference
pattern D(θ, φ) with SLLref = −25 dB shown in Fig. 12(c). In order
to design the compromise difference pattern, Q = 5 sub-arrays have
been used for each quadrant.
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Figure 12. Hybrid Extension (M = N = 5, Γ = 19,
Reference difference [30] — SLLref = −25 dB) — Reference difference
excitations: (a) amplitudes and (b) phase weights. Power pattern of
the reference mode (c).

Table 2. Hybrid Approach (M = N = 5, Γ = 19×4, Q = 5) — Values
of the sub-array weights.

w1 w2 w3 w4 w5

H-WG-ACO 1.0942 2.0305 2.9870 4.5573 5.6723
H-BEM 1.0488 2.7605 4.2845 4.8999 5.5077
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Figure 13. Hybrid Extension (M = N = 5, Γ = 19, Reference
difference [30] — SLLref = −25 dB, Q = 5) — Plots of (a) (c)
the sub-array configurations and of (b) (d) the relative power pattern
determined with (a) (b) the H-WG-ACO and (c) (d) the H-BEM .

The array clustering found by the WG-ACO when exploring the
solution graph with T = 30 ants is shown in Fig. 13(a). Successively,
the convex programming procedure has been applied by constraining
the pattern to the same mask used to determine the optimal difference
pattern [Fig. 12(c)]. The values Wopt are then given in Table 2, while
the corresponding pattern is shown in Fig. 13(b). For comparison,
the same synthesis problem has been addressed with the hybrid-BEM
(H-BEM) approach [19] and the results are reported in Fig. 13 and
Table 2, as well. For completeness, Fig. 14 plots the level of the
secondary lobe normalized to the maximum of the power pattern for
each φ-cut, φ ∈ [0 : 80◦] [Fig. 14(a)] and the sidelobe ratio defined
as SLR (φ) = SLL(φ)

max0≤θ< π
2

[D(θ,φ)] , φ ∈ [0 : 80◦] [Fig. 14(b)]. As it can

be observed, the H-WG-ACO solution improves that obtained with
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the H-BEM in terms of maximum SLL (SLLH-BEM = −21.3 dB vs.
SLLH-WG-ACO = −25.4 dB) and SLR value, which turns out to be
smaller in a large part (i.e., almost 90%) of the angular range. The
reliability of the new hybridization in better matching the reference
pattern D (θ, φ) [Fig. 12(c)] is further pointed out in Fig. 15 where the
mismatch index Ξ (θ, φ) ,

∣∣DdB (θ, φ)−DH
dB (θ, φ)

∣∣ is shown for both
hybrid methods.
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Finally, in order to give some indications on the computational
costs of the hybrid ACO-based approach, let us consider that sampling
the solution space of dimension U (ess) = 3060 requires 133 ACO
iterations and 11CP iterations when using the H-WG-ACO [i.e.,
5.8 × 10−2 sec (WG-AGO) and 850 sec (CP )], while the H-BEM
performs 22 BEM iterations and 17 CP iterations [i.e., < 10−6 sec
(BEM) and 1370 sec (CP )].

4. CONCLUSIONS

In this work, an edge weighting technique has been proposed for the
effective ACO-based sampling of the graph architecture coding the
admissible clustering configurations of a sub-arrayed monopulse planar
array. The advantages of the ACO in dealing with the non-convexity
of the problem at hand and to explore graph representations of the
solution space have been further and better exploited for enabling the
synthesis of large-scale planar arrangements. Representative results
have demonstrated the enhancement of the synthesis performance with
respect to previous methods (e.g., BEM) and implementations (i.e.,
uniform ACO).
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