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Abstract—A canonical problem is used to investigate the effects
of various radar parameters on the performance of both stepped-
frequency and short-pulse through-barrier radar imaging systems. For
simplicity, a two-dimensional problem is considered, consisting of a
perfectly conducting strip located behind a lossy dielectric slab of
infinite extent illuminated by line sources. To assess the impact of
the parameters on system performance, radar received images of the
target are created using the reflected field computed at several positions
in front of the barrier and adjacent to the sources. Specific radar
parameters considered include sample rate, A/D bit length, pulse
width, and target SNR for a time-domain system. For a stepped-
frequency system, A/D bit length, bandwidth, and target SNR are
considered.

1. INTRODUCTION

Through-barrier imaging systems represent an emerging technology
with many military and civilian applications, such as disaster response
and search and rescue. Several studies have been conducted using
various types of imaging systems to assess the potential for detecting
people or objects located behind different kinds of barriers [1, 2]. Ultra-
wide band (UWB) radars are particularly appealing due to their
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penetration ability and their capability for resolving small targets [3–
7]. These types of radars have already proved their usefulness in
synthetic aperture radar (SAR) imaging, ground penetration imaging,
and terrain profiling [8–13].

UWB radars may be implemented as either time-domain (short-
pulse) or stepped-frequency systems. A time-domain system is
typically implemented by transmitting one or more RF cycles and
then digitizing the received signal with the use of a high-speed
analog-to-digital (A/D) converter [14], although some newer systems
employ linear frequency modulation. In a frequency-domain system, a
stepped-frequency narrow-band transmitter and receiver are used [15].
Each type of system has its unique advantages and disadvantages.
Perhaps the most compelling reason for the predominance of stepped-
frequency through-barrier radars are their cheaper cost and easier
implementation in comparison to time-domain systems. However,
while generally more stable, a stepped-frequency system needs a
higher dynamic range, requires a longer acquisition time, and suffers
from positional aliasing (“ghosting”). Time-domain systems can
produce an image from a single rapid measurement but require high-
speed A/D converters to support system bandwidth. These systems
are potentially more sensitive to radio frequency interference (RFI).
Furthermore, in a low signal-to-noise ratio (SNR) environment, time-
domain systems may require the averaging of repeated measurements
to improve the SNR, thus increasing the actual acquisition time. In
their favor, time-domain systems are able to gate out large-amplitude
clutter and to tolerate time-limited saturation by such things as
transmitter coupling. Also, the gating function can permit the use
of less dynamic range in the receiver.

Each UWB radar system has a particular set of operational
parameters that must be chosen properly to produce a useful image. In
this paper, detailed analyses of both short-pulse and stepped-frequency
UWB radar systems are undertaken to determine the values of radar
parameters that are needed to image an object behind a typical barrier
successfully. Factors such as pulse width, sampling interval, number of
A/D bits, and SNR are examined for the time-domain system, while
frequency-domain bandwidth, sampling interval, SNR, and number of
A/D bits are examined for the stepped-frequency system.

The required signal-to-noise ratio is particularly important since
the maximum detection range for a given target is determined by
SNR. The total energy on a target can be increased not only by
using frequency-modulation or stepped-frequency approaches, it can
also be increased by summing multiple time-domain pulses (averaging).
Fortunately, the through-barrier imaging problem presents a short-
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range radar scenario where extremely high repetition rates with low
peak transmit powers can be used by a time-domain system. Therefore,
the present analysis assumes that the final target signal-to-noise ratios
for the two types of systems under consideration, stepped-frequency
and time-domain, are effectively the same and that other issues like
dynamic range dominate. Consequently, comparing the power budgets
of the two systems is not germane to this analysis.

By using a simple two-dimensional canonical problem consisting of
a conducting strip target located behind a lossy dielectric slab barrier,
the desired parameters can be easily altered and their effect on the
quality of the resulting radar image can be quantified. Excitation is
provided by an array of line sources arranged on the opposite side of the
barrier from the target. The field scattered by each line source in turn is
computed in the frequency domain and is sampled at multiple positions
and at a set frequency interval within a chosen band. This data is used
to form an image using an SAR approach and a simple scattering-center
technique [16–18]. Data for studying the performance of a time-domain
radar is obtained by computing the inverse Fourier transform of finely
sampled frequency-domain data. Because a direct correlation between
image quality and system parameters is desired, an image radius is
defined to quantify the quality of the image. Standard radar measures
of target resolvability, such as downrange and crossrange resolution,
are avoided due to the difficulty of including the effects of near-zone
illumination and the spatial and temporal dispersion of the transmitted
pulse that is introduced by the lossy barrier.

2. THE CANONICAL PROBLEM

The canonical problem for the radar parameter study consists of an
infinite, lossy, dielectric slab of permittivity ε = ε0(εr−j σ

ωε0
), occupying

the region 0 ≤ z ≤ zw, and a thin, perfectly-conducting strip target of
width W located at a position z = zs behind the barrier, as shown in
Figure 1. An infinitely long electric line source with current density
~J = x̂Iδ(z− zs)δ(y) is located on the z-axis a height zs above the slab,
providing an electric excitation field perpendicular to the y-z plane
(TE illumination).

The scattered electric field may be found by solving an electric-
field integral equation (EFIE) obtained from applying the boundary
condition of zero tangential electric field on the surface of the
conducting strip target. Since the total field is the sum of the incident
and scattered fields, it is first necessary to find the incident field on
the strip, which is the excitation field without the target present.
Consequently, the incident field is the electric field in the region below
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Figure 1. Geometry of the canonical problem showing a line source
above a lossy barrier (region 1) with a PEC strip target below the
barrier.

the slab produced by a line source above the slab. This field is most
easily computed using a two-dimensional Fourier-transform approach
and writing the fields in terms of the vector potential ~A = x̂Ax.

Consider the canonical problem without the conducting strip.
The vector potential in each of the four regions of Figure 1 can be
represented using the spatial Fourier transform pairs

~̃A(ky, z) =

∞∫

−∞

~A(y, z)e−jkyydy, (1)

~A(y, z) =
1
2π

∞∫

−∞

~̃A(ky, z)ejkyydky. (2)

Here the time convention ejωt is used.
Applying the boundary conditions on tangential ~E and ~H at each

of the boundaries and solving for the appropriate potential amplitudes
as in [19] yield a formula for the transform of the vector potential

Ãx(ky, z) =
Iµ0

2jp
e−jp|z−zs| +

Iµ0

2jp
e−jp(z+zs)e2jpzwR⊥, (3)

for points z ≥ t (source side of the slab). Here

R⊥ =
−p2

q sin qzw + q sin qzw

−p2

q sin qzw + 2jp cos qzw − q sin qzw

(4)

is the slab reflection coefficient. For z < 0 (the target side of the slab),
the vector potential is

Ãx(ky, z) =
Iµ0e

jpze−jp(zs−zw)

−p2

q sin qzw + 2jp cos qzw − q sin qzw

. (5)
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In (3) the first term is the direct potential from the line source
and the second term is the potential reflected from the slab, while (5)
provides the expression for the transmitted potential. The quantities
p and q are the z-directed wave numbers in free space and in the
dielectric slab, respectively, and are given by p = ±

√
k2

0 − k2
y and

q = ±
√

k2 − k2
y, where k0 = ω

√
µ0ε0 and k = ω

√
µ0ε. The signs on p

and q are chosen such that the waves decay as they propagate.
Implementing the inverse Fourier transform and using ~E = −jω ~A

produce the direct and scattered electric fields

Ex(y, z) =
−Iµ0ω

4π

∞∫

−∞

ejkyy

p

[
e−jp|z−zs| + e−jp(z+zs−2zw)R⊥

]
dky, (6)

on the source side of the slab (z ≥ t). The scattered electric field on
the target side of the slab (z < 0) is

Ex(y, z) =
−jωIµ0

2π

∞∫

−∞

Iµ0e
jp(z−zs+zw)ejkyy

−p2

q sin qzw + 2jp cos qzw − q sin qzw

dky. (7)

By using the impressed field on the target side of the slab, an
EFIE is formulated for the current on the strip, which is then solved
using the method of moments with pulse function expansion and point
matching. With this current, the total field on the source side of the
slab, consisting of the direct field, the reflected excitation field, and the
field scattered by the strip, is computed using (6) as a Green’s function
to determine the direct and reflected fields and using (7) as a Green’s
function to determine the scattered field. This total field is the field
at the receiving antenna.

3. NUMERICAL VALIDATION

To simulate a SAR, the line source, representing the transmitter,
is placed at a chosen horizontal position, and the scattered field
is computed at an adjacent point, representing the position of a
receiver. The z-positions of the transmitter and receiver are taken to be
identical. The transmit/receive pairs are moved parallel to the barrier,
and the fields are computed for each pair in the band from 20 MHz to
16GHz at 20MHz increments. Since the images are formed in the time
domain, the FFT is used to transform the data. Before transformation,
the frequency-domain data is multiplied by a windowing function W (f)
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to remove edge effects. By choosing the windowing function Fourier
pair w(t) ↔ W (f) with

w(t) = e−π(t/T )2 cos(2πf0t) (8)

and
W (f) = e−[T (f−f0)]2 + e−[T (f+f0)]2 , (9)

the side lobes in the resulting time-domain data are reduced. Here f0

is the center frequency of the window function. Note that the inverse
transform of the window function, which is a Gaussian-pulse modulated
cosine waveform, has an envelope half-amplitude width of T . Thus, the
half-amplitude bandwidth of the windowed data is given by

Ω =
4 ln 2
πT

, (10)

and the fractional bandwidth is Ω/f0 [20].
A typical result is shown in Figure 2(a), where the material

parameters of the barrier are taken to be εr = 6 and σ = 0.001 S/m,
which are representative of concrete [21]. In this and all subsequent
results, a monostatic radar is simulated where the horizontal positions
of the source and observation points are taken to coincide, representing
a single transmit/receive antenna. This requires that the direct field
be suppressed by excluding the first term in the integrand of (6). To
obtain the time-domain waveforms, window parameters T = 0.05 ns
and f0 = 0 GHz were used, producing an incident time-domain field
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Figure 2. (a) Time-domain total field at a point centered above the
conducting strip; (b) Image (scale in dB) of lossy dielectric slab and
conducting strip. zs = 50 cm, zt = 80 cm, zw = 15 cm, W = 15 cm,
εr = 6, σ = 0.001 S/m. Inset image of (a) displays Gaussian
transmitted pulse.
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waveform that is a baseband Gaussian pulse with a bandwidth of
Ω = 17.65GHz (note that a fractional bandwidth is not defined for
a baseband pulse); this pulse is shown in the inset of Figure 2(a).
Note that using a baseband pulse is an abstraction that cannot be
realized practically, since the low frequency content of the system will
be limited by the antenna impulse response. However, an equivalent
large bandwidth will produce an equally excellent resolution of the
scattering objects, as is seen in the figure. The first peak represents
the reflection from the air/slab interface, and establishes the t = 0
time reference. The second peak is the reflection from the rear face of
the slab, and the next two peaks are from multiple reflections within
the slab. The reflection from the target is seen at 11 ns, and the
following peaks represent multiple interactions between the target and
the slab, which lead to the presence of “ghost” images. Note that the
initial reflection (flash) from the front surface of the slab is nearly two
orders of magnitude larger than the reflection from the target, and is
cropped in Figure 2(a). The large flash presents dynamic range issues
for the frequency-domain system since the flash and the target response
are not separated. In a time-domain system, the initial reflection
can be time gated out and the subsequent target reflection amplified
separately from the flash.

Time-domain data were computed at 21 transmitter/receiver
positions, equally spaced from y = −2.5m to y = 2.5m and are
used to construct an image of the target. An observation region is
created using a 2-dimensional rectangular grid, and the propagation
time is calculated from each of the 21 different transmitter/receiver
positions to each grid point. For simplicity, refraction at the air/barrier
interface is ignored. The observation region extends from y = −2.6 m
to y = 2.6m and from z = 0.5m to z = −2.5m, with a grid point
spacing of 1 cm. Using the computed travel time, the strength of the
total field is found from each time-domain waveform, and the results
for each transmitter/receiver position are summed to determine the
image intensity at each grid point. In this way a simple scattering
center image is produced. Figure 2(b) displays the two-dimensional
intensity image created within a grid that is chosen to include the
conducting strip target and a portion of the barrier. Clearly visible in
the image is the front of the barrier at z = 0.15m, and the rear of the
barrier at z = 0 m. Present, but difficult to see with the chosen scaling
of the image intensity, is a ghost of the wall at z = −0.15m produced
by the multiple reflections within the wall. The target appears clearly
at z = −0.8m.

The sharpness of the target image depends on the target SNR
and the A/D bit length. To determine the effect of altering these
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parameters, it is necessary to quantify the resolution of the target
image. With knowledge of the target location for this parameter
analysis, an image radius is defined representing the radius of a circle
that has an area equal to the region that contains the majority of
image intensity. An arbitrary box is taken around the target, with
size large enough to contain the target but not too large so that other
artifacts in the image are included. Inside the box, the center of grid
point intensity (y0, z0) is determined using a formula akin to finding
the center of mass of an object:

y0 =
∑ny

i=1 fiyi∑ny

i=1 yi
, z0 =

∑nz
i=1 fizi∑nz
i=1 zi

. (11)

Here (yi, zi) is the grid point position, fi is the intensity of the ith grid
point, ny is the number of grid points in the y-direction, and nz is the
number of grid points in the z-direction. The radius of intensity, R, is
then found using

R =
∑nynz

i=1 riτ(fi)∑nynz

i=1 τ(fi)
. (12)

Here ri = [(yi − y0)2 + (zi − z0)2]1/2 and τ(fi) is the thresholding
function

τ(fi) =
{

fi, fi > c ·maxi{fi}
0, fi ≤ c ·maxi{fi} , (13)

where c ∈ [0, 1]. Thus, only those grid points with intensity greater
than a chosen fraction of the maximal image intensity are used to
compute R. Numerical experimentation has shown that a value of
c = 0.5 produces good results and therefore is used in all examples
shown here.

The image radius gives a measure of the sharpness of the image.
A large image radius corresponds to a blurry image and a small radius
to a sharper image.

4. PARAMETER ANALYSIS

To build a prototype stepped-frequency or short-pulse radar, it is
necessary to settle on the values of certain parameters such as
transmitted pulse width, sampling interval, SNR, and digitization level.
Since the goal is to create an image of an object behind a barrier,
the canonical problem described in Section 2 is used to determine
the appropriate ranges of parameter settings that provide acceptable
radar imaging performance. Simulated data sets were computed at
21 different transmitter/receiver positions equally spaced from y =
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−2.5m to y = 2.5 m, images were created for different parameter sets,
and the sharpness of each image was analyzed by computing the image
radius.

4.1. Time-domain (Short-pulse) System

Appropriate canonical problem data were computed in the frequency
domain and converted into time-domain data using the FFT. To
avoid inaccuracies in the conversion process, a much smaller frequency
sampling interval of 20 MHz was used when computing the data than is
needed in the parameter analysis. The received pulse is baseband, with
a width defined as the half-amplitude width of the widowing function
from (9).

(a) (b)

(c) (d)

Figure 3. Conducting strip image (scale in dB) constructed using a
pulse width of (a) T = 0.05 ns, (b) T = 0.30 ns, (c) T = 0.50 ns, (d)
T = 2.00 ns. zs = 50 cm, zt = 80 cm, zw = 15 cm, W = 15 cm, εr = 6,
σ = 0.001 S/m.
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The parameters explored for a time-domain radar system include
pulse width, sample rate, SNR, and digitization level. The received
pulse width determines the equivalent bandwidth of the system. For
the parameter analysis of the time-domain system, a set of baseline
values was established and one parameter is varied in each study to
determine its effect on image quality. The baseline values are a pulse
width of T = 0.10 ns, a sampling interval of 1.53 ps, zero noise added
(SNR = ∞), and no artificial digitization of the data.

As seen in Figure 3, increasing the pulse width of the system
causes a loss of resolution and thus the image of the target blurs and
eventually fades into the background. Figure 4(a) shows the image
radius values computed by centering a box of sides 30 cm tall by 46 cm
wide on the target. It is clearly seen that increasing the pulse width
enlarges the image radius, corresponding to a decrease in image quality.
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Figure 4. Effects on image radius generated by the time-domain
system, due to (a) pulse width, (b) sampling interval, (c) SNR, (d)
digitization. zs = 50 cm, zt = 80 cm, zw = 15 cm, W = 15 cm, εr = 6,
σ = 0.001 S/m. Line shows best fit trend.
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Note that the image radius decreases between 0.06 ns and 0.10 ns. This
is probably due to the choice of the threshold value, c, of the grid point
intensity used to compute the image radius. A low value works well
with wider pulses, but may not accurately predict the degradation of
the image at narrow pulse widths.

The maximum usable pulse width depends on the desired
resolution of the radar. It was found that when imaging a strip of width
15 cm an image radius of about 4 cm provides a usable localization of
the image (note that image radius is not equivalent to strip width).
Although this value is subjective, later analysis with multiple targets
reveals that this image radius allows two strips to be resolved when
separated by one strip width, and so also provides a convenient
parameter for multiple target studies. Figure 4(a) indicates a pulse
width of approximately 0.10 ns produces the desired 4 cm resolution.

Figure 4(b) shows the dependence of image radius on sampling
interval. Here it is seen that the desired value of R = 4 cm occurs for a
sampling interval of about 0.2 ns, which requires a minimum sampling
rate of about 5 Gs/s. To determine the required SNR, white Gaussian
noise was added directly in the time domain with a signal-to-noise
ratio determined with reference to the largest peak in the waveform,
which is the flash from the front of the barrier. Figure 4(c) shows the
dependence of the image radius on SNR, suggesting that a minimum
SNR of about 8 dB is required to produce an image radius of 4 cm.
Finally, the dependence of image radius on amplitude digitization
was explored by digitizing the time-domain signal with different A/D
bit levels. From Figure 4(d) it is seen that at least 9 bits must be
used to achieve an image radius of 4 cm. Using less bits produces a
fairly dramatic increase in image radius. Note that the digitization
was done assuming that the flash from the wall is present in the
measured time-domain data. By setting the time reference of the
receiver appropriately, the flash can be time-gated out and the required
dynamic range can be decreased dramatically — hence fewer bits are
required for the desired image quality.

The minimum required parameters identified from these simula-
tions are summarized in Table 1.

Table 1. Minimum system requirements for a time-domain short-pulse
radar system.

Pulse Width Sampling Rate SNR Digitization
≤ 0.1 ns ≥ 5Gs/s ≥ 8 dB ≥ 9Bits
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4.2. Frequency-domain (Stepped-frequency) System

Images for a frequency-domain system are created by using the
simulated frequency-domain target data with constraints on the
bandwidth, sampling interval, SNR, and A/D bit length. The
constrained data are transformed into the time-domain using the FFT,
and the same processing is applied as was used to form images for the
time-domain system. The baseline parameter values for the frequency-
domain system are a fractional bandwidth of 117.42%, a sampling
interval of 20 MHz, zero added noise, and no digitization.

The bandwidth of the system determines the spatial resolution
in much the same way that the pulse width does for a time-
domain system. Figure 5(a) shows the image radius values computed
for various percent bandwidths. To restrict the bandwidth of the
simulated data, a fractional bandwidth Ω/f0 was chosen and the
equivalent temporal pulse width was calculated using (10). The value
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Figure 5. Effects on image radius generated by the frequency-domain
system, due to (a) bandwidth, (b) sampling interval, (c) SNR, (d)
digitization. zs = 50 cm, zt = 80 cm, zw = 15 cm, W = 15 cm, εr = 6,
σ = 0.001 S/m. Line shows best fit trend.
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f0 was chosen to be the center frequency of 8 GHz and the bandwidth
was varied around this specific frequency. The data was then windowed
using the function W (f) in (9). As expected, the image radius increases
as the bandwidth decreases, with a fractional bandwidth of about 37%
required to produce an image radius no larger than 4 cm.

Figures 5(b)–5(d) show the effects of sampling interval, SNR, and
discretization, respectively, on image radius. Figure 5(b) reveals that
the image radius is not affected greatly by frequency sampling interval
until a value of 80MHz is reached. Beyond this point, aliasing creates
overlapping images due to wraparound in the inverse FFT, and the
image radius cannot be computed in a meaningful way. This provides
a rigid upper limit on the requisite frequency sampling interval. The
dependence of the image radius on SNR and digitization is as expected,
with higher SNR and greater discretization required to produce better
images. A summary of the minimum system parameters for a stepped-
frequency system is provided in Table 2.

Table 2. Minimum system requirements for a frequency-domain radar
system.

Fractional Bandwidth Sampling interval SNR Digitization
≥ 37% ≤ 40MHz ≥ 40 dB ≥ 6Bits

4.3. Multiple Target Resolution

Minimum system parameters more stringent than those identified in
previous sections may be required to separate multiple targets. As a
simple study, the field scattered by two adjacent conducting strips
of the same width and varying separation was computed, and the
associated images were generated. Figure 6 shows the images of two
15 cm wide strips formed using a pulse width of 0.10 ns, a sampling
interval of 1.53 ps, zero noise added (SNR = ∞), and no artificial
digitization of the data. With a strip separation of 5 cm (defined as
the distance between adjacent strip edges), it is not possible to discern
two targets. However with a separation of 50 cm, two images are clearly
visible.

The minimum separation distance at which both targets can
be resolved is determined by finding the distance at which the
image radius, found using a box enclosing both conducting strips,
approximately equals twice the image radius of a single strip, as found
earlier. The size of the box surrounding the multiple targets was
30 cm tall and 162 cm wide. Figure 7 shows the two-strip image radius
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(a) (b)

(c) (d)

Figure 6. Images (scale in dB) of two conducting strips of width 15 cm
constructed using a pulse width of 0.10 ns and a separation distance
of: (a) 5 cm, (b) 15 cm, (c) 25 cm, (d) 50 cm. zs = 50 cm, zt = 80 cm,
zw = 15 cm, εr = 6, σ = 0.001 S/m.
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Figure 7. Image radius of two conducting strips of width 15 cm
computed using a box that encloses both strips and a pulse width
of 0.1 ns. Dashed line shows twice the image radius of a single strip.
h = 50 cm, zs = 80 cm, t = 15 cm, εr = 6, σ = 0.001 S

m . Solid line
shows best fit trend.
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as a function of separation distance, and indicates that a minimum
separation distance of about 15 cm (one strip width) is needed for the
two-strip image radius to be twice that of the single-strip radius of
3.8 cm.

An image radius of 4 cm was selected for the single-target
parameter studies, in part, because two 15 cm wide strips can be
resolved with this radius when the strips are separated by a distance
equal to their width.

5. CONCLUSION

A two-dimensional canonical problem was studied to determine the
effects of various radar parameters on the performance of short-pulse
and stepped-frequency radar systems for imaging targets through
barriers. The results provide a set of minimal requirements for
producing acceptable target images, as defined using an image radius
measure. Although the requirement on image radius is subjective and
the minimum system parameters depend on the properties of both
the target and the barrier, the parameters found in this study should
provide a useful, general guide for designing both time and frequency-
domain radar systems and for understanding the tradeoffs between the
parameters.

The analysis demonstrates that both time-domain and short-
pulse systems are generally capable of achieving similar performance.
When considering the details of implementation, the primary difference
between the systems deals with the required dynamic range and the
fact that the short-pulse time-domain system can time gate out strong
clutter signals, while the stepped-frequency system cannot. It is not
well recognized that a frequency-domain system must accommodate
the full range of the received frequencies, while a time-domain system
can gate out the clutter — a considerable advantage. In fact, a
significant amount of research for conventional radar has been devoted
to overcoming this serious open problem of strong clutter obscuring
smaller targets.
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