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Abstract—The objective of this paper is to establish the properties
of the electromagnetic wave propagation in a diversity of situations in
material media with magnetic monopoles and even in the situations
of entities simultaneously containing electric and magnetic charges.
This analysis requires the knowledge and solutions of the “Maxwell”
equations in material media compatible with the existence of magnetic
monopoles and the extended concepts of linear responses (conductivity,
split-charge susceptibility, kinetic susceptibility, permittivity and
magnetic permeability) in the case of presence of electric and magnetic
charges. This analysis can facilitate insights and suggestions for
electrical and optical experiments affording a better knowledge of the
materials whose behaviour can be analyzed under the consideration
of the existence of entities with equivalent properties of the magnetic
monopoles.

1. INTRODUCTION

The existence of a total symmetry of the fundamental electrodynamics
equations is an objective even previous to the formulation of Maxwell’s
equations in 1861. The lack of the complete symmetry is due to the
non-existence of particles with magnetic charge. The consideration
of magnetic charge currents has been used for the determination
of the electromagnetic fields in scattering, diffraction and aperture
antennas [1–3]. This is carried out in order to obtain more efficacy
and simplicity in the solutions of the standard Maxwell equations in
complex electromagnetic problems. In this case, a real problem is
mathematically substituted by an equivalent system with the same
solution in a space region in which the E and B fields should
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be determined. This equivalent system is constituted of superficial
electric and magnetic currents located in the closed surface. The
consideration of these currents of magnetic charges without physical
assigned phenomenology is an excellent mathematical procedure of
calculation in order to improve the solution of complex electromagnetic
problems. On the other hand, analyses that present certain similarities
with those of antenna radiations based on the electrostatic image
method are considered in recent experiments carried out in topological
insulators [4].

In any case, the first time that the magnetic monopoles
appears in scientific literature was in a comment of P. Curie [5]
in which he makes a parallelism between the electricity and
magnetic conductivity. However, the magnetic monopole concept
was quantitatively introduced by Dirac [6, 7] in 1931 by means of
a rigid string such as a long solenoid. This Dirac monopole is an
unobservable [8] whose magnetic charge, g, is quantized and related
with universal constants, g = 2π~/(eµ0), where ~ is the Planck
constant, e the electronic charge, and µ0 the vacuum permeability.
The brilliant arguments used by Dirac are oriented to justify the
quantization of the electric charge. 51 years after Dirac’s monopole
definition, Cabrera [9] seems to have detected in a well known cosmic
radiation experiment an induced current peak in a superconducting
squid which was only possible when free magnetic monopoles crossed
the superconducting ring. However, to our knowledge, no new cosmic
event similar to that of Cabrera’s experiment seems to have been
repeated.

Recent experiments in certain materials, such as some above
cited exotic insulators, and, above all in spin ice materials [8, 10–
15] are giving new impulses to the analysis about the existence of
composite and emergent entities which have behaviours compatible
with those of the magnetic monopoles. Spin-ices are crystal structures
of holmium titanate and dysprosium titanate that have a honeycomb
aspect [8, 16] in whose vertexes there are magnetic ions located in
crystal configurations in a tetrahedric form. These tetrahedra are
connected to equal adjacent ones by a vertex. In the vertexes of each
tetrahedron there are, in the ground state of the system, two inward
magnetic moments and two outward magnetic moments in such a way
that each tetrahedron is magnetic neutral (i.e., their total magnetic
moment is zero).

When an external agent, such as magnetic field, axial stress,
temperature variation or other causes is applied, an excitation of
the system can produce a spin flip in one of the vertexes of two
contiguous tetrahedra. The result of this spin inversion of a shared
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magnetic spin moment is the breakdown of the magnetic neutrality,
and then a net magnetic moment appears in each of the two contiguous
tetrahedra. These net magnetic moments have opposite directions in
each component of the contiguous tetrahedron pair. The magnetic
field created by these net opposite magnetic moments is equivalent to
that which would produce a pair constituted of one monopole and one
antimonopole whose magnetic charges, obviously, are opposite. The
equivalent monopoles formed via spin-flip action in spin-ice, in contrast
to the Dirac’s monopoles, are observable and there is no reason for
requiring the quantization of their charge [8]. On the other hand,
the monopole pair created by a spin inversion is an effective object
which does not contain the elementary particle properties. However,
these monopoles differs from those introduced in the antenna theory in
which these effective magnetic charges of the spin-ice structures cause
a rich phenomenology that has influence in the conductivity, magnetic
and thermal properties, and can even produce phase transitions. In a
starting phase, these monopole pairs are confined forming a magnetic
charge dipole whose charge splitting is a minimal lattice parameter.
The Coulomb binding energy of the monopole-antimonopole pair is
−µ0g2

4πa , with a being the average separation between the two equivalent
magnetic charges. The external magnetic field with its action over the
magnetic charge exerts the Lorentz force, gB, which competes with the
coulomb force among monopoles and antimonopoles. This competence
between the two forces can provoke the dissociations of the monopole
pair in a similar image to that of the dissociation of a molecule in
an electrolyte [11]. The proliferation of deconfined monopoles pairs
and the thermal generation of moment defects can produce a new
phase constituted of a more or less dense gas of magnetic charges [11]
spread within the solid. The dynamic of this magnetic charge gas
can be assimilated to a slightly concentrated electrolyte which can
be analyzed via the Onsager theory of the Wien effect [11, 17]. The
neutron scattering experiments [12, 15] have unequivocally elucidated
the magnetic structure of these spin-ice materials and the conductance
measurements analyzed in the light of Onsager’s theory have obtained
the determination of the magnetic charge.

The existence of these experimental analyses and the interest
generated by the study of these fascinating magnetic materials induce
the necessity of revisiting the classical electrodynamics by including the
magnetic monopoles as sources of electromagnetic fields. One of the
most important applications could be the creation and manipulation
of “magnetronic” circuits in similar way to that which, at the present
time, is being established by the spintronic [18] devices. Obviously, this
extended classical electrodynamics should be completed rethinking the
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quantum electrodynamic and the solid state physics by considering this
magnetic charges. However, in a first stage, it is necessary to known
the consequences of the existence of spatial points with divergence
of B different from zero in order to be able to apply the quantum
correspondence principle to the microscopic phenomena.

The main mathematical consequence of the assumption of
magnetic monopole existence is the complete symmetry of the
fundamental electrodynamics equations [19] which can be obtained
by the consideration of the most pristine fundamentals of physics.
The existence of monopoles and its formalization as a possible
model has been considered in some unification theories for analyzing
phenomenologies and behaviours of interacting hadronic systems [20].
Therefore, these models consider the evolutions of possible magnetic
charges in the vacuum and without existence of continuum matter
which mediates and conditions the interactions among the different
electric and magnetic charges. In this paper, we consider a plausible
theory about the classical electromagnetic wave propagation within
matter, such as, for instance, the spin-ice materials, where there are
effective magnetic monopoles. A new construction of the classical
electrodynamics is necessary, since, while the formulation of the
“Maxwell” equations considering magnetic monopoles in the empty
space is well established [19], an extended electrodynamics within
the matter with electric and magnetic charges is poorly treated in
specialized literature. Maybe, this absence of scientific discussion in
this matter is due to the non-existence of any concrete experiment
(until 2009) which had detected entities whose behaviour is compatible
with the magnetic monopole idea in an incontrovertible way. The
author of the previous experiment carried out in 1982 [9] presented
some clues which could signify the existence of gauge monopoles (i.e.,
elemental free particles in empty space) but, this experiment is, in our
opinion, not sufficiently conclusive and no similar experiment has been
presented since then in literature.

2. FIELD EQUATIONS WITH MAGNETIC MONOPOLES

It is well known [19, 21–24] that with the assumption of existence of
magnetic monopoles the “Maxwell” equations should be:

∇ ·E =
ρe

ε0
, ∇×E = −KJm − ∂B

∂t
, (1)

∇ ·B = Kρm, ∇×B =
Je

ε0c2
+

1
c2

∂E
∂t

, (2)
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where E is the electric field, B the magnetic field, ρe the electric charge
density, ρm the magnetic monopole density, Je the electric current
density, and Jm the magnetic current density. The speed of light
in vacuum is c =

√
(ε0µ0)−1. In the International System of Units,

µ0 ≡ 4π × 10−7 NA−2, and ε0 the vacuum permittivity.
Equations which present compatibilities with (1) and (2) in the

main variant with respect to the standard Maxwell equations (i.e.,
∇ · B 6= 0) are found in the analysis of electromagnetic scattering,
diffraction and aperture antenna problems [1–3], and in memristive
media [25].

On the other hand, the Lorentz force for point charges can be
written as:

F = q(E + v ×B) +
K

µ0
g

(
B− v

c2
×E

)
. (3)

where the particle has both electric (q) and magnetic (g) charges,
and v is their velocity (obviously if the particle only has either
electric or magnetic charge one of the two terms between parentheses
should be zero). This hypothetical particle with magnetic and electric
charge is called dyon [26]. The K-parameter should be fixed by the
definition of the magnetic charge which should be adjusted by means
of experimental force between particles and fields through the force
of Lorentz. Obviously for K = 0, we have the standard equations of
electromagnetism.

The “Maxwell” Equations (1) and (2) can be expressed in a unified
way by making the following definition

κ ≡ ε0cK =
K

µ0c
. (4)

Reasonable choices for K and κ are

K 1 µ0 µ0c

κ (µ0c)−1 c−1 1
(5)

In the first column, the unit of magnetic charge is the weber used in
Jackson’s book [19] and in the antenna theory [2, 3]. In he second
column the unit of magnetic charge is ampere·meter, [8, 22, 23]. The
third is, in our opinion, the best choice, because it simplifies our
equations slightly. Obviously, all columns yield equivalent “Maxwell”
equations each of them in its respective system of units.

The four Eqs. (1) and (2) are reduced to the following two
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composed equations

∇ ·
(

E
cB

)
=

1
ε0

(
ρe

κρm

)
, (6)

∇×
(

E
cB

)
=

1
ε0c

Ω
(

Je

κJm

)
+

1
c

∂

∂t
Ω

(
E
cB

)
; (7)

where the Ω-matrix is defined as:

Ω ≡
(

0 −1
1 0

)
(8)

As a consequence, the Lorentz force, in coherence with these
compacting “Maxwell” equations, can be written as:

F =
(

q, κg
) (

11− v
c
× Ω

)(
E
cB

)
. (9)

We define an electromagnetic charge density % , as a two
dimensional vector, which includes the electric and magnetic charge,

% ≡
(

ρe

κρm

)
, Q ≡

(
q

κg

)
≡ |Q|

(
cos ζ

sin ζ

)
, (10)

where |Q| ≡
√

q2 + κ2g2 and tan ζ ≡ q/(κg). On the other hand, we
define two six-dimension vectors J and G arranged as follows:

J ≡
(

Je

κJm

)
, G ≡

(
E
cB

)
. (11)

Note that a electromagnetic charge Q has two components, an electric
charge, q, and a magnetic charge, κg. Similarly, the other field
vectors have two components: the electrical component is the upper
subspace component, and the another component will be the magnetic
component.

The Maxwell Eqs. (1) and (2) can be also written as follows

∇ ·G =
1
ε0

%, (12)

∇×G =
1

ε0c
ΩJ +

1
c

∂

∂t
ΩG. (13)

and the Lorentz force takes the form:

F =
(

q , κg
) (

11− v
c
× Ω

)
G. (14)

We want to remark the complete symmetry and similarity of Eqs. (12)
and (13) with respect to each of the components of the G field,
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therefore, the electric field generated by electric and magnetic charges
and the magnetic field produced by the electric and magnetic currents
are two constitutive fields of the this extended electromagnetism.

Another equivalent representation (complex notation) of the above
“Maxwell” and “Lorentz” equations is obtained by multiplying Eq. (10)
by the row matrix (1, i), where i ≡ √−1 is the imaginary unit. We
define:

Q ≡ q + iκg ≡ |Q|eiζ = |Q| cos ζ + i|Q| sin ζ,

% ≡ ρe + iκρm, J ≡ Je + iκJm,

G ≡ E + icB. (15)

In this notation, ζ is the polar angle in a complex plane of the complex
charge Q. The dyon charge Q has an electric charge represented in the
real axis, and the magnetic charge represented in the imaginary axis.
Then, the four Maxwell equations are converted in the two following
equations

∇ ·G =
%

ε0
, ∇×G =

i

c

(
J
ε0

+
∂G
∂t

)
, (16)

obtaining again a total symmetry between the field E and B.
Therefore, there is now a single electromagnetic field, G ≡ E + icB,
with two “flavours”, where the real part is an electric field, E, and the
imaginary part is a magnetic field, cB. The Lorentz force is

F = ReQ∗
(
1− i

v
c
×

)
G = |Q|Re (cos ζ − i sin ζ)

(
1− i

v
c
×

)
G. (17)

Note that considering all the force, and not only the real part, the
Eq. (17) is not the standard Lorentz force when ζ = 0.

The so-called duality transformation is, in the complex notation,
to rotate the function in the complex plane, i.e., multiplying by a
phase eiζ′ . Therefore, the duality transformation over positive charge q
becomes Q = qeiζ′ , and an electric charge becomes a dyon with electric
and magnetic component. The electromagnetic complex vector, G,
have invariant module (|G| ≡ G ·G∗) in this transformation and the
“Maxwell” equations remain invariant before this duality operation,
since both fields of G rotate such as the charge density, %. Besides, the
Lorentz force is also invariant, since the product %∗G does not suffer
any change by multiplying by e−iζ′eiζ′ .

2.1. Field Equations in Matter

The main objective of this paper is the determination and analysis
of the electromagnetic fields within the matter in which the magnetic
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monopoles is not discarded. In this second part of this paper, we
comment the formulation of a plausible theory about the extended
classical electrodynamics within the matter, in which several magnetic
monopoles have been detected in recent experiments [11, 15]. The
interpretation of the experimental results, as said above, requires the
new construction of the classical electrodynamics within the continuum
matter constituted of magnetic and electric charges.

Hence, we have to analyze the Maxwell equations where the
multipole expansion of the potentials is developed as a function of
electric and magnetic polarizations which in this case depend on the
spatial distribution of two different kind of dipoles. The expressions of
these electric and magnetic polarizations are:

P ≡
(

Pe

κPm

)
≡ 1

∆V

∫

∆V
r

(
ρe

κρm

)
d3r, (18)

M ≡
(

Me

κMm

)
≡ 1

2∆V

∫

∆V
r×

(
Je

κJm

)
d3r. (19)

where, ∆V is a volume that approaches zero, and Pe (Pm) is
the electric (magnetic) polarization due to a split in the gravity
centers of the electric (magnetic) charges, and Me (Mm) is the
magnetization due to the movements of electric (magnetic) charges
which constitute the electric and magnetic currents. In order to clarify
the duplicity of the polarization, dipoles, currents and charges, we will,
henceforth, call P split-charge polarization and M kinetic polarization.
Following a coherent and parallel way to the the standard classical
electrodynamics, we establish that the divergence equation of the
electromagnetic field, G, becomes

∇ ·G =
1
ε0

(%−∇ ·P) (20)

and this expression allows us to define the corresponding field within
the matter d, defined as

d ≡ ε0G + P. (21)

This is an extended concept of the electric displacement vector and
whose divergence expression becomes:

∇ · d = %. (22)

By utilizing the same analogy and similar procedure to that of the
divergence case, the determination of the rotational equation allows us
to define the extended concept of the corresponding magnetic intensity
h:

∇×G = µ0c Ω (J + ∇×M) , (23)
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then
∇× h = ΩJ, (24)

where one has to define that

h ≡ 1
µ0c

G− ΩM. (25)

An important and epistemological principle of Physics of the
higher hierarchy is the charge conservation and therefore, it is necessary
to maintain it in the case of a theory in extended electrodynamics. As
a consequence of this principle, if the time derivatives of the density
of electric and magnetic charges are not zero, we must impose the
continuity equation for both electric and magnetic charges and then,
the equivalent equations, in non static conditions, are:

∇× h = Ω
(
J +

∂d
∂t

)
. (26)

It must be remembered that the coherence with the standard
classical electrodynamics should always exist when there are not
magnetic monopoles, and therefore, for κ = 0, we have

d =
(

D
ε0cB

)
, h =

(
ε0cE
H

)
, (27)

which are the fields D (electric displacement field) and H
(magnetic field intensity or magnetic field strength) of the standard
electromagnetism.

3. LINEAR RESPONSES OF THE MATERIALS

The existence of electric and magnetic charges (q and g), the
corresponding electric and magnetic currents (Je and Jm), which
result from their movements, and the interaction forces of these
charges and currents with the generated fields (G, d and h) generates
changes in the particle velocity and in the polarizations: split-charge
polarizations (Pe, Pm) and kinetic polarizations (Me, Mm). In this
section, we give an improved version of the relationships among the
different electromagnetic fields and the dynamic responses induced in
the material [21]. Fundamentally, these responses are: i) the current of
charges, which, in this case, can be due to movements of electric and
magnetic charges, which constitute the electricity and “magneticity”,
ii) changes of the positions of the charges in function of their signs,
which constitute the split-charge polarization and iii) changes of the
localized charge currents, and changes in the angular momentum of
the particles, which constitute the kinetic polarization.
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3.1. Conductivity or Generalized Ohm’s law

In standard electromagnetism, the classical theory of conductivity
establishes that due to the Lorentz force acting on the electrons, the
electric field accelerates them till they are scattered with ions, and
then, their velocities change. In an average estimation, and considering
that the characteristic velocities within the matter are clearly non-
relativistic, the velocity of a given and generic electron just after
the collision is zero, therefore, the velocity starts to increase after
collision and during an interval time between two successive collisions,
this interval being an average time, τ . If one considers instead of
electrons which have only electric charge, particles with both electric
and magnetic charge, it is plausible to accept that the average velocity
will also be given by the product of the acceleration during the average
time between collisions, τ ,

v =
qE + κgcB

m
τ =

τ

m
Re (Q∗G) , (28)

where the force is the sum of electric and magnetic forces. We have
assumed that the velocity and τ are small enough (these conditions
are valid for non-relativistic velocities and with relatively large density
of particles within matter) so that the term of the Lorentz force
proportional to v× in Eq. (3) does not have to be considered.
Therefore, we can define the extended Ohm law as

J = %v =
nτ

m
QRe (Q∗G) , (29)

where n is the density of particles, i.e., % = nQ.
This latter expression of Ohm’s law, in matrix form, can be written

J =
nτ

m

(
q

κg

)
(q, κg)

(
E
cB

)
=
↔
σ G. (30)

As a consequence, the conductivity in a linear and isotropic material,
equivalent to a simple function in the standard electromagnetism, is
now a matrix defined by

↔
σ≡ σΘ , (31)

where σ and the Θ matrix are

σ =
n|Q|2τ

m
,

Θ ≡ 1
|Q|2

(
q2 qκg

qκg κ2g2

)
=

(
cos2 ζ 1

2 sin 2ζ
1
2 sin 2ζ sin2 ζ

)
.

(32)

In the cases, in which there are several classes of particles (we define
that two particles are of the same class if they have the same value of
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q/g, i.e., if the ζ values are equal or differ by π), then, the conductivity
becomes the addition of all contributions, and it can be written as

↔
σ=

∑
p

σpΘp , Θp ≡
(

cos2 ζp
1
2 sin 2ζp

1
2 sin 2ζp sin2 ζp

)
. (33)

The index of the summation runs through all the classes of particles.
This summation can be effective in both doped semiconductors or
insulators and the different situations of energy condensed states such
as superconducting materials, Bose-Einstein condensates, polaron-
polariton condensed states and excitonic bubble.

3.2. Split-charge Susceptibility

The split-charge susceptibility is defined by means of a relationship
between the density of split-charge dipole moments and the
electromagnetic field G. The split-charge dipole moment of a electric
dipole [see Eq. (18)] is defined by a vector that, in the most simplified
case, is the charge multiplied by the vector whose origin is the negative
point charge and its final is in the positive point charge. In standard
electromagnetism and linear approximation, the electric polarization
is proportional to the electric field which tends to split and modify
the locations of the charges, moving away the positive charges and
approaching the negative ones. When instead of electrical charges, we
have dyons, we can consider that this splitting between positive and
negative particles is also proportional to the force, F0 = qE + κgcB,
and the corresponding split-charge polarization will be proportional to
the charge q and g. Then, it seems reasonable to write:(

Pe

Pm

)
= nα

(
q

g

)
F0, (34)

where α is a characteristic constant of each material. The last equation
can be written, at not too much density of particles, as(

Pe

κPm

)
= nα

(
q

κg

)
(q, κg)

(
E
cB

)
= n|Q|2αΘ

(
E
cB

)
, (35)

and as a consequence, we can define the function of the split-charge
susceptibility as χs ≡ n|Q|2α/ε0, and then

P = ε0χsΘG. (36)
Therefore, having in mind Eq. (21), we can establish the relationship
between vectors G and d which we name extended permittivity matrix
and whose expression is:

d = ε0G + P = ε0(11 + χsΘ)G =
↔
ε G, (37)
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where the permittivity matrix is:

↔
ε≡ ε0(11 + χsΘ) = ε0

(
1 + χs cos2 ζ 1

2χs sin 2ζ
1
2χs sin 2ζ 1 + χs sin2 ζ

)
. (38)

From this latter expression, we can obtain the standard electric
susceptibility in absence of magnetic monopoles (ζ = 0). Actually,

↔
ε = ε0

(
1 + χe 0

0 1

)
, (39)

which obviously reduces to the expression of standard electromag-
netism (χe = χs is the electric susceptibility). In the cases with differ-
ent particles of the same class, it is only necessary to modify the value
of χs and with several classes of particles (groups of particles whose ζ

is different from either 0 or π) it is also valid, d =
↔
ε G, but

↔
ε =ε0

(
1+

∑
p χs,p cos2 ζp

1
2

∑
p χs,p sin 2ζp

1
2

∑
p χs,p sin 2ζp 1+

∑
p χs,p sin2 ζp

)
=ε0

∑
p

(11+χs,pΘp). (40)

We can define the permittivity as

ε ≡ det | ↔ε |
ε0

, (41)

and when there is a unique class of dyons, this permittivity becomes

ε = ε0 det |1 + χsΘ| = ε0(1 + χs). (42)

Note that this expression for the permittivity is invariant by a duality
transformation.

3.3. Kinetic Susceptibility

In the case of magnetic materials, the standard formulation establishes
that an induced magnetic moment is proportional to B, and this B
produces a magnetic force (v × B) which can modify the current
structure that, in turn, modifies the magnetic polarization. If we
consider the most simple case of a single electron moving along a
circular path with a constant speed, the presence of a uniform steady
field B existing in the region, will produce a magnetic force, which
generates a change in the angular velocity, and a consequent change in
the magnetic moment, proportional to the force. When we make an
extension to the dyons we must consider the part of the Lorentz force
proportional to the velocity,

Fv = v ×
(
qB− κ

c
gE

)
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and the kinetic polarization will suffer a change whose expression is
(

Me

Mm

)
= nα′

(
q

g

) (
qB− κ

c
gE

)
, (43)

where α′ is a response function which depends on the characteristic
features of material, since this answer depends on the speed, we call it
as kinetic polarizability of the material. Following a similar procedure
to that used in the determination of the split-charge polarization, we
have (

Me

κMm

)
=

nα′

c

(
q

κg

)
(−κg, q)

(
E
cB

)
. (44)

This latter expression can be given in function of the kinetic
susceptibility, χk, which is defined by n|Q|2α′µ0 ≡ χk/(1 + χk) ≡ ξ,

M =
ξ

µ0c

( −1
2 sin 2ζ cos2 ζ

− sin2 ζ −1
2 sin 2ζ

)
G, (45)

this relationship between vectors M and G also reduced, obviously, to
the expression of standard electromagnetism when there is no magnetic
monopoles, and then, the so-called kinetic susceptibility is the magnetic
susceptibility.

Consequently, we can define the permeability matrix,
↔
µ , in a

similar way to that which allowed us to define the permittivity matrix,

h =
1

µ0c
G− ΩM ≡ 1

c

↔
µ
−1

G

=
1

µ0c

[
11− ξΩ

( −1
2 sin 2ζ cos2 ζ

− sin2 ζ 1
2 sin 2ζ

)]
G. (46)

By inversion of the matrix

↔
µ = µ0

[
11− ξ

(
sin2 ζ −1

2 sin 2ζ

−1
2 sin 2ζ cos2 ζ

)]−1

=
µ0

1− ξ
(11− ξΘ) , (47)

and therefore the corresponding relationship between the G and h-
vectors

G = c
↔
µ h . (48)

With this expression and from Eq. (45), the kinetic polarization is
given by

M = χk

( −1
2 sin 2ζ cos2 ζ

− sin2 ζ 1
2 sin 2ζ

)
h. (49)
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In the case of absence of magnetic monopoles, becomes
↔
µ= µ0

(
1 0
0 1 + χk

)
, Me = χkH, (50)

which is the corresponding expression of the standard classical
electromagnetism, with χk = χm being the magnetic susceptibility.

Similar to the case of the split-charge susceptibility, for materials
and systems with several kinds of particles of the same class one needs
to modify only the value of χk, and if one considers several class of
particles, the expression G = c

↔
µ h, continues being valid, but

↔
µ = µ0

(
1−∑

p ξp sin2 ζp
1
2

∑
p ξp sin 2ζp

1
2

∑
p ξp sin 2ζp 1−∑

p ξp cos2 ζp

)−1

≡ µ0

(
1− α β

β 1− γ

)−1

. (51)

We can simplify the notation by means the following variable changes:

α ≡
∑

p

ξp sin2 ζ,

β ≡ 1
2

∑
p

ξp sin 2ζp,

γ ≡
∑

p

ξp cos2 ζp ;

(52)

and with these changes of notation we have that
↔
µ is,

↔
µ =

µ0

(1− α)(1− γ)− β2

(
1− γ −β

−β 1− α

)

=
µ0

(1− α)(1− γ)− β2

(
11−

∑
p

ξpΘp

)
. (53)

The permeability can be defined by:

µ ≡
det

∣∣∣↔µ
∣∣∣

µ0
, (54)

which, for one class of dyons, becomes

µ =
µ0

1− ξ
= µ0(1 + χk). (55)

Here, we can also observe that this expression is invariant by a duality
transformation.
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4. EM PROPAGATION IN MATTER WITH DYONS

The response functions of the materials,
↔
σ ,

↔
ε and

↔
µ before

the presence of the electromagnetic G-field and the corresponding
relationships among the different resulting vectors, given in Eqs. (30),
(37) and (48), allows us to determine the characteristic features of the
electromagnetic wave propagation within this extended theory. This
analysis should serve as a guide for understanding the classical electro-
magneto-optical properties of the systems in which the electronic
charge is substituted by the dyonic charge, i.e., those systems in which
there is presence of magnetic monopoles.

In a first step, we consider the simplest case with a plane wave in
a linear and uniform media in space regions with absence of charges.
With these conditions, the divergence of the d field is,

0 = ∇ ·d = ∇· ↔ε G = c
↔
ε
↔
µ ∇ ·h ≡ c

↔
ε
↔
µ ∇ ·

(
f
b

)
ei(k·r−ωt), (56)

where the vectors f and b are the initial electric and magnetic
components (flavours) of h. In the simplified case of a monochromatic
plane wave, it is satisfied the following expression

↔
ε
↔
µ

(
k · f
k · b

)
= 0. (57)

If det | ↔ε↔µ | 6= 0, then, we have the restricted conditions on the
propagation vector k:

k · f = k · b = 0. (58)

These are the transversality relationships of f and b-fields.
In order to determine the h-vector versus conductivity of Eq. (33),

permittivity of Eq. (40) and permeability of Eq. (53), we can use the
equation of the curl of h:

∇× h = cΩ
(
↔
σ +

↔
ε

∂

∂t

)
↔
µ h, (59)

and for a monochromatic plane wave, this expression takes the
following algebraic form,

k×
(

f
b

)
= −

(
S −R

U −T

)(
f
b

)
, (60)

where the definition of the propagation matrix is
(

U −T

−S R

)
= c

(
ω
↔
ε +i

↔
σ

) ↔
µ . (61)
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The specific development of the matrix elements U , T , S and R of this
propagation matrix is given in Appendix A. The cross product can be
written in matrix form as

k× f =




0 −kz ky

kz 0 −kx

−ky kx 0







fx

fy

fz


 . (62)

The vector k can be complex if the conductivity is different from zero
and the simplest case is to consider that both real part and imaginary
part are parallel, i.e., the attenuation and the propagation have the
same direction. Then, in this case, we can choose a coordinate system
in such a way that

k ≡ kex, (63)

then, due to the transversality, Eq. (58),

f ≡ fyey + fzez, b ≡ byey + bzez, (64)

and a consequence Eq. (60) can be written as follows

0 =







S 0 0
0 S −k

0 k S


 −R




1 0 0
0 1 0
0 0 1




U




1 0 0
0 1 0
0 0 1






−T 0 0
0 −T −k

0 k −T










0
fy

fz

0
by

bz




, (65)

this latter expression can be reduced and the result is the following
equation

0=




S −k −R 0
k S 0 −R

U 0 −T −k

0 U k −T







fy

fz

by

bz


≡

(
A −R11
U11 B

)(
f
b

)
, (66)

where we have made the following notation changes

A ≡
(

S −k

k S

)
, B ≡

( −T −k

k −T

)
. (67)

Eq. (66) is a eigenvalue-eigenvector equation which should have a non
trivial solution if and only if

0 = det |AB + RU11| = det
∣∣∣∣
−ST−k2+RU k(T − S)
−k(T − S) −ST−k2+RU

∣∣∣∣ . (68)
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Here, k is the magnitude of the complex wave vector kex, which is the
variable of Eq. (68). The condition that should accomplish k is:

(−ST − k2 + RU
)2 = −k2(S − T )2, (69)

namely
k2 ± ik(S − T )−RU + ST = 0. (70)

Obtained the values of k vector from Eqs. (63) and (69), we have to
obtain the eigenvectors whose components are f and b; this is carried
out by means of the following matrix expressions.

Af −Rb = 0, U f + Bb = 0. (71)

These two equations after simple mathematical manipulations are
converted in:

BAf + URf = 0, ABb + URb = 0, (72)

which will have a different solution of the trivial if the determinantal
Eq. (68) is satisfied.

The solutions of Eq. (72) can be written in compact form as:

(
k2 −RU + ST

)(
fy

by

)
− k(T − S)

(
fz

bz

)
= 0, (73)

or also

k(T − S)
(

fy

by

)
+

(
k2 −RU + ST

)(
fz

bz

)
= 0, (74)

which are coherent with the condition of vanishing the determinant,
Eq. (69). Having in mind Eq. (69), one can deduce that if S = T
the latter equations do not give information since both Eq. (73) and
Eq. (74) are always 0 = 0.

If fz = 0 (fy = 0), one must have fy = 0 (fz = 0) or S = T and
k2 − RU + ST = 0. Also, if bz = 0 (by = 0), one must have by = 0
(bz = 0) or S = T and k2 − RU + ST = 0. In other words, if S 6= T
and a component of either f or b vanishes, then the electromagnetic
field h can not be propagated, i.e., there is not electromagnetic wave
with linear polarization, within the material, if the propagation matrix
is non-symmetric.

4.1. Non-symmetric Propagation Matrix, S 6= T

The condition for obtaining the characteristic features of the
electromagnetic propagation in matter with dyons, in general, and
magnetic monopoles, as a class of dyons, can be deduced from
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Eq. (66) which is constituted as the golden rule for the electromagnetic
propagation in linear and isotropic materials. The basic properties of
these materials are reflected in the response tensors

↔
σ ,

↔
ε and

↔
µ . In

this golden rule, there are two different cases, which represent several
physical classifications of materials, according to the balance of the
components of the three linear response tensors which are joined in
the propagation matrix of Eq. (61). If S = T , the Eq. (72) do not
provide information, but if S 6= T , as the determinant of Eq. (68) has
to be zero [Eq. (69)], then

(
fy

by

)
=

k(T − S)
k2 −RU + ST

(
fz

bz

)
= ±i

(
fz

bz

)
, (75)

and therefore a solution with plane polarization is impossible. In this
case, a solution of Eq. (66) can be expressed in the following way:

0 =




S −k −R 0
k S 0 −R

U 0 −T −k

0 U k −T







±ifz

fz

±ibz

bz


 . (76)

This equation can be reduced to a two-dimensional matrix expression

0 =
( ±ik + S −R

U ±ik − T

)(
fz

bz

)
, (77)

and a nontrivial solution can be obtained if the determinant vanishes

0 = −k2 ± ik(S − T )− ST + RU, (78)

which allows us to determine k that is the same k that above given in
Eq. (70). The solution for the components of the vectors fz and bz are

bz =
±ik + S

R
fz = − U

±ik − T
fz. (79)

And as a consequence, we have determined the h-field which can be
written

h =




1

±ik + S

R


 (±iey + ez) ψ ei(kx−ωt), (80)

where we have named ψ ≡ fz. With the determination of vector h, we
can obtain M with Eq. (49), G with Eq. (48), and with this latter we
can also obtain d with Eq. (37), and all electromagnetic information
is then determined.
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4.2. Symmetric Propagation Matrix, S = T

In this another case of S = T , the golden rule, Eq. (66), can be written
by means the following expression:

0 =




−k U −T 0
−R k 0 S

−T 0 k U

0 S −R −k







bz

fy

by

fz


 . (81)

If case S = T = 0

0 =




−k U 0 0
−R k 0 0
0 0 k U

0 0 −R −k







bz

fy

by

fz


 , (82)

in this case, the values of (bz, fy) are independent of (by, fz), and
therefore any plane wave polarization is possible.

Now, we analyze the it solution when S = T 6= 0. We can assume,
by rotating the coordinate system, that fz = 0, then,

0 =




−k U −T

−R k 0
−T 0 k

0 S −R







bz

fy

by


 (83)

and their solutions are

by =
S

R
fy, bz =

k

R
fy, by =

T

k
bz =

T

R
fy. (84)

The first is only compatible with the third when S = T , which is the
starting assumption, and then the field h can be written by means of
the following expression

h =




ey

S

R
ey +

k

R
ez


ψ ei(kx−ωt), (85)

where ψ ≡ fy.
In the case that we consider by = 0, Eq. (81) can be written as

0 =




−k U 0
−R k S

−T 0 U

0 S −k







bz

fy

fz


 (86)
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and
fz =

T

U
bz, fy =

k

U
bz, fz =

S

k
fy =

S

U
bz, (87)

where the first is compatible with the third for S = T , and the field h
is

h =




k

U
ey +

S

U
ez

ez


ψ ei(kx−ωt), (88)

with ψ ≡ bz.
In both cases, fy or bz can be linearly polarized if one conveniently

chooses the time origin. That is, the amplitude is real and only in one
direction, however, f and b are not perpendicular. On the other hand,
in the first case by/bz = S/k and in the second fz/fy = S/k, and then
we conclude that the other field will not always be linear polarized.

5. SOME SPECIAL CASES REGARDING DYONS

If there are no magnetic monopoles the propagation matrix, Eq. (61),
becomes:(

U −T

−S R

)
= c

(
ω
↔
ε +i

↔
σ

) ↔
µ

= c

[
ωε0

(
1 + χe 0

0 1

)
+iσ

(
1 0
0 0

)]
µ0

(
1 0
0 1 + χm

)

= cµ0

(
ωε + iσ 0

0 ωε0(1 + χm)

)
, (89)

and then from (70)

k2 = RU = µ(ωε + iσ)ω = εµω2 + iσµω, (90)
which is as expected the standard expression in a conductor.

If in a medium with electric charges, we add magnetic monopoles
and one does not consider kinetic susceptibility, then the propagation
matrix is:(

U −T

−S R

)
= c

[
ωε0

(
1 + χe 0

0 1

)
+ i

(
σ 0
0 σm

)]
µ0

= cµ0

(
ωε + iσ 0

0 ωε0 + iσm

)
, (91)

where σm is the monopole conductivity. Then

k2 = RU = εµ0ω
2 − µ0

ε0
σσm + iµ0ω

(
σ +

εσm

ε0

)
, (92)



Progress In Electromagnetics Research, Vol. 110, 2010 287

that is compatible with Eq. (A10). This situation would be
likened to that which should be applied to the case of the spin-ice
materials [11, 15]. One can express k2 as

k2 = κk2
0 − δ + iΓω ≡ (kr + iki)2 (93)

where κ = ε/ε0, k2
0 = ε0µ0ω

2, δ = µ0

ε0
σσm and Γ = µ0(σ +κσm). Then

k can be calculated

k2
r =

κk2
0 − δ

2


1±

√
1 +

(
Γω

κk2
0 − δ

)2

 ,

k2
i =

κk2
0 − δ

2


−1±

√
1 +

(
Γω

κk2
0 − δ

)2

 ,

(94)

where the only sign considered is that which k2
r , k2

i > 0. In a good
conductor, ε0ω/σ, ε0ω/σm ¿ 1, one can simplify and

kr ' 1
2

σ + σm

σσm

√
ε0µ0 ω, ki '

√
µ0

ε0
σσm, (95)

which differs considerably from the standard expressions for a good
conductor without monopoles. For example, the penetration depth
(1/ki) does not depend on the frequency. These expressions may be
useful in order to experimentally detect the monopoles in spin-ices.

6. NON-CONDUCTIVE MATERIAL

The propagation in materials in which all dyons are motionless (i.e.,
in non-conductive media) can be analyzed by considering σ = 0 in
Eq. (61). Then,

(
U −T

−S R

)
= cω

↔
ε
↔
µ ≡ ω

(
U ′ −T ′

−S′ R′

)
, (96)

and for a monochromatic plane wave, the general condition of Eq. (60)
can be written

k×
(

f
b

)
= −ω

(
S′ −R′

U ′ −T ′

)(
f
b

)
, (97)

therefore, for a non-conductive medium, one must make the
substitutions R, S, T, U → ω(R′, S′, T ′, U ′), where R′, S′, T ′, U ′ are
real, and if we also impose that the attenuation and propagation are
in the same direction, then we can choose a coordinate system in such
a way that

k ≡ kex. (98)
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We can carry out the same analysis that in the case of Eq. (69), and
then, the corresponding result gives the value of the magnitude of the
k-wave vector with respect to

↔
ε and

↔
µ that is this case is:

k2 ± ikω(S′ − T ′)− ω2(R′U ′ − S′T ′) = 0, (99)

if S′ = T ′, then k can be real, and its value is

k = ±ω
√

R′U ′ − S′2, (100)

and if S′ 6= T ′, then k, solution of (99) is a complex number.
In order to determine the h-vector, in a similar way to the case

of the conductor media, we distinguish two situations: S′ 6= T ′ (non-
symmetric propagation matrix) and S′ = T ′ (symmetric propagation
matrix). In the first case,

fy = ±ifz, bz =
±ik + ωS′

ωR′ fz, (101)

and as a consequent, a solution for the field h is

h =




1

±ik + ωS′

ωR′


 (±iey + ez)ψ ei(kx−ωt), (102)

where ψ ≡ fz.
In the situation where S′ = T ′, one can find a solution so that

fz = 0, and then,

by =
S′

R′ fy, bz =
k

ωR′ fy (103)

and the field h is

h =




ey

S′

R′ ey +
k

ωR′ ez


ψ ei(kx−ωt), (104)

where ψ ≡ fy.
It is possible, choosing the time origin, that fy was linear polarized.

That is, the amplitude is real and only in one direction. But f and b
are not perpendicular, since by 6= 0, and by/bz = ωS′/k. As k is real
then the b-field is also linearly polarized. Remember that this did not
happen in conducting media, where only one of the fields could have
linear polarization.
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7. SUMMARY, CONCLUDING REMARKS AND
PERSPECTIVES

The experimental appearance of composite entities whose behaviour
is similar to that of the magnetic monopoles is the main cause for
establishing a new electrodynamics within the solid, in which there
are magnetic fields whose divergence is different from zero. This
implies that the four “Maxwell” equations, whose formulation in the
empty space (the vacuum) are already well known [19, 21–24], have
been reconstructed in the case of existence of matter with electric
and magnetic charges. In order to make the most possible generalized
theory that leads to these equations, we have considered the dyon idea
as a particle which can present electric and magnetic charge. With
the acceptation of this idea, the charge representation can be set in
a complex plane in such a way that the electric charge is located in
the real axis (on the left of the origin the electronic charge and on
the right of the origin the protonic charge) and the magnetic charge is
represented in the imaginary axis, where over and under the origin the
positive and negative magnetic charges are located.

However, we want to emphasize that the magnetic charge
found at the present time is an effective concept which does not
completely contain the properties of an elementary particle, but the
phenomenology created by these objects within the solid state presents
similar characteristic features as those attributed to the magnetic
monopoles. It must be remembered that while the electric charge is
quantized, the magnetic charge in the spin-ice structures is not, in
contrast, of the monopoles of Dirac. Therefore, the dyonic complex
plane where the real axis is a one-dimensional lattice and the magnetic
charge can completely fulfill the imaginary axis. Obviously, a necessary
condition for the validity of this extended theory is that it must be
able to obtain all the results of the standard electrodynamics when the
application of the generalized theory is carried out considering only
dyons of the real axis.

In addition, when the physical activity is exclusively produced
by magnetic charges such as it occurs in some recent experiments of
magnetic conductance [11] (without electric charges), the phase of the
charges in all equations should be 1/2 (i.e., ζ = π/2) in this particular
case.

The experiment of Bramwell et al. [11] measures the conductance
of an electrolyte constituted of molecular compounds dissociated in
a solvent. This experiment is explained in the light of the Onsager
theory of the Wien effect [17]. This theory is a mixture of the
thermodynamical kinetic theory and classical electrodynamics. These
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measurements prove that the movement of magnetic monopoles can be
analyzed via the substitution in Onsager’s theory of the Wien effect of
the electric universal constants, q and ε0 by the magnetic charge g and
µ0 and using the same formalized equations. In our theory, there exist
symmetry between magnetic and electric field equations, therefore,
also the phenomenologies are inter-changeable before changes of the
magnetic and electric universal constants when there are either
exclusively electric charges under the only electric field action or
magnetic charges under the only magnetic field action. Therefore,
there is a plausible and foreseeable coherence between our theory
and the experiments of Bramwell. However, the experimental data,
available at the present time, are almost reduced to these Bramwell
experiments and those coming from the neutron diffraction [12, 15]
whose technical and physical ingredients proceed from quantum
mechanics and therefore are outside the classical electrodynamics.

The true novelty of the study of this paper is the physical response
of a material when electric and magnetic fields simultaneously exert
their actions over the electric and magnetic charges; this is the most
general case and it is analyzed in Sections 4, 5 and 6. Therefore,
the main objective of this paper is to make a systematization of the
classical electromagnetic wave propagation. This issue can suggest
different macroscopic and relatively simple experiments which can
explain the optical conductivity, reflectivity, polarization conditions
in the electromagnetic incidence on separation surfaces and limit angle
experiments. These experiments can be explained and analyzed by
means of the equations deduced in the last sections of this paper, since,
we have found several relationships between the magnetic and electric
fields and their polarizations with the properties of the materials
determined by the response functions.

The first step in our analysis is the study of the linear responses
before the electromagnetic G-field in the the dyonic systems. In this
case, there are three different responses: the movement of the dyonic
charges versus the action of the field, which constitutes conductivity;
the changes in the magnitude and orientation of the splitting of the
gravity center of the positive and negative dyonic charge versus the G-
field, which is the so-called split-charge susceptibility, and the changes
of the magnitude and orientation of the ”magnetic” dipoles moments
corresponding to the dyonic charges also before the presence of the
G-field that we name the kinetic susceptibility. These three response
functions, given in Eqs. (33), (40) and (53), respectively, allow us to
completely formulate the space-time evolution laws of the d and h-
fields [Eqs. (22) and (26)] within the dyonic matter, as a function of
the conductivity, permittivity and permeability, Eq. (59).
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This analysis is the starting point for analyzing the propagation of
a monochromatic wave in a dyonic system with several classes of dyons.
The divergence of the d-field allows us to obtain the transversality
(in the point where the %-density of particles is null) of the f and b-
fields which are the electric and magnetic flavours, respectively, of the
“magnetic intensity” h-field. The curl of plane wave h-field allows
us to obtain Eq. (60), which is fundamental in order to make the
development of behaviours of the EM fields within matter. From
this point in the paper, the analysis is centered in obtaining the
corresponding k-vector and the polarization of the f and b vectors
(the six components of the h-vector), in all possible different situations.
This is analyzed in both conductors and general systems with

↔
σ 6= 0,

and
↔
ε and

↔
µ different from unit. The concepts of the extended

conductivity, split-charge susceptibility and kinetic susceptibility are
basic in order to determine the optical properties which are founded in
the characteristic features of the propagation of h-vector with different
values of the electric and magnetic charges. The combination of
these three response tensors in Eq. (59) allows to define the so-called
propagation matrix [Eq. (61)] so that the different polarizations of h-
vector depend on its matrix element values and the non diagonal matrix
elements S and T are decisive for obtaining the different solutions
of each physical situation. On the other hand, we have considered
the k-vector (that in the conductive systems is complex) in such a
way that its attenuation part and its propagation part have the same
direction. This is a more simplified case, but it is considered for the
sake of clarity, since the consideration of different direction for each
part of the k-vector implies mathematical difficulties that in this first
analysis could diminish its understanding. The different direction for
each part of this complex wave vector yields interesting consequences
in the propagation in semiinfinite media with separation surfaces with
different response functions.

The relative value between the non-diagonal matrix elements of
the propagation matrix set the different polarizations and wave vector
magnitude that are possible in the material. Concerning this fact, we
want to highlight that the electromagnetic propagation is impossible
when S 6= T and either f or b are are linearly polarized. The other
characteristic features of the h-vector are given in the different cases
both conductive and non-conductive materials in Sections 5 and 6.

There are many perspectives and futures for this extended
classical electrodynamics. The first of them is the consideration
of the electromagnetic propagation with separation surfaces which
requires the consideration of a more elaborate k-vector that allows
us to determine the Fresnel relationships in the surface of separation
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between materials. Another important issue of this extended classical
electrodynamics is the determination of the optical conductivity with
several class of dyons, i.e., the formulation of an extension of the
Lorentz-Drude model. The continuation of this theory outside the
Classical Physics can be the formulation of some parts of Solid
State Physics within Quantum Mechanics in which the dyons are the
active particles which determine the main properties in the material.
This requires the formulation of a quantum theory of the solid with
dyons. Therefore, the systematized formulation of the extended
classical electrodynamics can induce experiments in order to apply the
correspondence principle for obtaining likeliness and consistency for
the quantum models formulated with the presence of these magnetic
charges. On the other hand, the experimental research can be the
construction of new materials different from the spin-ices where the
generation of monopole-like entities produced by the spin flip actions
can coexist with the presence of quasi-free electric charges traveling on
the solid.

APPENDIX A. SOME PROPERTIES OF THE
PROPAGATION MATRIX

In this Appendix, we develop Eq. (61) in some simple cases in order
to give a idea about the dependence of the elements matrix U , T , R
and S, as well as the magnitude of the k-wave vector in function of
the response tensor of materials.

From the definition of Θ

ΘΘ′ =
(

cos2 ζ cos ζ sin ζ

cos ζ sin ζ sin2 ζ

)(
cos2 ζ ′ cos ζ ′ sin ζ ′

cos ζ ′ sin ζ ′ sin2 ζ ′

)

= cos(ζ − ζ ′)
(

cos ζ cos ζ ′ cos ζ sin ζ ′

sin ζ cos ζ ′ sin ζ sin ζ ′

)
, (A1)

then ΘΘ′ = 0 if ζ − ζ ′ = ±π
2 , and Θ2 = Θ.

For a system in which all dyons are of the same class (all have the
same value of ζ, regardless ±π), then, from Eqs. (33), (40) and (47),

(
U −T

−S R

)
= c

(
ω
↔
ε +i

↔
σ

) ↔
µ . (A2)

= c
[
ωε0(11 + χsΘ) + iσΘ

] µ0

1− ξ
(11− ξΘ) (A3)

=
cµ0

1−ξ

[
ωε011+iσ(1−ξ)Θ + ωε0(χs−ξ−ξχs)Θ

]
(A4)
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and here, we have used that Θ2 = Θ. It is a symmetric matrix and as
a consequence, Eq. (70),

k2 = RU − TS

=
ε0µ0

(1− ξ)2
ω2

[
(1 + χs)(1− ξ) + i

σ(1− ξ)
ωε0

]

= εµω2
[
1 + i

σ

ωε

]
. (A5)

This value for k is the standard value for a conductor medium without
monopoles. This means that the value of k2 is invariant by a duality
transformation.

A.1. Two Classes of Dyons

If the analyzed material has two dyon classes, i.e., there exist charges
with different phases, ζ and ζ ′, then α, β and γ of Eq. (52) are:

α ≡ ξ sin2 ζ + ξ′ sin2 ζ ′,
β ≡ ξ cos ζ sin ζ + ξ′ cos ζ ′ sin ζ ′,

γ ≡ ξ cos2 ζ + ξ′ cos2 ζ ′ ;

(A6)

and consequently, the permeability matrix is:
↔
µ=

µ0

1− ξ − ξ′ + ξξ′ sin2(ζ − ζ ′)
(
11− ξΘ− ξ′Θ′) . (A7)

and the propagation matrix is(
U −T

−S R

)
= c

(
ω
↔
ε +i

↔
σ

) ↔
µ

= c
[
ωε0(11 + χΘ + χ′Θ′) + iσΘ + iσ′Θ′

]

× µ0

1−ξ−ξ′+ξξ′ sin2(ζ−ζ ′)
(
11−ξΘ−ξ′Θ′) . (A8)

It should be remarked that this matrix is, in general a non-symmetric
operator, (S 6= T ), because ΘΘ′ is non-symmetric.

In the case that ζ − ζ ′ = ±π/2 (from a duality transformation,
there are only electric charges and magnetic monopoles, but there are
not dyons with both electric and magnetic charges), then, ΘΘ′ = 0
and sin2(ζ − ζ ′) = 1, and the propagation matrix is then:
(

U −T

−S R

)
=

cµ0ωε0

(1− ξ)(1− ξ′)

[
11 + (χ− ξ − χξ)Θ + i

σ(1− ξ)
ωε0

Θ

+(χ′ − ξ′ − χ′ξ′)Θ′ + i
σ′(1− ξ′)

ωε0
Θ′

]
, (A9)
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that is a symmetric matrix (S = T ), and consequently

k2 = RU − TS

=
ε0(1 + χ)(1 + χ′)µ0

(1− ξ)(1− ξ′)
ω2

[
1 + i

σ

ωε0(1 + χ)

] [
1 + i

σ′

ωε0(1 + χ′)

]

= εµ ω2

[
1− σσ′

ω2ε0ε
+ i

1
ωε0

(
σ

1 + χ
+

σ′

1 + χ′

)]
. (A10)

This result becomes the standard value of k for a conductor medium,
Eq. (A5), when σ′ = ξ′ = 0, i.e., when there is only electric charges and
the corresponding electric conductivity σ and there are not magnetic
monopoles and therefore, their conductivity is null.
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