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A MULTIPLICATIVE REGULARIZED GAUSS-NEWTON
ALGORITHM AND ITS APPLICATION TO THE JOINT
INVERSION OF INDUCTION LOGGING AND NEAR-
BOREHOLE PRESSURE MEASUREMENTS

F. O. Alpak †

Department of Petroleum and Geosystems Engineering
The University of Texas at Austin, USA

T. M. Habashy and A. Abubakar

Schlumberger-Doll Research, USA

C. Torres-Verd́ın and K. Sepehrnoori

Department of Petroleum and Geosystems Engineering
The University of Texas at Austin, USA

Abstract—Due to the ill-posed nature of nonlinear inverse problems
of borehole geophysics, a parameterization approach is necessary when
the available measurement data are limited and measurements are
only carried out from sparse transmitter-receiver positions (limited
data diversity). A potential remedy is the joint inversion of multi-
physics measurements. A parametric inversion approach has desirable
attributes for multi-physics measurements with different resolutions.
It provides a flexible framework to put the sensitivities of multi-
physics multi-resolution measurements on equal footing. In addition,
the number of unknown model parameters to be inverted is rendered
tractable with parameterization. Consequently, a Gauss-Newton based
inversion algorithm taking advantage of the Hessian information can
be advantageously employed over inversion approaches that rely only
on gradient information. We describe a new dual-physics parametric
joint-inversion algorithm to estimate near-borehole fluid permeability
and porosity distributions of rock formations from fluid-flow and
electromagnetic measurements. In order to accommodate the cases in
which the measurements are redundant or lack sensitivity with respect
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to certain model parameters causing nonuniqueness of the inverted
solution, the objective functional to be minimized is regularized with
a penalty term. One of the central aspects of this approach is the
determination of the regularization parameter. The latter must be
chosen in such a way that the relative importance of the misfit between
measured and predicted data and the penalty term are effectively
balanced over the course of minimization. We propose a new method
of adaptively choosing the regularization parameter within a Gauss-
Newton method based joint-inversion algorithm using a multiplicative
regularization strategy. The multiplicative regularization method
is tested against additive regularization in joint-inversion problems
involving wireline formation tester transient pressure and induction-
frequency electromagnetic logging measurements. The multiplicative
regularization method delivers improved convergence rates over
additive regularization for all investigated problems. Inversions of
relatively more noise-contaminated measurements benefit more from
multiplicative regularization.

1. INTRODUCTION

In inverse problems of borehole geophysics, one aims to determine the
shape, location, and material property parameters of near-borehole
objects from various types of measurements conducted within the
borehole. A great majority of borehole geophysical measurements
depend on a complex combination of petrophysical and fluid properties
of hydrocarbon-bearing formations. This fact renders the family
of parameter estimation problems that employ borehole geophysical
measurements for inference essentially nonlinear. Such problems call
for robust and efficient iterative inversion algorithms.

Physics of multi-phase fluid-flow and electromagnetic induction
phenomena in permeable media can be coupled by means of an
appropriate saturation equation. Thus, a dual-physics algorithm
for the joint inversion of geoelectrical (e.g., induction logging) and
flow-related (e.g., wireline formation tester pressure) measurements
can be formulated to yield a rigorous estimation of the underlying
petrophysical model. Dynamic characteristics of the mud-filtrate
invasion phenomenon form the basis for the petrophysical inversion
of conductivity profiles around the borehole by employing two-phase
fluid-flow physics and geoelectrical modeling. Previous efforts in
this subject can be found in [7, 13, 14, 16, 17, 20, 22]. We developed
a robust, accurate, and efficient framework for the parametric
joint inversion of electromagnetic induction and transient formation
pressure measurements. The inversion algorithm yields petrophysical
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properties, namely, layer-by-layer horizontal and vertical fluid (also
known as absolute) permeabilities, and porosities of hydrocarbon-
bearing formations. Inversion of dual-physics measurements is posed
as an optimization problem where a quadratic objective functional
is minimized subject to physical constraints on the model. An in-
depth description of the physical aspects of dual-physics inversion
methodology for electromagnetic induction logging and wireline
formation tester pressure measurements can be found in [3]. Dual-
physics forward modeling and inversion methods that rigorously link
electromagnetics and fluid flow have been previously developed, tested,
and validated in [24–27].

Including [3], in all of the publications listed above, the physics
of coupled flow and electromagnetic induction problem takes priority
over the details of the inversion algorithm. Early work, for example,
[17] and [20], make use of a less robust history-matching approach
rather than full-nonlinear inversion. Others make use of off-the-
shelve library routines to perform minimization of a data-mismatch
based objective functional, see for instance [16]. We take a rather
different route from the mainstream brute-force solution approach to
the dual-physics inverse problem at hand. We develop a weighted and
regularized Gauss-Newton inversion algorithm from ground-up. The
algorithm performs single-physics/single-data-type inversions as well
as multi-physics/multi-data-type inversions. It also features a new
multiplicative regularization technique, the main focus of the paper.

Characteristically, the number of informative data is not sufficient
for constructing accurate high-resolution permeability/porosity images
of the near-borehole formation using standard induction logging
and wireline formation testing tools. Measurements are acquired
only at limited source-receiver positions leading to limited data
diversity. Thus, the parameterization of model domain prior to joint
inversion is a necessity in order to arrive at a reliable solution. The
parameterization process also balances the resolution and volume-
of-investigation mismatch between pressure and electromagnetic field
measurements. The number of unknown model parameters is rendered
manageable via parameterization leading to a non-underdetermined
system. A weighted and regularized Gauss-Newton inversion algorithm
updates iteratively the model parameters via minimizing the misfit
between actual and simulated measurements. It employs a L2-norm
based objective functional. It is important to note that induction
logging and formation tester pressure measurements typically contain
some noise. Since the updates of model parameters are determined
from the data misfit (computed using noisy measurements), one has
to be extremely cautious in dealing with the ill-posed nature of the
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inverse problem in order to avoid unphysical local minima. Thus,
data weighting and optimal regularization are essential components of
inversion. In our formulation of the regularization procedure, we are
inspired by the work of [1, 9, 18, 19] on the multiplicative regularization
of inversion algorithms applied to electromagnetic problems. In
this work, we implement the multiplicative regularization technique
within the framework of a dual-physics joint-inversion algorithm. We
pose the regularization as a multiplicative factor in the objective
functional. Computation of the appropriate regularization parameter
is controlled by the minimization process itself over the course of
inversion iterations.

A two-dimensional axisymmetric petrophysical model is employed
for the testing and validation of additive and multiplicative regular-
ization techniques. Estimation of layer-by-layer fluid permeability and
porosity values constitutes the objective of joint inversion. Numerically
simulated (synthetic) measurements are contaminated by use of var-
ious levels of Gaussian random noise. These synthetic measurements
are, in turn, used in the proof-of-concept test cases described in this
paper. Hereafter, we will refer to the fluid permeability of rock forma-
tions simply as permeability in this paper. Examples are presented for
various noise levels as well as for a plethora of data-acquisition strate-
gies. A separate test case is provided in which the porous medium
exhibits permeability anisotropy. Inversion results are reported along
with uncertainty bounds. Efficiency of the additive and multiplicative
regularization techniques for joint inversion are compared taking the
progress of misfit reduction as the criterion.

2. ADDITIVE REGULARIZATION

We define the vector of residuals e(x) as a vector whose j-th element
is the residual error (also referred to as the data mismatch) of the j-th
measurement. The residual error is defined as the difference between
the measured and the predicted normalized responses given by

e(x) =




e1(x)
...

eM (x)


 =




S1(x)−m1
...

SM (x)−mM


 = S(x)−m, (1)

where M is the number of measurements. In Equation (1), mj is the
normalized observed response (measured data) and Sj is corresponding
to the normalized simulated response as predicted by the vector of



Progress In Electromagnetics Research B, Vol. 29, 2011 109

model parameters, x, given by

x =




x1
...

xN


 = y − yR, (2)

where N is the number of unknowns. A normalized form of
Equation (1) is employed to construct a balanced multi-physics vector
of residuals for pressure and magnetic field measurements. We define
e(x) as follows:

ej(x) =
Sj(x)
mj

− 1, (3)

and hence

‖e(x)‖2 =
M∑

j=1

∣∣∣∣
Sj(x)
mj

− 1
∣∣∣∣
2

. (4)

We represent the vector of model parameters x as the difference
between the vector of the actual model parameters y and a reference
model (or background model) yR. The reference model includes all a
priori information on the model parameters such as those derived from
independent measurements. We first describe a conventional approach
to borehole geophysical inversion. The estimation problem is posed as
the minimization of an additive objective functional, C(x), given by

C(x) =
1
2

[{‖Wd · e(x)‖2 − χ2
}

+ Λ‖Wx · (x− xp)‖2
]
. (5)

The scalar factor Λ (0 < Λ < ∞) is a Lagrange multiplier (also
called regularization parameter or damping coefficient). It is a trade-
off parameter determining the relative importance of the two terms
of the objective functional. The determination of Λ will produce
an estimate of the model x that has a finite minimum weighted
norm (away from a prescribed model xp) and which globally misfits
the data to within a prescribed value χ (determined from a priori
estimates of the noise level in the data). The second term of the
objective functional is included to regularize the minimization problem.
It acts as a safeguarding mechanism for the inversion problems in
which measurements are redundant or lack sensitivity to certain model
parameters causing significant nonuniqueness in the domain of possible
solutions. It also suppresses any possible magnification of errors in our
parameter estimations due to noise which is unavoidably present in the
measurements. These error magnifications may result in undesirable
large variations in the model parameters which may cause instabilities
in the inversion. In Equation (5), WT

x Wx is the inverse of the
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model covariance matrix representing the degree of confidence in the
prescribed model xp. On the other hand, WT

d Wd is the inverse of the
data covariance matrix, which describes the estimated uncertainties
(due to noise contamination) in the measurements. It describes
not only the estimated variance for each particular data point, but
also the estimated correlation between errors. WT

d Wd provides a
point-by-point weighting of the input data according to a prescribed
criterion. Hence, it can be used to reduce the effect of outliers in the
data. If the measurement noise is stationary and uncorrelated, then
Wd = diag{σj} where σj is the root-mean-square deviation (standard
deviation) of the noise for the j-th measurement.

To solve the nonlinear inverse problem, we employ the Gauss-
Newton minimization approach [8] which is based on a local quadratic
model of the objective functional. The quadratic model is formed
by taking the first three terms of the Taylor series expansion of the
objective functional around the current k-th iteration (xk), as follows:

C(xk + pk) ≈ C(xk) + gT (xk) · pk +
1
2
pT

k ·G(xk) · pk, (6)

where the superscript T indicates transposition and pk = xk+1 − xk

is the step in xk towards the minimum of the objective functional
C(x). The vector g(x) = ∇C(x) is the gradient vector of the objective
functional C(x) and described by

g(x) = JT (x) ·WT
d ·Wd · e(x) + ΛWT

x ·Wx · (x− xp). (7)
In Equation (7), J(x) is the M ×N Jacobian matrix, and is given by
the following expression:

J(x) =




∂S1/∂x1 . . . ∂S1/∂xj . . . ∂S1/∂xN
...

. . .
...

. . .
...

∂Sl/∂x1 . . . ∂Sl/∂xj . . . ∂Sl/∂xN
...

. . .
...

. . .
...

∂SM/∂x1 . . . ∂SM/∂xj . . . ∂SM/∂xN




. (8)

G(x) denotes the Gauss-Newton Hessian of the objective functional
C(x) which is a real and symmetric N ×N matrix given by

G(x) = JT (x) ·WT
d ·Wd · J(x) + ΛWT

x ·Wx (9)
Note that the Gauss-Newton Hessian G(x) of the objective functional
C(x) avoids the expensive computation of second derivatives. As the
trade-off, it does not include second-order information that accounts
for curvature. The minimum of the right-hand side of Equation (6) is
achieved if pk is a minimum of the quadratic functional

φ(p) = gT (xk) · p +
1
2
pT ·G(xk) · p. (10)
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The functional φ(p) has a stationary point (a minimum, a maximum or
a saddle point also called point of inflection) at po, only if the gradient
vector of φ(p) vanishes at po, i.e.,

∇φ(po) = G · po + g = 0. (11)

Thus, the stationary point is the solution to the following set of linear
equations:

G · po = −g. (12)

Let λj and vj be the eigenvalues and the corresponding orthonormal
eigenvectors of the N ×N real symmetric matrix G

G · vj = λjvj , (13)

such that
vT

i · vj = δij . (14)

The eigenvalues can be computed via

λj =
vT

j ·G · vj

‖vj‖2
= Λ‖Wx · vj‖2 + ‖Wd · J · vj‖2 ≥ 0. (15)

The inequality of (15) shows that G is a positive semi-definite matrix.
It also indicates that G can be constructed as a positive-definite matrix
by the proper choice of Λ.

The Gauss-Newton search direction pk is given by the vector
that solves Equation (12). This approach has a rate of convergence
that is slightly less than quadratic but significantly better than
linear. It provides quadratic convergence in the neighborhood
of the minimum. Convergence of the regularized Gauss-Newton
inversion method is accelerated by a line-search method [2]. The
computational cost per iteration is reduced via adaptive use of Rank-
One and Rank-Two approximate update formulas for G, namely,
Broyden Symmetric Rank-One update, Powell-Symmetric-Broyden
(PSB) update, Davidson-Fletcher-Powell (DFP) update, and Broyden-
Fletcher-Goldfarb-Shanno (BFGS) update [8].

3. MULTIPLICATIVE REGULARIZATION

We modify the objective functional given by the Equation (5) as
follows:

Ck(x) = F (x)Rk(x), (16)

where F (x) represents the non-regularized objective functional given
by

F (x) =
1
2
‖Wd · e(x)‖2, (17)
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where k is the iteration count. The regularization factor Rk(x) is
chosen to be

Rk(x) = ηk

(‖Wx · (x− xp)‖2 + ‖δ‖2
)
, (18)

where
ηk =

1
‖Wx · (xk − xp)‖2 + ‖δ‖2

. (19)

δ is a constant determined via numerical experimentation. It is
important to note that the regularization is significantly less sensitive
to the choice of δ compared to the choice of the Lagrange multiplier Λ.
Away from the minimum (in the initial stages of the iterative search),
the Gauss-Newton algorithm demands a stronger regularization term
to guide the solution closer to the minimum by use of a priori
information about model characteristics. When the model parameters
approach closer to the minimum, it is desirable for the search to
be dominated by the misfit term for a more accurate inversion
result. Therefore, the intensity of the regularization term needs to
be adaptively adjusted in an auditable fashion. The multiplicative
technique offers such an adaptive regularization strategy. The
normalization in the regularization factor Rk(x) is chosen such that
Rk(x = xk) = 1 in our implementation, which ensures that the value
of the regularization parameter approaches unity at the final stages of
the minimization, i.e., limk→∞Rk(xk+1) = 1.

With multiplicative regularization, the gradient of the objective
functional C(x) is given by the following expression:

gk =g(x = xk)

=JT (xk) ·WT
d ·Wd · e(xk)+ηkF (xk)WT

x ·Wx · (xk − xp), (20)

and the Gauss-Newton Hessian matrix of the objective functional C(x)
is given by

Gk = G(x = xk)

= JT (xk) ·WT
d ·Wd · J(xk) + ηkF (xk)WT

x ·Wx

+ηk

[
WT

x ·Wx · (xk − xp)
]T · JT (xk) ·WT

d ·Wd · e(xk)

+ηk

[
JT (xk) ·WT

d ·Wd · e(xk)
]T ·WT

x ·Wx · (xk − xp). (21)

Due to the sparsity of a priori information about the underlying model,
constructing a reliable xp is often not possible for the near-borehole
geophysical problems. In order to constrain the minimization process
such that the inverted model parameters, xk, will not exhibit large
jumps within two successive iterations, we choose xp equal to the
value of x at the previous iteration, namely, xp = xk−1. For this
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particular choice of xp, the standard additive regularization technique
can be made equivalent with the multiplicative one, if one chooses the
Lagrange multiplier Λ to vary as the iteration proceeds according to

Λ =
F (xk)
‖δ‖2

=
weF e(xk)
‖δe‖2

+
wfF f (xk)
‖δf‖2

. (22)

F e(xk) and F f (xk) denote non-regularized objective functional
components for electromagnetic induction and flow (pressure)
measurements, respectively. δe and δf are constants separately
determined from the noise level of electromagnetic induction and flow
measurements. Similarly, we and wf weight fractions are separately
determined for electromagnetic induction and flow measurements.
Clearly, we = 1 and wf = 0 for the single-physics inversion of
electromagnetic induction measurements while we = 0 and wf = 1 for
the single-physics inversion of flow measurements. Experience indicates
that we = 0.4 and wf = 0.6 yield results with good accuracy for the
joint-inversion problems examined in this paper.

The rationale of multiplicative regularization technique is such
that the influence of the regularization factor, Λ, will be high due
to the use of a relatively large weighting parameter in the first few
iterations of the inversion process, because the value of F (xk) is still
large. In this case the search direction is predominantly steepest
descent, which is a more appropriate approach to use in the initial
steps of the inversion process. This is because the optimization
using steepest-descent direction has the tendency of suppressing large
swings in the search direction. As the iterations proceed, the
inversion process will increasingly minimize the data misfit error in
the non-regularized objective functional when the regularization factor,
Rk(x), approaches a constant value close to one. In this case, the
search direction increasingly corresponds to the Gauss-Newton search
direction. The Gauss-Newton direction is a more appropriate search
direction as the inversion process approaches to the nearest minimum
of the objective functional, F (x), where the quadratic model for
the objective functional becomes more accurate. For relatively more
noise-contaminated measurement data, the non-regularized objective
functional, F (x), will approximately remain at a certain value as the
inversion process marches closer to the nearest minimum. The presence
of the weight introduced by the regularization factor, Rk(x), will be
more significant. The proposed regularization method suppresses the
measurement-noise in all phases of the inversion process. It also fulfills
the need for a larger regularization parameter when the measurements
contain significant levels of noise. The inversion process is terminated
when either the relative data misfit reaches a prescribed value, the
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number of iterations exceeds the prescribed maximum, the differences
between two successive iterates of the model parameters or the value
of the objective functional is within a prescribed tolerance factor.

4. PHYSICAL CONSTRAINTS FOR INVERSION

To impose a priori information, such as positivity or physical
maximum and minimum bounds (if available) on the inverted model
parameters, we make use of nonlinear transforms such that

xi = f(ci, x
min
i , xmax

i ), −∞ < ci < ∞, i = 1, 2, . . . , N, (23)

where xmax
i and xmin

i denote the upper and lower physical bounds for
the model parameter xi, respectively. These nonlinear transforms map
a constrained minimization problem to an unconstrained one. Above
constraints force the model parameters to always remain within their
physical bounds.

There exists a number of nonlinear transforms f(ci, x
min
i , xmax

i )
that map a constrained minimization problem into an unconstrained
one. Among the many we experimented with, the transform that
performs best in the examined dual-physics inversion problems is the
first transform reported in the Appendix A of [9].

5. COUPLED DUAL-PHYSICS INVERSE PROBLEM

Robust and accurate determination of fluid-flow related petrophysical
parameters from borehole measurements is one of the fundamental
problems of quantitative well log interpretation. Introduction of the
concepts of fluid flow to the analysis of geoelectrical log measurements
improves the physical consistency of the interpretation. In addition,
log measurements can be jointly inverted with flow measurements
(e.g., pressure and pumping rates) to reduce nonuniqueness in the
quantitative estimation of petrophysical parameters. We describe
below a coupled dual-physics inversion problem employed to evaluate
the multiplicative regularization technique. Synthetic measurements
are generated by contaminating simulated data (computed via
numerical forward models) with various levels of Gaussian random
noise.

In the inverse problem, single- or multi-snapshot measurements
of the vertical component of the total magnetic field are acquired
at multiple receiver locations and frequencies with a depth-profiling
induction logging tool [10]. The operating principle of a typical
induction logging tool can be summarized as follows: a multi-turn
coil supporting a time-varying current generates a magnetic field
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that induces electrical currents in subsurface rock formations. An
array of receiver coils measures the magnetic field of the source and
the secondary currents. Borehole measurements recorded by the
receiver coils are processed into depth-dependent functions of apparent
conductivity (or resistivity) called the induction log. Typically,
multiple induction logs with various depths of penetration (into
subsurface rock formations) are generated within one run of the logging
tool (in a borehole) since the measurements are acquired for multiple
frequencies. We refer to one run of the induction logging tool with “log”
in the context of data-acquisition strategies, which will be discussed
later in the paper.

We also consider the availability of dual-packer and multiple
observation-probe pressure-transient measurements acquired by a
wireline formation tester [12]. A wireline formation tester withdraws
reservoir fluids from a subsurface rock formation by imposing a
prescribed rate schedule. Pressure time-series as a function of fluid
withdrawal is recorded at one or more locations in the borehole by
gauges that are in direct hydraulic communicaton with formation
fluids. Pressure time-series are subsequently inverted to yield hydraulic
properties (e.g., permeability) of the tested formation. We will refer to
one run of the wireline formation tester tool with “test” in the context
of data-acquisition strategies. Time-dependent (transient) wireline
formation tester measurements are also simply referred to as pressure
measurements.

The forward model for the coupled dual-physics measurements
is a nonlinear function of the spatial distribution of permeabilities
and porosities and other relevant rock and fluid properties. We
assume the availability of other rock and fluid properties from
complementary logs and laboratory experiments. The objective is the
joint inversion of layer-by-layer horizontal and vertical permeabilities
and porosities from single- or dual-snapshot electromagnetic induction
and pressure measurements. We only focus on vertical variability
in the petrophysical model. Horizontal geological layers of various
thicknesses characterize the reservoir geometry. The vector of model
parameters, x, is made up of the layer-by-layer parametric spatial
distribution of horizontal and vertical permeabilities and porosities.
We assume the availability of information about the locations of layer
boundaries from other data types such as borehole image logs and core
data. Based on the extent of the available measurement data and a
priori information, an arbitrary combination of the above-mentioned
petrophysical parameters can be included in x.

A vertical borehole is considered to intersect a hydrocarbon-
bearing horizontal formation composed of three layers. In addition
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to the permeable layers, sealing upper and lower shoulder beds are
included in the geoelectrical model as shown in Figure 1. From
the onset of drilling, the permeable layers are subject to dynamic
water-base mud-filtrate invasion. At the first logging time, an array
induction log is recorded across the formation. The tool assumed
for electromagnetic induction measurements is the Array Induction
Imager Tool, AITTM. This tool is used to ensure the availability of
data with multiple depths of penetration [10]. The data-acquisition
strategy that employs only the first log is referred to as the log
strategy. The second data type is the multi-probe formation pressure
measurements acquired with a wireline formation tester tool, namely,
Modular Formation Dynamics Tester, MDTTM. A dual-packer/probe
configuration with two vertical observation probes is considered as
the measurement platform [12]. Given favorable flow conditions and
sufficient test duration, pressure measurements conducted by the dual-
packer and tandem observation probes contain significant information
about horizontal and vertical permeabilities (kh and kv) when reliable
a priori information about the porosity-total compressibility group
(φCt) is available. In this work, we assume the availability of
laboratory measurements of formation fluid and rock properties that
can be incorporated into a subsurface flow simulator. Therefore, in
our formulation of the inverse problem, the group described by φCt

decouples into two pieces per simulation gridblock: a known Ct and
an unknown φ which is a model parameter subject to inversion along
with kh and kv. Additionally, in our forward model, the movement
of saturations and salt concentrations due to convective transport of
fluids is linked to spatial distributions of conductivity via a saturation
equation. Thus, provided that the choice of saturation equation is
appropriate for the formation of interest, information about porosity, φ,
can be robustly estimated from electromagnetic measurements within
the framework of joint inversion. For the three-layer formation model,
we assume that the layers are isotropic in terms of permeability and
enforce kh = kv as shown in Figure 1.

Subsequent to the acquisition of the first induction log, the multi-
probe formation tester tool is deployed across the formation of interest
to conduct pressure measurements. Time-series of pressure responses
are recorded at two observation probe locations and at the center of the
dual-packer open interval in response to a controlled fluid withdrawal
(flow) rate schedule. This measurement strategy involves acquisition
of dual-physics data, and is here referred to as the log-test strategy.
Alternatively, we investigate the case where an additional post-test
electromagnetic induction log senses the perturbed two-phase flow
field caused by the formation tester fluid withdrawal. This alternative
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Figure 1. Formation model for the inversion study. Two-dimensional
vertical cross-section of the permeable formation intersected by a
vertical borehole. The three-layer formation is subject to water-base
mud-filtrate invasion.

measurement strategy is here referred to as the log-test-log strategy.
In modeling the measurement sequences described above, mud-filtrate
invasion is simulated for the entire history of the near-borehole, since
the moment of drilling until the acquisition of the last measurement.

On a case-by-case basis, the uncertainty in the inversion outcomes
are quantified by computing the Estimator’s Covariance Matrix and
the Cramer-Rao bounds [2, 9, 15]. In this process, the Estimator’s
Covariance Matrix is approximated using the (estimated) variance
of measurement noise and the inverse of the Gauss-Newton Hessian
matrix computed in the final step of the inversion algorithm. The
Cramer-Rao error bounds are derived from the information embedded
in the diagonal elements of the Estimator’s Covariance Matrix. The
process of computing the Estimator’s Covariance Matrix and the
Cramer-Rao bounds is described in detail in [2] and [9]. The
uncertainty analysis provides us with error bounds on the inversion
results for each inverted parameter. With the purpose of establishing
a basis of comparison for the joint-inversion approach that involves
the log-test and log-test-log acquisition strategies, we perform single
data-type inversions. Inversions of pressure measurements are referred
to as the test strategy, and inversions of single- and dual-snapshot
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electromagnetic induction logging measurements are respectively
referred to as the log and log-log strategies. As in the case of the
log-test and log-test-log strategies, the formation is considered to
be subject to mud-filtrate invasion during the entire time-interval
encompassing each measurement strategy. A quantitative analysis of
the uncertainty in the inversion results is carried out via computing
the Estimator’s Covariance Matrix and the Cramer-Rao bounds as in
the case of the joint-inversion approach. For all of the measurement
strategies, synthetically generated measurements are contaminated
with random Gaussian noise with standard deviation corresponding
to 1%, 3%, and 5% of the norm of each individual measurement.

Due to the lack of a priori information the weighting matrices
of Equation (3), namely, Wd and Wx, are chosen to be identity
matrices. The prior information vector, xp, in the objective functional
of Equation (3) is chosen to be equal to the inverted parameter vector
of the previous iteration, namely, xk. We reduce the possibility of
the minimization process to make a large jump from one iteration to
another, which improves inversion stability.

The regularization parameter, Λ, is determined via both additive
and multiplicative regularization techniques. The number of nonlinear
iterations necessary to reduce the value of the objective functional to
the level of noise in the measurements is reported for each test problem
for the purpose of comparison.

6. COUPLED DUAL-PHYSICS FORWARD MODEL

We use a numerical algorithm designed to simulate the physics of
mud-filtrate invasion in vertical and highly deviated boreholes [21].
Numerical modeling of mud-filtrate invasion yields an equivalent time-
domain filtrate flow-rate function. Given the pressure overbalance
condition, invasion geometry, and mudcake properties, this function
models the time-dependent behavior of the mudcake. Due to the fact
that clay platelets form a mudcake with permeabilities in the order of
10−3 mD, the filtrate invasion rate is predominantly controlled by the
mudcake, with minimal influence of the formation permeability [13].
Thus, a numerically computed invasion rate schedule can be imposed as
a local source condition to a fluid-flow simulator. As such, the physics
of mud-filtrate invasion can be incorporated to a coupled algorithm for
the simulation of multi-phase fluid-flow and electromagnetic induction
phenomena.

Invasion of water-base mud-filtrate into a partially saturated
hydrocarbon-bearing porous medium and a subsequent wireline
formation tester fluid withdrawal involve two-phase multi-component
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fluid flow. Spatiotemporal distributions of aqueous-phase saturation
and salt concentration (in response to the evolution of the pressure
field) are modeled as advective transport of hydrocarbon (oleic or
gaseous) and aqueous phases, and hydrocarbon (oil or gas), water,
and salt components. Ions present in the system are assumed to
be soluble only within the aqueous phase and lumped into a single
salt component. In the formulation of the forward problem, we
assume the existence of a salt concentration contrast between the
in-situ formation brine and the invading mud-filtrate. Diffusion has
only a small effect at invasion radius length-scales [13]. In addition,
the equilibration of salt concentration among pores occurs at time-
scales smaller than the invasion time-scale, whereupon local-level
aqueous-phase salt concentrations remain the same from pore to pore.
Therefore, for the problem of interest, we only consider advective
miscible transport of the salt component within the aqueous phase and
neglect the diffusional spreading of the interface between mud-filtrate
and formation brine.

Simulation of isothermal two-phase flow in a partially saturated
hydrocarbon-bearing medium requires mass balance and transport
equations as well as a constitutive equation of state. We disregard
the presence of chemical reactions, rock/fluid mass transfer, and
diffusive/dispersive transport. The mass balance equation for the ith
fluid phase can be stated as follows [5]

∂(ρiφSi)
∂t

+∇ · (ρiυi) = −qvi, i = 1, 2. (24)

For the two-phase immiscible flow of aqueous (components: water
and salt) and oleic (component: liquid hydrocarbon (oil)) phases as
in the problems considered in this paper, i = 1 denotes the aqueous
phase and i = 2 denotes the oleic phase. We model flow in the near-
borehole region of a single vertical well intersecting a hydrocarbon-
bearing horizontal reservoir in R3. The cylindrical coordinate system
is employed to accurately model the flows associated with mud-
filtrate invasion and wireline formation tester fluid withdrawal. Spatial
support for material balance equations is then Ω = {(r, θ, z) ∈ R3 :
rw ≤ r ≤ re, 0 ≤ θ ≤ 2π, 0 ≤ z ≤ h}. In Equation (24), ρ, υ, φ, qv,
and S denote fluid density, fluid velocity vector, porosity, source/sink
term (accounting for the fluid mass supplied/extracted from the
pore-space via injection/production probes or wells), and fluid-phase
saturation, respectively. The subscript i designates the fluid-phase
index. Moreover, rw, re, and h stand for borehole radius, external
radius of the formation, and total formation thickness, respectively.
No-flow boundary conditions are imposed on the upper, lower, and
outer limits of the formation. The external boundary of the formation
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is located relatively far away from the wellbore. A constant rate
internal boundary condition is imposed to the borehole wall time-step-
by-time-step. Time-variant invasion rate history and other formation
test related rate schedules are incorporated into our simulations in a
time-stepwise discrete fashion. In our formulation, Darcy’s law is the
governing transport equation, i.e.,

υi = −k · kri

µi
(∇pi − ρig∇Dz), i = 1, 2. (25)

In Equation (25), k is the absolute permeability tensor of the porous
medium, kr is the fluid-phase relative permeability, µ is the fluid-phase
viscosity, p is the fluid-phase pressure, ρ is the fluid-phase density, g
is the gravitational acceleration, and Dz is the vertical location below
some reference level. Finally, the constituent equation follows from the
equation of state. The assumption is also made that both fluid-phase
and rock compressibilities are constant, and are given by

cfluid,i =
1
ρi

∂ρi

∂pi

∣∣∣∣
T

, i = 1, 2 (26)

and

crock =
1
φ

∂φ

∂pavg.

∣∣∣∣
T

, (27)

respectively. In Equation (27), pavg. stands for the average fluid
pressure. The above assumption of constant fluid compressibility does
not hold for the two-phase flow of gaseous and aqueous phases. Thus,
for such cases, gas compressibility is treated as a function of the PVT
properties of gas for each time-step. Capillary pressures and fluid
saturations are governed by

Pc = pnw − pw, (28)

and
Snw + Sw = 1.0, (29)

where the subscripts nw and w stand for nonwetting phase and wetting
phase, respectively. Typically, oleic phase is the nonwetting phase
and aqueous phase is the wetting phase for two-phase immiscible flow
problems in sandstone formations like the ones considered in this paper.

Advective transport of the salt component is simulated after a
converged solution for the time-step has been found, and the interblock
flows are determined. A mass conservation equation is solved to update
the spatial distribution of salt concentrations, Cw, and is given by

∂(ρwφSwCw)
∂t

+∇ · (ρwυwCw) = −Cwiqi. (30)
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In Equation (30), Cwi and qi stand for the concentration of invading
mud-filtrate, and invasion rate at a given time-step, respectively.
Numerical solution of the two-phase, three-component fluid-flow
problem is carried out using a commercial reservoir simulator on a
3D cylindrical mesh.

Spatial distributions of aqueous-phase saturation corresponding
to each logging time are subsequently transformed into snapshots of
electrical conductivity using Archie’s law,

σ = (1/a)σwφmSn
w, (31)

[4] applied gridblock-by-gridblock. In the above equation, σ, σw, and
Sw denote formation conductivity, brine conductivity, and aqueous-
phase saturation, respectively. Porosity and saturation exponents m
and n, and the normalization parameter a are empirical constants
documented in Table 1. Characteristic values for sandstone reservoirs
are selected for the studies reported in this paper.

Spatial distributions of brine conductivity at each logging time
are computed from (simulated) salt concentrations using the following
equation [23]

σw =
[(

0.0123 +
3647.5
C0.955

w

)
82

1.8T + 39

]−1

, (32)

where Cw and T stand for salt concentration in [ppm] and formation
temperature in [◦C], respectively. As such, the dependency of
conductivity on the aqueous-phase salt concentration is taken into
account. The main assumption underlying the brine conductivity
model is the instantaneous temperature equilibrium between invading
and in-situ aqueous phases.

Forward modeling of array induction logging tool responses
requires the solution of a frequency-domain electromagnetic induction
problem described by the Maxwell’s equations formulated for a
diffusive electromagnetic field. The basic equations governing the
local behavior of the diffusive electromagnetic field, assuming a time-
harmonic variation of the form eiωt, where i2 = −1, ω is angular
frequency, and t is time, present in an inhomogeneous, isotropic, and
nonmagnetic medium, can be stated as follows:

∇×E + iωµH = 0, (33a)
∇×H− σE = J. (33b)

Here, E is the electric field vector, H is the magnetic field vector,
and J is the external electric current source vector. The symbols
σ = σ(x, y, z) and µ denote the conductivity coefficient and the
magnetic permeability, respectively. Consistent with the nature of low-
frequency electromagnetic induction applications, the displacement
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Table 1. Summary of geometrical, petrophysical, mudcake, fluid, and
sensor parameters for the formation model.

Variable Unit Value
Mudcake permeability [mD] 0.010
Mudcake porosity [fraction] 0.400
Mud solid fraction [fraction] 0.500
Mudcake maximum thickness [cm] 1.270
Formation rock compressibility [kPa-1] 7.252 10-10

Aqueous-phase viscosity (mud-filtrate) [Pa.s] 1.274 10-3

Aqueous-phase density (mud-filtrate) [g/cm3] 1.001
Aqueous-phase formation volume factor (mud-filtrate) [res. m3/std. m3] 0.996
Aqueous-phase compressibility (mud-filtrate) [kPa-1] 3.698 10-7

Oleic-phase viscosity [Pa.s] 3.550 10-4

Oleic-phase API density [ºAPI] 42
Oleic-phase density [g/cm3] 0.816
Oleic-phase formation volume factor [res. m3/std. m3] 1.471
Oleic-phase compressibility [kPa-1] 2.762 10-6

Viscosity ratio (water-to-oil) [dimensionless] 3.589
Formation pressure at the formation top (at the reference depth = 0 m) [MPa] 20.684
Mud hydrostatic pressure [MPa] 24.821
Wellbore radius [m] 0.108
Formation outer boundary location [m] 300.000
Formation temperature [ºC] 104.444
a-constant in the Archie’s equation [dimensionless] 1.000
m-cementation exponent in the Archie’s equation [dimensionless] 2.000
n-water saturation exponent in the Archie’s equation [dimensionless] 2.000
Mud conductivity [mS/m] 2631.579
Upper and lower shoulder bed conductivities [mS/m] 1000.000
Logging interval [m] 6.096 10-1

Specific Information for the Wireline Formation Test:
Drawdown duration [min.] 100.000
Build-up duration [min.] 100.000
Drawdown rate [m3/d] 3.339
Interval sealed by the dual-packer (DP) module (wrt. to the formation top) [m] 5. 639 to 6.553
Location of the first observation probe (wrt. to the formation top) [m] 1.524
Location of the second observation probe (wrt. to the formation top) [m] 3.962
Location of the pressure measurement conducted by DP module
(wrt. to the formation top)

[m] 6.096

×

×

×

×

×

×

current is assumed to be negligible. Equations (33a) and (33b) can
be combined into the following equation for electric field E,

σ−1∇×∇×E + i ωµE = −iωµ σ−1J. (34)
A finite-difference stencil is employed on a set of staggered
grid for the numerical solution of Equation (34) to yield multi-
frequency simulations of induction logging tool responses [6]. Spatial
distributions of conductivity, σ, are computed from flow simulation
results, namely, aqueous-phase saturations and salt concentrations at
each logging time. Conductivities computed from flow simulations on
the 3D cylindrical grid are mapped to the 3D Cartesian grid by means
of a homogeneization stencil [11]. Induction logging tool responses are
simulated for each conductivity snapshot in time.

As shown in Equations (24) through (30), there exists a nonlinear
coupling between fluid-phase pressure (p), water saturation (Sw), and
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(a) (b)

(c) (d)

(e) (f)

Figure 2. Log-log measurement strategy: (a) Conductivity domain
represented in logarithmic scale [log10(σ)] at tlog 1 = 1.5 day, and (b)
the corresponding electromagnetic induction logging measurements
(AF10 through AF90 indicate measurements with various depths
of penetration, AF10 corresponding to the shallowest and AF90
corresponding to the deepest measurement). (c) Conductivity domain
in logarithmic scale [log10(σ)] at tlog 2 = 3.0 day, and (d) the
corresponding electromagnetic induction logging measurements. (e)
Normalized variation in the conductivity domain [σ2(r)−σ1(r)]/σ1(r),
and (f) the change in the induction log response from tlog 1 to tlog 2,
namely, [σapp.t2 − σapp.t1].
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(a) (b)

(c) (d)

(e) (f)

Figure 3. Log-test-log measurement strategy: (a) Conductivity
domain represented in logarithmic scale [log10(σ)] at tlog 1 =
1.5 day, and (b) the corresponding electromagnetic induction logging
measurements (AF10 through AF90 indicate measurements with
various depths of penetration, AF10 corresponding to the shallowest
and AF90 corresponding to the deepest measurement). (c)
Conductivity domain in logarithmic scale [log10(σ)] at tlog 2 = 1.64 day
(right after the wireline formation test), and (d) the corresponding
electromagnetic induction logging measurements. (e) Normalized
variation in the conductivity domain [σ2(r) − σ1(r)]/σ1(r), and (f)
the change in the induction log response from tlog 1 to tlog 2, namely,
[σapp.t2 − σapp.t1]. Formation tester measurement locations are shown
using small circles on the conductivity domain plots corresponding to
tlog 2.
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salt concentration (Cw) variables. These variables are jointly solved
by a numerical simulation algorithm on a finite-difference grid. The
coupling between multi-phase fluid-flow and electromagnetic induction
physics can be explained in simple terms as follows: A change in
the pressure field (for example, due to mud-filtrate invasion, fluid
withdrawal during a wireline formation test, etc.) results in a potential
difference that gives rise to a velocity field and streamlines along which
saturation and concentration fronts travel. The coupling between
multi-phase fluid-flow and electromagnetic induction physics occurs
through Sw and Cw variables as shown in Equation (31) (Archie’s law)
and Equation (32). These equations give rise to a time-dependent
spatial distribution of conductivity (σ). σ-fields corresponding to log-
acquisition times are fed to a finite-difference-based algorithm that
models induction tool responses. Example evolutions of conductivity
fields as a function of mud-filtrate invasion and wireline formation
testing related fluid-flow phenomena are shown in Figures 2 and 3,
respectively. Simulated log responses (corresponding to illustrated
conductivity field snapshots) and time-lapse induction logging signals
are also shown in these figures. Time-lapse signals clearly demonstrate
the sensitivity of log responses to near-borehole fluid-flow phenomena
governed by such formation properties as permeability and porosity.

7. NUMERICAL EXAMPLES

7.1. Isotropic Permeability Model

Mudcake characteristics, formation rock and fluid properties, and
specific instrumental/acquisition details are listed in Table 1. We
use a 121 × 1 × 30 (r × θ × z) grid in the cylindrical coordinate
system as the result of extensive finite-difference gridding studies to
produce computationally efficient, internally consistent, and accurate
numerical simulations. The grid is uniform in the vertical direction.
Block sizes increase logarithmically in the radial direction away from
the borehole. We also use a relatively fine cylindrical finite-difference
grid of size 141 × 1 × 30 in the fluid-flow simulations performed for
generating the synthetic measurements. Simulations carried out using
fine and coarse grids agree within 1% of each other. Layer-by-layer
relative permeability and capillary pressure functions are reported
in [2] together with the remaining details of the forward model. An
averaged mud-filtrate invasion rate history is imposed on the fluid-flow
simulator as the source condition. For the log-log strategy, the invasion
rate history is extended further until the second logging time [3rd day].
The rate-domain response of the mudcake removal (due to drill-string
trip-out at the first logging time [1.5th day]) is also incorporated to
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the mud-filtrate invasion history.
The following schedule is assumed for the log-test strategy. The

induction log is recorded at the 1.5th day of mud-filtrate invasion. A
subsequent wireline formation test is scheduled to last 200minutes.
During the formation test, fluid is withdrawn from the formation at
a constant liquid rate of 3.34 m3/d for 100 minutes and the formation
pressure drawdown response is observed across the dual-packer interval
and at the observation probes. Subsequently, the tool is shut-down for
another 100minutes and the formation pressure build-up response is
recorded. Upon conclusion of the formation test, a second induction
log is recorded in the log-test-log data-acquisition schedule.

Figure 4. Top panels: Permeability and porosity profiles yielded
by the multiplicative regularized inversion of pressure-transient
measurements (acquired by the wireline formation tester probes
subsequent to a 1.5 day-long mud-filtrate invasion) [test strategy].
Measurements are contaminated with 3% Gaussian, random noise. The
Cramer-Rao bounds (with 99.7% probability) for the inversion results
are computed post-convergence. The initial-guess model parameter
values are also shown. The bottom panel shows the misfit reduction
plot for all investigated noise-contamination levels (1%, 3%, and 5%).
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The induction log is recorded at the 1.5th day of invasion in
the single-snapshot strategy. In the dual-snapshot log strategy, an
additional induction log is acquired at the 3rd day of invasion to track
the changes in the near-borehole saturation and salt concentration
distributions due to mud-filtrate invasion. Transient wireline formation
tester measurements simulated for the test-log strategy are used for
the independent inversion of pressure measurements (test strategy).
Two-phase displacement, production, and shut-in periods associated
with the mud-filtrate invasion, the formation-test drawdown, and
the formation-test build-up processes are forward modeled within the
context of iterative inversion.

Figure 5. Top panels: Permeability and porosity profiles yielded
by the multiplicative regularized inversion of single-time induction
logging measurements (acquired by the AIT tool subsequent to a
1.5 day-long mud-filtrate invasion) [log strategy]. Measurements are
contaminated with 3% Gaussian, random noise. The Cramer-Rao
bounds (with 99.7% probability) for the inversion results are computed
post-convergence. The initial-guess model parameter values are also
shown. The bottom panel shows the misfit reduction plot for all
investigated noise-contamination levels (1%, 3%, and 5%).
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Permeability and porosity profiles yielded by the (independent)
inversion of pressure measurements (test strategy) are shown in
the top panels of Figure 4 for a noise-contamination level of 3%.
Inversion results are only shown for the multiplicative regularization
approach as they are almost identical to the ones obtained via additive
regularization. True and initial-guess profiles for the model parameters
(subject to inversion) are also shown in the panels of this figure to
quantify the accuracy and robustness of the inversion results. On the
other hand, the degrees of uncertainty associated with the inversion

Figure 6. Top panels: Permeability and porosity profiles yielded by
the multiplicative regularized joint inversion of single-time induction
logging measurements (acquired by the AIT tool) and pressure-
transient measurements (acquired by the wireline formation tester
probes subsequent to a 1.5 day-long mud-filtrate invasion) [log-test
strategy]. Measurements are contaminated with 3% Gaussian, random
noise. The Cramer-Rao bounds (with 99.7% probability) for the
inversion results are computed post-convergence. The initial-guess
model parameter values are also shown. The bottom panel shows
the misfit reduction plot for all investigated noise-contamination levels
(1%, 3%, and 5%).
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Figure 7. Top panels: Permeability and porosity profiles yielded by
the multiplicative regularized joint inversion of two-snapshot induction
logging measurements (acquired by the AIT tool) [log-log strategy].
The first induction log was acquired subsequent to a 1.5 day-long
mud-filtrate invasion. A second induction log was acquired at the 3rd
day of mud-filtrate invasion. Measurements are contaminated with
3% Gaussian, random noise. The Cramer-Rao bounds (with 99.7%
probability) for the inversion results are computed post-convergence.
The initial-guess model parameter values are also shown. The bottom
panel shows the misfit reduction plot for all investigated noise-
contamination levels (1%, 3%, and 5%).

results are quantified by computing the Estimator’s Covariance Matrix
and the 99.7% probability-level Cramer-Rao bounds [2, 9]. These
bounds provide error bars for the inverted model parameters. The
progress of the misfit reduction as a function of nonlinear inversion
iterations is shown in the bottom panel of Figure 4 for both additive
and multiplicative regularization techniques and for all investigated
noise-contamination levels (1%, 3%, and 5% Gaussian random noise).
Inversion results and post-inversion uncertainty analyses are shown for
the log strategy in Figure 5, for the log-test strategy in Figure 6, for
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Figure 8. Top panels: Permeability and porosity profiles yielded by
the joint inversion of two-snapshot induction logging measurements
(acquired by the AIT tool) and pressure-transient measurements
(acquired by the wireline formation tester probes) [log-test-log
strategy]. The first induction log and the formation test were
conducted subsequent to a 1.5 day-long mud-filtrate invasion. A
second induction log was acquired right after the formation test.
Measurements are contaminated with 3% Gaussian, random noise. The
Cramer-Rao bounds (with 99.7% probability) for the inversion results
are computed post-convergence. The initial-guess model parameter
values are also shown. The bottom panel shows the misfit reduction
plot for all investigated noise-contamination levels (1%, 3%, and 5%).

the log-log strategy in Figure 7, and for the log-test-log strategy in
Figure 8.

Inversion results indicate that the simultaneous use of coupled
dual-physics data sets effectively reduces the nonuniqueness, improves
the stability of the minimization scheme, and yields more accurate
inversions. Although the inverted permeability and porosity profiles
are not shown for all investigated noise-contamination levels, it
was observed that the constructive impact of dual-physics data sets
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becomes increasingly significant when the measurements contain high
levels of noise. The inversion results remain robust for all noise levels
with the multiplicative regularization approach. A similar trend is also
observed for the additive regularization approach: the inverted model
parameters are of acceptable accuracy. Having stated that, in relative
terms, the accuracies of the inverted model parameters are typically
lower with the additive regularization approach for the 5% noise level.
Misfit reduction profiles signify that the multiplicative regularization
method consistently yields more rapid convergence compared to the
additive regularization method.

7.2. Transversely Anisotropic Permeability Model

A three-layer formation exhibiting permeability anisotropy is consid-
ered for inversion. Synthetic single-time electromagnetic induction log-
ging and wireline formation tester pressure measurements (subsequent
to a 1.5 day-long mud-filtrate invasion) are generated for the forma-
tion model shown in Figure 9 using the same reservoir fluid properties
and measurement strategies described for the isotropic case. Forma-
tion layers are assumed to be in hydraulic communication. Horizon-
tal permeability, vertical permeability, and porosity profiles yielded by
joint inversions of pressure and electromagnetic measurements (log-test

Figure 9. Two-dimensional vertical cross-section of the anisotropic
formation intersected by a vertical borehole. The three-layer formation
is subject to water-base mud-filtrate invasion.
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Figure 10. Horizontal permeability, vertical permeability, and
porosity profiles yielded by the multiplicative regularized joint
inversion of single-time induction logging measurements (acquired
by the AIT tool) and pressure-transient measurements (acquired by
the wireline formation tester probes subsequent to a 1.5 day-long
mud-filtrate invasion) [log-test strategy]. The Cramer-Rao bounds
(with 99.7% probability) for the inversion results are computed
post-convergence. Inversion results are shown for the cases where
measurements are contaminated with 1% Gaussian, random noise. The
initial-guess model parameter values are also shown. The last panel
shows the misfit reduction plot.

strategy) are shown in the panels of Figure 10 for 1%, Figure 11 for 3%,
and Figure 12 for 5% noise level. Inversion results are only shown for
the multiplicative regularization approach as they are almost identical
to that obtained via additive regularization.

Inverted values of horizontal permeability and porosity remain
fairly consistent with the true profiles. Although estimations exhibit
inaccuracies for 1% and 3% noise levels, the trends of inverted vertical
permeability values for the first and second layers (from the top of the
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Figure 11. Horizontal permeability, vertical permeability, and
porosity profiles yielded by the multiplicative regularized joint
inversion of single-time induction logging measurements (acquired
by the AIT tool) and pressure-transient measurements (acquired by
the wireline formation tester probes subsequent to a 1.5 day-long
mud-filtrate invasion) [log-test strategy]. The Cramer-Rao bounds
(with 99.7% probability) for the inversion results are computed
post-convergence. Inversion results are shown for the cases where
measurements are contaminated with 3% Gaussian, random noise. The
initial-guess model parameter values are also shown. The last panel
shows the misfit reduction plot.

formation) remain consistent with the true trend. For the 5% noise
level, the estimation error increases for the vertical permeability of
these layers. The inverted vertical permeability value for the bottom-
most (third) layer diverges from the true value for all noise levels. It
exceeds the plotting scale in Figure 10 and Figure 11.

While the estimations of horizontal permeability and porosity
profiles remain accurate and error bounds are sufficiently narrow for all
investigated noise levels, the estimations of the vertical permeability
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Figure 12. Horizontal permeability, vertical permeability, and
porosity profiles yielded by the multiplicative regularized joint
inversion of single-time induction logging measurements (acquired
by the AIT tool) and pressure-transient measurements (acquired by
the wireline formation tester probes subsequent to a 1.5 day-long
mud-filtrate invasion) [log-test strategy]. The Cramer-Rao bounds
(with 99.7% probability) for the inversion results are computed
post-convergence. Inversion results are shown for the cases where
measurements are contaminated with 5% Gaussian, random noise. The
initial-guess model parameter values are also shown. The last panel
shows the misfit reduction plot.

profile exhibit significant inaccuracies. The error bounds are relatively
larger for the inverted vertical permeabilities in comparison to
other model parameters. In the test problem, there are very few
pressure sensors (or measurement locations) across the three-layer
formation to provide sufficiently informative pressure information
under layer-to-layer crossflow conditions. Therefore, the inversion
algorithm cannot extract the vertical permeability values correctly
from noise-contaminated measurements. Although the multiplicative
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regularization method delivers more rapid convergence compared
to the additive regularization method for the anisotropic inversion
problem, it falls short in increasing the accuracy of the inversion results.

8. SUMMARY AND CONCLUSIONS

The formulation of the multiplicative regularization technique,
originally developed for the conjugate gradient type imaging
algorithms, is extended and successfully applied to a weighted and
regularized Gauss-Newton parametric joint-inversion algorithm. The
algorithm is employed for the quantitative joint and independent
inversions of electromagnetic induction logging and formation tester
transient pressure measurements. The benefit of the inversion
algorithm is the quantitative estimation of layer-by-layer permeabilities
and porosities. The multiplicative regularization method delivers
better convergence rates compared to the additive regularization
method for all investigated problems. The convergence performance
of the multiplicative regularization method is significantly better than
the additive regularization method as a function of increasing levels of
measurement noise.

Inversion results indicate that the simultaneous use of coupled
dual-physics data sets effectively reduces the nonuniqueness and
improves the stability of the minimization scheme. The positive impact
of dual-physics data sets becomes significant when the measurements
contain high levels of noise.
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