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Abstract—Early detection of tumor tissue is one of the most
significant factors in the successful treatment of breast cancer.
Microwave breast imaging methods are based on the dielectric contrast
between normal and cancerous tissues at microwave frequencies. When
the breast is illuminated with a microwave pulse, the dielectric
contrast between these tissues can result in reflected backscatter.
These reflected signals, containing tumor backscatter, are spatially
focused using a beamformer which compensates for attenuation and
phase effects as the signal propagates through the breast. The
beamformer generates an energy profile of the breast where high energy
regions suggest the presence of breast cancer. Data-Adaptive (DA)
beamformers, use an approximation of the desired channel response
based on the recorded signal data, as opposed to Data-Independent
(DI) algorithms which use an assumed channel model. A novel
extension of the DA Robust Capon Beamformer (RCB) is presented
in this paper which is shown to significantly outperform existing
beamformers, particularly in a dielectrically heterogeneous breast. The
algorithm is evaluated on three anatomically accurate electromagnetic
(EM) breast models with varying amounts of heterogeneity. The novel
beamforming algorithm is compared, using a range of performance
metrics, against a number of existing beamformers.

1. INTRODUCTION

Approximately 1.5 million new cases of breast cancer were recorded
in the US in 2009 [1], while the estimated mortality rate in Europe
was over 1.7 million [2] in 2008. The limitations of the current
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de facto breast cancer screening method, X-Ray Mammography, are
well documented, particularly when imaging heterogeneously dense
breasts [3, 4].

Microwave Imaging is a promising alternative breast imaging
modality, which uses backscattered radar signals to identify
cancerous regions within the breast [5, 6]. The dielectric contrast
between tissue types, notably malignant and normal breast tissues,
generate electromagnetic (EM) reflections within the breast. These
reflections are recorded and a time-domain image-formation algorithm
(beamformer) is applied to determine the location of any dielectric
scatterer present. Beamformers can be divided into two distinct
categories:

• Data-Independent
• Data-Adaptive

Data-Independent (DI) beamformers use an assumed propagation
model to compensate for path dependent attenuation and disper-
sion [5, 7–12]. Conversely, Data-Adaptive (DA) algorithms process the
received signals in order to achieve unit gain from a desired direction,
while suppressing signals of the same frequency from all other direc-
tions. The signal originating from the desired direction is estimated
by varying the weights (via a steering vector) applied to the antenna
array [13–17]. This is the basis for the Standard Capon Beamformer
(SCB) [13].

The Robust Capon Beamformer (RCB) [14] extends the SCB
to more accurately determine the power of the desired waveform,
when imprecise knowledge of the antenna array steering vector is
available. Guo et al. [15] utilized the RCB algorithm with a monostatic
antenna configuration to create a 2D DA microwave energy profile
of the breast. Xie et al. [16] further developed the method for a
3D Multistatic Adaptive Microwave Imaging (MAMI) radar system,
by implementing the RCB algorithm in two stages (referred to as
MAMI 1). The direct application of multistatic data to Guo’s RCB
adaptation in a single stage was not feasible due to the requirement of
excessive computational resources. The MAMI 1 method was extended
to incorporate an alternative data-slicing technique (MAMI 2) [17]
and both methods were combined under the moniker MAMI C. All
of these DA beamforming algorithms were evaluated using relatively
homogeneous breast models.

Recently established data on the dielectric properties of the
breast [18] has shown that:

• The level of dielectric heterogeneity within the breast had
previously been significantly underestimated.
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• The dielectric contrast between fibroglandular tissue and
cancerous tissue was less than 10%.

These findings illustrate the problems associated with locating
cancerous regions within a difficult imaging environment with energy
based beamformers [10, 19].

This paper presents a novel extension to the RCB beamforming
algorithm, evaluated using a number of anatomically realistic breast
models, each with varying levels of dielectric heterogeneity. The
proposed algorithm uses a unique signal grouping method, in order
to effectively and efficiently apply the RCB method. The performance
of this Transmitter Grouping Robust Capon Beamformer (TG-RCB)
algorithm is compared against the DI Delay And Sum (DAS)
beamformer [5, 7] and DA MAMI C [17] beamforming algorithms.

The remainder of the paper is organized as follows: Section 2
details the TG-RCB algorithm. The numerical breast model model
and performance metrics are described in Section 3 and results are
presented in Section 4. Finally, conclusions and suggestions for future
work are discussed in Section 5.

2. TRANSMITTER GROUPING ROBUST CAPON
BEAMFORMER

The proposed algorithm selectively applies the RCB to specific groups
of multistatic signals to create a representative energy profile of the
breast. First consider a system with M multistatic antenna array
elements. For each transmitter, the corresponding M received signals
are grouped together and the RCB method is applied to these signals.
The resultant waveforms are summed and the focal point energy is
calculated across a window. The proposed adaptation is illustrated
in Figure 1. This grouping method is significantly different from the
original approach taken by Xie et al. [16, 17], where the entire set of
M2 time-aligned multistatic signals are grouped together prior to the
application of the RCB algorithm. A RCB algorithm itself is described
below for completeness.

For each transmitting element, the received signals are appropri-
ately time aligned [7, 20]. As the received signals may contain errors
due to time delay inaccuracies, the RCB is required to approximate a
steering vector â and calculate appropriate weights ŵi. In a group with
N time samples, the time-aligned input signals for the ith transmitter
are organized as follows:

yi(t) = [y1(t), y2(t), . . . , yM (t)]T 0 ≤ t ≤ (N − 1) (1)
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Figure 1. TG-RCB system diagram.

The time delay for the ith transmitting antenna and jth receiving
element is calculated as: τij (r) = (dij (r))/(vTs). The propagation
distance between the transmitter (ri) to the focal point (r) and back
to the jth receiving antenna location (rj) is described as dij (r) =
|r − ri| + |r − rj |. The average speed of signal propagation in breast
tissue is denoted by v and Ts is the sampling interval.

The time-aligned input may be modeled as follows:

yi(t) = âsi(t) + e(t) (2)

where the scalar si(t) denotes the desired backscattered signal, â refers
to the array steering vector and e is a vector containing unwanted noise
and interference.

The Robust Capon Beamformer (RCB) problem can be described
as:

min
w

ŵT R̂ŵ subject to ŵT â = 1 (3)

with a solution of:

ŵi =
R̂−1

i â

âT R̂−1
i â

(4)

with ŵi containing the beamformer coefficients and the Sample
Covariance Matrix equated as:

R̂i =
1
N

N−1∑

t=0

yi(t)yT
i (t) (5)

The steering vector â is obtained from the following quadratic
problem with associated constraints:

min
a

âT R̂−1â ||â− ā|| ≤ ε (6)

with ā = (1M×1) representing an assumed steering vector and ε is a
user defined variable describing the error in â. By applying the weights
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to the input vector, the desired backscatter response is calculated as:

si(t) = ŵT
i · yi(t) (7)

The energy at a specific voxel (r = [x, y, z]) can then be calculated
over the window Twin as:

I(r) =
∫ Twin−1

0

[
M−1∑

i=0

si(t)

]2

dt (8)

3. SIMULATIONS AND METRICS

3.1. Numerical Simulations

Finite Difference Time Domain (FDTD) models of the breast were
developed to evaluate the performance of each beamformer. Each
FDTD model is based on an MRI-derived breast model, taken from the
UWCEM breast phantom repository at the University, of Wisconsin,
Madison [21]. In order to adequately evaluate the beamformers, three
breast tissue distributions were considered, as shown in Figure 2:

• Homogenous model, comprising of 3 types of adipose tissue
(Figures 2(a) and 2(b)).

• Normal model, comprising of 3 types of adipose tissue and a single
small scattering of medium fibroglandular tissue (Figures 2(c)
and 2(d)).

• Heterogenous model, comprising of all 3 variations of both
fibroglandular and adipose tissues (Figures 2(e) and 2(f)).

Table 1. Debye parameters for the FDTD model.

Tissue ε∞ (εs − εinf) σ t0
Skin 15.63 8.2 0.82 12.6

Tumor 7 47 0.15 7
Adipose (Low) 2.85 1.10 0.025 13

Fibroglandular (Low) 12.85 24.64 0.251 13
Adipose (Medium) 3.12 1.59 0.050 13

Fibroglandular (Medium) 13.81 35.55 0.738 13
Adipose (High) 3.98 3.54 0.080 13

Fibroglandular (High) 14.28 40.52 0.638 13
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Figure 2. Three breast tissue models with a tumor at (−9.3, 3.9,−1).
Slices are taken at X = −9.3 cm for Y -Z images and Z = −1 cm for X-
Y images. (a) and (b) Homogenous model; (c) and (d) Normal model;
and (e) and (f) Heterogeneous model.

Dimensions within the 3D region of the breast are described
according to each axis. The X axis signifies the depth of the breast,
with 0 cm indicating the anterior position. Y and Z represent the
span and breadth of the breast respectively, with 0 cm centered at the
midpoint of each. A microlobulated tumor (to represent a malignant
tumor), is artificially introduced into the FDTD model. Tumors are
placed in (X(cm), Y (cm), Z(cm)) positions in each simulation, one at
(−9.3, 3.9,−1) and another at (−10.3,−4.7,−1.3), corresponding to



Progress In Electromagnetics Research, Vol. 108, 2010 407

Tumors 1 and 2, respectively, in Tables 2, 3 and 4. These tumors
are generated using the Gaussian Random Spheres method [22–24] to
simulate realistic shapes and surface textures. The variation of tumor
size is simulated by modifying the inner sphere radius, resulting in
tumors of 5mm, 10mm, 15mm and 20 mm diameters.

The dispersive properties of breast tissue are incorporated into
the FDTD model using a single-pole Debye model [25] of the following
form:

εr(ω) = ε∞ +
σ

jωε0
+

(εs − ε∞)
1 + jωt0

(9)

where εs is the static permittivity, ε∞ is the permittivity at infinite
frequency, ε0 is the permittivity of free space, σ represents the
conductivity and t0 is the relaxation time.

Table 2. Homogenous model results.

SCR (dB) SMR (dB) SMXR (dB)

Tumor Radius DAS MC RCB DAS MC RCB DAS MC RCB

1

2.5 21.0 42.6 47.5 14.7 19.1 18.6 9.9 16.0 18.7

5.0 36.2 57.8 63.2 14.3 16.8 17.1 11.8 13.8 18.0

7.5 37.2 62.6 66.2 12.8 15.8 15.6 10.9 13.5 21.3

10.0 42.8 60.9 69.6 11.2 14.4 14.9 11.0 23.6 18.3

2

2.5 29.3 49.3 68.7 15.1 18.4 17.0 12.0 13.5 14.6

5.0 45.9 64.3 84.9 14.6 17.0 16.5 11.4 11.4 16.3

7.5 44.7 64.5 87.3 13.6 16.3 16.6 10.8 15.4 15.6

10.0 42.8 60.6 79.1 11.5 14.7 14.8 10.4 13.6 12.5

AVERAGE 37.5 57.8 70.8 13.5 16.6 16.4 11.0 15.1 16.9

Table 3. Normal model results.

SCR (dB) SMR (dB) SMXR (dB)

Tumor Radius DAS MC RCB DAS MC RCB DAS MC RCB

1

2.5 3.1 36.0 58.2 0.8 −0.8 −1.5 −12.7 −15.7 −14.5

5.0 24.8 40.4 46.1 9.6 12.4 12.4 −1.8 −0.2 −1.0

7.5 26.7 59.5 55.6 10.4 12.6 13.4 0.7 2.0 3.3

10.0 28.6 39.5 53.4 10.1 12.1 13.6 3.1 4.6 7.9

2

2.5 6.2 24.2 8.7 3.4 −0.2 3.6 −9.7 −13.4 −10.7

5.0 18.6 40.3 36.5 11.5 13.2 13.9 0.9 2.9 4.6

7.5 20.4 41.9 43.1 11.5 12.8 14.9 2.7 4.0 3.6

10.0 21.9 45.4 43.7 10.7 12.8 14.3 4.4 6.2 8.7

AVERAGE 18.8 40.9 43.2 8.5 9.4 10.6 −1.5 −1.2 0.2
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Table 4. Heterogeneous model results.

SCR (dB) SMR (dB) SMXR (dB)

Tumor Radius DAS MC RCB DAS MC RCB DAS MC RCB

1

2.5 −0.0 0.1 14.6 −7.3 −6.3 −5.5 −15.0 −13.2 −17.3

5.0 7.8 12.1 26.8 −1.9 −0.4 3.9 −9.2 −7.4 −7.7

7.5 10.1 13.6 31.4 0.6 1.7 6.8 −6.6 −4.9 −4.1

10.0 12.8 16.8 31.6 2.5 3.0 7.9 −4.3 −3.0 −1.4

2

2.5 −0.0 6.6 9.1 −7.8 −4.5 −4.4 −16.3 −12.7 −15.3

5.0 6.6 8.9 20.2 −2.8 0.1 4.9 −11.1 −7.7 −5.9

7.5 9.0 12.3 19.0 −0.4 0.9 4.2 −8.6 −6.8 −6.0

10.0 10.0 9.7 23.1 1.8 0.6 5.9 −6.1 −7.0 −3.0

AVERAGE 7.0 10.0 22.0 −1.9 −0.6 3.0 −9.6 −7.8 −7.6

The dielectric properties for the variations of adipose and fi-
broglandular tissue are based on the results presented by Zas-
trow et al. [21]. Skin debye parameters are obtained from published
data by Gabriel et al. [26], while debye values representing malignant
tissue are taken from Davis et al. [8]. All single pole debye parameters
are described in Table 1.

The overall FDTD grid size is approximately 3.3 million cubic
cells, the grid resolution is (1 mm(dx) × 1mm(dy) × 1mm(dz)) and
the time step dt is defined as 0.833 ps (dx/2c), where c is the speed of
light in a vacuum. The FDTD grid is terminated on each side by a
12 layer Universal Perfectly Matched Layer (UPML) [27] in order to
minimize edge reflections. In total, 24 FDTD simulations were carried
out, based on three distributions of tissue, the two tumor locations and
the four tumor diameters.

A cylindrical antenna array [7], consisting of half-wavelength
dipole antennas polarized in the direction of the X axis, is placed
around the breast. Fifty three antennas are arranged on five rings, as
illustrated in Figure 3. The antenna array elements are placed on the
skin, with a uniform spacing of 22mm between each ring along the X
axis. The UWB input pulse is a 120 ps differentiated Gaussian pulse,
with a center frequency of 7.5 GHz and a −3 dB bandwidth of 9GHz.
An ideal artifact removal algorithm [16] is applied to the backscattered
signals to remove the input signal and any reflection from the skin-
breast interface. Prior to any signal processing, all FDTD signals are
downsampled from 1200 GHz to 50 GHz.
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Figure 3. Antenna configuration.

3.2. Metrics

The following metrics are used in order to evaluate each beamformers
performance:
• Signal to Clutter ratio (SCR)
• Signal to Mean ratio (SMR)
• Signal to Max ratio (SMXR)

The SMR describes the ratio of the tumor response to the average
energy response of all tissue types within the breast [28]. The SCR
determines the ratio between the peak tumor response to the maximum
clutter energy in the breast [7]. Finally, the SMXR is defined as the
ratio of the tumor response to the maximum clutter response in the
same breast [28].

4. RESULTS

Resulting images from the beamformer are shown in Figures 4 and 5 as
a Y -Z and associated X-Y cross-sectional slice (the tumor location is
indicated by a pink circle for clarification in the case of the Normal and
Heterogenous tissue models). The TG-RCB algorithm is compared to
the DA MAMI-C [17] and DI DAS [5, 7] methods. Furthermore, the
corresponding performance metrics (SCR, SMR and SMXR) are shown
in Tables 2, 3 and 4. Each table corresponds to a particular level of
dielectric heterogeneity.
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Figure 4. RCB multistatic beamformed images for a tumor located
at (−9.3 cm, 3.9 cm,−1 cm). Slices are taken at X = −9.3 cm for Y -Z
images and Z = −1 cm for X-Y images. (a) and (b) Homogenous
model; (c) and (d) Normal model; and (e) and (f) Heterogeneous
model.

Examining the results from the homogeneous model first (Table 2),
the TG-RCB algorithm out-performs the DA MAMI C algorithm by an
average of 13 dB and 1.8 dB, in terms of SCR and SMXR respectively.
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Figure 5. RCB multistatic beamformed images for a tumor located at
(−10.3 cm,−4.7 cm,−1.3 cm). Slices are taken at X = −10.3 cm for Y -
Z images and Z = −1.3 cm for X-Y images. (a) and (b) Homogenous
model. (c) and (d) Normal model. (e) and (f) Heterogeneous model.

Results for SMR between MAMI C and the TG-RCB method are
comparable, within 0.2 dB of one another. The DI DAS algorithm
is the least effective in this case, where the imaging algorithm averages
33.3 dB, 2.9 dB and 5.9 dB for SCR, SMR and SMXR results. Overall,
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the TG-RCB algorithm scores 70.8 dB, 16.4 dB and 16.9 dB in terms
of average SCR, SMR and SMXR respectively, for this homogenous
breast imaging scenario.

In this basic model, the TG-RCB beamformer performs well,
compared to the alternative methods examined. The noise suppression
of DA systems have been well documented [14, 15, 17] and in this simple
imaging scenario, their improvement over DI systems is clearly evident
from the metrics in Table 2. The TG-RCB algorithm significantly
reduces clutter in the propagation channel and offers significant
improvements over both the DA MAMI C and DI DAS algorithms.

With the presence of a small amount of fibroglandular tissue in
the Normal (Table 3) breast model, the TG-RCB algorithm offers
improvements of 2.3 dB in SCR, 1.2 dB in SMR and 1 dB in SMXR over
its DA counterpart — MAMI C. There is also a significant improvement
over the DI DAS method, of 24.4 dB, 2.1 dB and 1.7 dB for SCR,
SMR and SMXR respectively. The TG-RCB outperforms all the other
imaging methods, scoring an SCR of 43.2 dB, an SMR of 10.6 dB and
a SMXR of 0.2 dB.

The performance of all beamforming algorithms degrade with the
presence of fibroglandular tissue in the Normal model compared to
the Homogenous model, as shown in Table 3. The difference between
the assumed and actual propagation channel affects the performance
of the each beamformer. The breast can no-longer be considered
homogenous, and the contrast between the normal tissue and cancerous
tissue is reduced. The results show that the grouping method
employed by the TG-RCB algorithm offers superior performance to the
MAMI C and DAS algorithms once the breast becomes dielectrically
heterogeneous.

The improvement offered by the TG RCB algorithm is further
illustrated in the results from the Heterogeneous model (Table 4). The
improvement offered by the TG-RCB over MAMI C in terms of SCR,
SMR and SMXR is approximately 12 dB, 3.6 dB and 0.2 dB. The DI
DAS algorithm is the weakest in this case, trailing the TG-RCB metrics
by 15.7 dB, 4.9 dB and 2 dB for SCR, SMR and SMXR respectively.
The TG-RCB algorithm is the most effective beamformer when applied
to the dielectrically heterogenous breast, achieving an average SCR of
22 dB, SMR of 3 dB and an average SMXR of −7.6 dB.

5. CONCLUSION

In this paper, a novel beamforming approach is proposed for the
effective application of the RCB in dielectrically heterogeneous imaging
scenarios. The algorithm selects the received signals corresponding
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to each transmitter and independently applies the RCB to obtain
a desired waveform. The desired waveforms from all transmitting
antenna array elements are summed and the energy is calculated across
a window. This algorithm was compared to two existing beamforming
algorithms, the DAS and MAMI C algorithms. The beamformers
were tested on signals obtained from a number of anatomically
and dielectrically accurate electromagnetic breast models. For test
purposes 24 3D FDTD models were created, with a tumor placed at
two different locations within the breast. All beamforming algorithms
were examined using three metrics: SCR, SMR and SMXR.

DA beamforming algorithms suppress clutter by minimizing
the overall signal power while maintaining the response from the
direction of interest. The improved performance of the TG-RCB
algorithm within the normal and heterogeneous breast models is
evident from the metrics presented here. In a homogeneous breast,
containing only one significant dielectric scatterer, the MAMI and
TG-RCB beamformer achieve comparable performance, where both
offer significant improvements over the DI DAS method. However,
in a more dielectrically heterogeneous breast with large amounts
of fibroglandular tissue, the tumor is often one of the smaller
scatterers present. The MAMI beamformer tends to reward the
larger fibrous scatterers, at the expense of the smaller cancerous
scatterer. Conversely, the TC-RCB beamformer produces an image
where all scatterers present are enhanced in the resultant image,
background clutter is suppressed and a dielectrically-representative
image is obtained.

Future work will involve using more effective antenna compen-
sation techniques as well as investigating Contrast-Enhanced Imaging
with Adaptive beamformers in dielectrically heterogeneous breast mod-
els.
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