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Abstract—A computationally efficient surrogate-based framework for
reliable simulation-driven design optimization of microwave structures
is described. The key component of our algorithm is manifold
mapping, a response correction technique that aligns the coarse
model (computationally cheap representation of the structure under
consideration) with the accurate but CPU-intensive (fine) model of the
optimized device. The parameters of the manifold mapping surrogate
are explicitly calculated based on the fine model data accumulated
during the optimization process. Also, manifold mapping does not
use any extractable parameters, which makes it easy to implement.
Robustness and excellent convergence properties of the proposed
algorithm are demonstrated through the design of several microwave
devices including microstrip filters and a planar antenna.

1. INTRODUCTION

Electromagnetic (EM) simulation-driven design and design optimiza-
tion becomes increasingly important in contemporary microwave engi-
neering. The primary reason is that due to a growing complexity of
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microwave structures it is more and more difficult to carry out the de-
sign process using analytical models. Also, no systematic procedures
exist for many emerging classes of structures (e.g., ultra-wideband an-
tennas [1] or substrate integrated circuits [2]) that would be able to
yield designs satisfying given specification requirements. In all these
cases, EM-simulation-based design may be the only option. On the
other hand, using a full-wave EM solver directly in the optimization
loop is usually prohibitive because of high computational cost. A pos-
sible workaround to this is co-simulation [3–5], where the EM model
is broken down into smaller parts that are combined with circuit com-
ponents in a circuit simulator. Although this approach reduces the
evaluation time for a single design, the EM-embedded co-simulation
model is still subjected to computationally heavy direct EM-driven
optimization.

Computationally efficient design optimization of microwave
structures can be realized by replacing the CPU-intensive fine model
with a low-cost but less accurate surrogate model. Space mapping
(SM) [6–17], tuning procedures [18–22], as well as various response
correction methods [23, 24] are examples of very efficient approaches of
this kind used in microwave engineering.

Space mapping utilizes the surrogate model constructed from a
computationally cheap coarse model [6, 15] combined with auxiliary
transformations to reduce misalignment between the surrogate and
the fine model. Parameters of these transformations are obtained by
solving a separate nonlinear regression problem. The coarse model is
normally a physics-based model. This type of models has typically a
larger validity region than approximation/interpolation models. For
that reason, preferred coarse model choices in microwave applications
are, for example, equivalent circuits or models built on analytical
formulas; in some cases, EM models resulting from a coarse grid
discretization can also be used although these models are often not
exempt from some computational cost, and therefore have to be used
economically. Space mapping usually yields satisfactory designs after a
few fine model evaluations; however, its performance depends heavily
on the quality of the coarse model considered and on the proper
selection of the type of transformations used for the surrogate [25].

Simulation-based tuning [22] exploits the circuit-theory-based
tunable components that are embedded in an EM simulator through
internal ports created in the underlying model [20]. The tuning model
thus created can be optimized very efficiently. We stress that this
methodology is invasive regarding the simulator used, and hence,
in most situations cannot be applied in a straightforward manner.
Additionally, it is not clear if tuning can be directly applicable for
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radiating structures (antennas). Various combinations of tuning and
space mapping have also been reported in the literature [26–28].

In this paper, a manifold-mapping (MM) technique [29, 30] is
applied to simulation-driven design of microwave structures. Manifold
mapping can be considered as a response correction method that
utilizes available fine model data to align the coarse and fine model
responses not only at the current design but also at a number of
points previously considered in the optimization. In that sense,
manifold mapping can be viewed as a generalization of the output
SM concept [10]. However, the MM surrogate model is conceptually
different than the output SM one. More specifically, while the
output SM correction term is simply a difference between the fine
and surrogate model responses at the current design (so that zero-
order consistency is ensured [31]), the MM model aims at a first-
order agreement. In order to improve the convergence properties
of the manifold mapping algorithm and its overall performance, a
few modifications with respect to the basic formulation in [29] are
introduced. Efficiency and robustness of the presented technique
is demonstrated through the design of several microwave devices
including microstrip filters and a planar antenna.

2. MICROWAVE DESIGN OPTIMIZATION THROUGH
MANIFOLD MAPPING

In this section, we formulate the microwave design problem, recall the
basics of the manifold-mapping technique, and compare this technique
with other similar approaches, namely, space mapping. We also
describe modifications introduced to the basic MM algorithm that
improve its robustness.

2.1. Design Problem Formulation

Let Rf (x) ∈ Rm denote the response vector of a fine model of the
microwave structure of interest (e.g., |S21| evaluated at m different
frequencies), x ∈ Rn be a vector of design variables (e.g., structure
dimensions), and U be a given objective function, e.g., minimax. We
want to solve the following problem

x∗f = arg min
x

U(Rf (x)) . (1)

The fine model is assumed to be computationally expensive, typically
obtained by a time-consuming EM simulation, so that the direct
solving of (1), for example, by a gradient-based optimizer with
numerical derivatives, is prohibitive. It should be also noticed that
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the solution x∗f is a local optimizer, and that global approaches within
simulation-based optimization are not in general practically feasible.

2.2. Manifold-mapping Optimization Algorithm

Manifold mapping relies on the existence of the coarse model response
Rc (x; r) ∈ Rm, faster to evaluate than the fine model response, but
less accurate. The (local) misalignment between the fine and coarse
model responses can be reduced by means of the calibration parameters
r ∈ Rr that are, in principle, different to the design variables x. Thus,
the fine model optimizer x∗f can be approximated by

x∗c (r) = arg min
x

U(Rc (x; r)) . (2)

The coarse model response could be aligned, for example, around the
optimization initial guess x(0) ∈ Rn

r∗
x(0) = arg min

r

∥∥∥Rf

(
x(0)

)
−Rc

(
x(0); r

)∥∥∥ . (3)

The point x∗c(r∗x(0)) may yield a better approximation of the fine model
optimizer.

In many practical cases, the design accuracy given by x∗c(r∗x(0))
is not satisfactory. However, a local model response correction in the
neighbourhood of this point leads quite often to better solutions at the
expense of only a few additional fine model simulations.

Manifold mapping [29] exploits a surrogate-based optimization
(SBO) scheme [10] and can be formulated as

x(i+1) (r) = arg min
x

U
(
R(i)

s (x; r)
)

, (4)

where R(i)
s (x; r) ∈ Rm is a surrogate model response at iteration i.

(For a clearer notation and unless needed, from now on we will omit
the dependence of the model responses and solutions on the calibration
parameters r.)

The manifold-mapping surrogate model is defined as

R(i)
s (x) = Rf

(
x(i)

)
+ S(i)

(
Rc (x)−Rc

(
x(i)

))
, (5)

with S(i) being the m×m linear correction (matrix) defined as

S(i) = ∆F∆C†, (6)

where

∆F=
[
Rf

(
x(i)

)−Rf

(
x(i−1)

)
. . . Rf

(
x(i)

)−Rf

(
xmax{i−n,0})]

(7)

∆C=
[
Rc

(
x(i)

)−Rc

(
x(i−1)

)
. . . Rc

(
x(i)

)−Rc

(
xmax{i−n,0})]

. (8)
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Here, † denotes the pseudoinverse operator defined as

∆C† = V∆CΣ†
∆CU∆C, (9)

where U∆C, Σ∆C, and V∆C are the factors in the singular value
decomposition of ∆C. The matrix Σ†

∆C is the result of inverting the
nonzero entries in Σ∆C, leaving the zeroes invariant [29]. Notice that
the manifold-mapping surrogate model has in our applications a similar
computational complexity than the coarse model (all the final model
responses have been obtained previously).

The correction term S(i) is an approximation of the “ideal”
manifold mapping that is defined as

Rs (x) = Rf (x∗f ) + S (Rc (x)−Rc (x∗f )) , (10)

with
S = Jf (x∗f )J

†
c (x∗f ) , (11)

where Jf (x∗f ) and Jc (x∗f ) stand for the fine and coarse model
Jacobians at x∗f , respectively. Obviously, neither x∗f nor S is known
beforehand. Therefore one needs to use the approximation (6) in the
actual algorithm. The “ideal” manifold-mapping model alignment is

Rc(xc
*)

Rf (xf
*)

High-fidelity 
model

Low-fidelity 
model

Rf(xf
*)=S·Rc(xf

*)

Fine model

Rotated/translated 
low-fidelity model

y y

Figure 1. Illustration of the manifold-mapping model alignment for
a least-squares optimization problem: x∗f and x∗c denote the optimal
solutions associated to Rf and Rc, respectively, and y are the design
specifications given. Thin solid and dashed straight lines denote the
tangent planes for the fine and coarse model at their optimal designs,
respectively. By the linear correction S, the point Rc(x∗c) is mapped to
Rf (x∗f ), and the tangent plane for Rc at Rc(x∗c) to the tangent plane
for Rf at Rf (x∗f ) [29].
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illustrated in Fig. 1 for a least-squares optimization problem

U (Rf (x)) = ||Rf (x)− y||22, (12)

with y ∈ Rm being the design specifications given.
In this work, S(i) is set to be the identity matrix during the first

n iterations (i.e., while i < n). This appears to stabilize the MM
algorithm in its early stages.

It is important to know that if the coarse model has a negligible
computational cost when compared to the fine model, the objective
function in (4) can be explored globally. The MM algorithm is in
this case endowed with some robustness with respect to multiple local
minima in (1).

For least-squares optimization problems, manifold mapping is
supported by mathematically sound convergence theory [46]. We can
identify four factors relevant for the convergence of the scheme above
to the fine model optimizer x∗f :
1) the model responses being smooth;
2) the coarse model optimization in (2) being well-posed;
3) the discrepancy of the optimal model response Rf (x∗f ) with

respect to the design specification being small enough;
4) and the coarse model response being a sufficiently good

approximation of the fine model response.

In most practical situations the requirements associated to the first
three factors are satisfied, and since the coarse models considered in
those cases are very often based on expert knowledge accumulated over
the years, the similarity between the fine and model responses is high
enough for having convergence of the manifold-mapping algorithm.

The results in [46] rely mainly on the smoothness of the model
responses involved. Therefore, we can expect convergence of the
manifold-mapping algorithm for a cost function U smooth enough.
When U is not differentiable, we have so far the experimental evidence
given in this work for the applicability of manifold mapping to designs
based on minimax objective functions. Since the manifold mapping is
between model responses, it makes sense that the methodology yields
satisfactory solutions even when U is not smooth.

The basic manifold-mapping algorithm given below can be
modified in a number of ways. Model sensitivities appear to
improve basic convergence if derivative information is framed within
Generalized Manifold Mapping [47]. The incorporation of a Levenberg-
Marquardt strategy in manifold mapping [30, 47] can be seen as
a convergence safeguard analogous to trust-region methods [48].
Manifold mapping can also be extended to designs where the
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constraints are determined by time-consuming functions, and where
these constraints can be dealt with in a multi-level approach [46].

The following features make the manifold-mapping algorithm
an attractive alternative to other surrogate-based methods used in
microwave engineering so far:
• The manifold-mapping algorithm does not include a parameter

extraction step because the surrogate model correction is explicitly
calculated using available fine/coarse model data. This makes MM
simpler and easier to implement.

• The manifold-mapping surrogate model (5) is uniquely deter-
mined. In the case of the general space-mapping algorithm, there
are a large number of options available, and a good algorithm per-
formance depends on a careful, and not always straightforward,
selection.

• Upon convergence the surrogate model satisfies (asymptotically)
both zero- and first-order consistency conditions [31] with respect
to the fine model. This allows for a more accurate computation
of the fine model optimum x∗f .

2.3. Coarse Model Preconditioning and Adaptive Search
Radius

In order to improve the performance of the manifold mapping
algorithm, the coarse model can be (initially) preconditioned as in (3),
taking advantage of the calibration parameters r. This space-mapping-
like alignment process aims at reducing the discrepancy between the
fine and coarse model responses.

While the calibration parameters might be any parameters
traditionally used by space mapping [6], in this work we only use so-
called preassigned parameters exploited by implicit space mapping [10].
In case of microwave devices these might be, for example, substrate
parameters such as height or the dielectric constant value. Note that
the alignment process is only performed once (at the initial design),
and therefore, it does not increase significantly the computational
complexity of the optimization process.

In order to improve the convergence properties of the MM
algorithm, the surrogate model optimization step (4) is replaced by
a constrained version

x(i+1) = arg min
||x(i)

min−x||≤δ(i)

U
(
R(i)

s (x)
)

(13)

where x(i)
min is the solution vector prior to x(i) with lowest cost function,

and δ(i) is the search radius. The update δ(i) follows a heuristic
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strategy inspired in the trust-region approach [48] that appears to work
adequately in our applications. If the two most recent iterations yield
improvement in the objective function, the search radius is increased.
The search radius is reduced if the current iteration does not improve
the fine model objective function, and remains unchanged otherwise.
Unlike in the trust-region space-mapping approach [15], in this scheme
no solutions are rejected. This allows incorporating all available fine
model data in constructing a (hopefully) better surrogate model.

The search radius δ(i) is updated as follows (δ(0) and α, β > 1 are
user defined arguments; in our numerical experiments we use α = 2
and β = 3):

if
(
U

(
Rf

(
x(i+1)

))
<U

(
Rf

(
x(i)

min

)))
∧

(
U

(
Rf

(
x(i)

))
<U

(
Rf

(
xi−1

)))

δ(i+1) = αδ(i)

else if U
(
Rf

(
x(i+1)

))
> U

(
Rf

(
x(i)

))

δ(i+1) = δ(i)
/

β

else
δ(i+1) = δ(i)

end

2.4. Design Optimization Procedure

Figure 2 shows the flowchart of our design optimization procedure
exploiting manifold mapping, coarse model preconditioning and
adaptive adjustment of the surrogate model search radius. Note that
the fine model is evaluated only once per iteration. Most of the
operations are performed on the manifold mapping surrogate model,
which is computationally cheap, so that the total optimization cost is
essentially determined by the fine model evaluation time.

2.5. Manifold Mapping Optimization with Function
Approximation Coarse Model

As mentioned in the introduction, the preferred coarse model choices
are equivalent circuits or models exploiting analytical formulas.
Such models are sufficiently fast to avoid excessive computational
overhead due to numerous evaluations while performing surrogate
model optimization. For many structures, however, reliable equivalent-
circuit or analytical models are not available. These include, among
others, ultrawideband antennas, substrate integrated circuits as well
as various waveguide structures.
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 Initial Design

Create MM Model

Adjust Search Radius

Optimize MM Model

Evaluate Fine Model

Termination 

Condition?

Final Design

(Optional) Coarse Model 
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No

Yes

Figure 2. Flowchart of the manifold-mapping-based optimization
procedure. Coarse model preconditioning (3) is optional. Each
iteration of the MM algorithm consists of fine model evaluation (only
once per iteration), construction of the MM surrogate model (5)–(9),
adaptive adjustment of the search radius (cf. Section 2.3), as well as
the surrogate model optimization (13) that yields a new design. The
termination condition used in this work is ‖x(i) − x(i−1)‖ < 10−4.

A generic coarse model that is always available is a coarse-
discretization EM model exploiting the same electromagnetic solver
as the one used to implement the fine model. Unfortunately, such
model is normally computationally too expensive to be used directly
in the SM- or MM-based optimization process.

A feasible alternative is to build the coarse model through function
approximation of the coarse-discretization EM-simulation data. The
model created this way is computationally cheap. Moreover, if the
design space is sampled in a sufficiently dense way, the model is able
to inherit good generalization properties from its coarse-discretization
EM “original”. This creates a practical problem though: given the
sampling density, the number of samples grows exponentially with
the number of design variables and may become impracticably large
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even for 5 or 6 design variables. Therefore, it is recommended to
perform the optimization process in two stages [32]: (i) find the
approximation optimum of the coarse-discretization EM model, (ii) set
up a function approximation coarse model only in the neighbourhood
of this optimum.

The procedure for setting up the function approximation coarse
model can be then summarized as follows:

1. Find approximate optimum x∗cd of the coarse-discretization EM
model Rcd;

2. Determine the neighbourhood X∗
cd of x∗cd where the coarse model

will be established (this step can be performed using sensitivity
analysis);

3. Allocate Ncd samples in X∗
cd and obtain the coarse-dicretization

EM model data (design of experiments can be performed using,
e.g., Latin Hypercube Sampling [33]);

4. Create the coarse model by approximating coarse-discretization
EM model data (using, e.g., RBF interpolation [34], kriging [35],
support vector regression [36, 37], etc.).

An example of exploiting this procedure can be found in Section 3.4,
where the coarse model is constructed using kriging interpolation.

3. VERIFICATION EXAMPLES

In this section, several examples of MM-based design optimization are
given for verification purposes, including three microstrip filters and
a planar UWB antenna. We illustrate good convergence properties
as well as overall performance of the proposed technique. In all
cases, satisfactory designs are obtained at the computational cost
corresponding to several evaluations of the fine model.

3.1. Miniature Dual-mode Bandpass Microstrip Filter [38]

Consider the miniature dual-mode bandpass filter [38] shown in Fig. 3.
The design parameters are x = [L s p g]T ; W = 1 mm, Wc = 0.5mm.
The fine model is simulated in FEKO [39]. The coarse model is the
circuit model implemented in Agilent ADS [40] (Fig. 4). The design
specifications are |S21| ≥ −1 dB for 2.35GHz ≤ ω ≤ 2.45GHz, |S21| ≤
−20 dB for 1.6GHz ≤ ω ≤ 2.2GHz and for 2.6GHz ≤ ω ≤ 3.2GHz.
The initial design is x(0) = [12.0 0.905 1.273 0.185]T mm (optimum of
Rc).

The coarse model was preconditioned as in (3) using substrate
height and dielectric constants corresponding to microstrip models of
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Figure 3. Miniature dual-mode bandpass filter: geometry [38].
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Figure 4. Miniature dual-mode bandpass filter: coarse model (Agilent
ADS).
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the equivalent circuit as preassigned parameters. The MM algorithm
yields an optimized design x∗ = [13.143 0.792 1.466 0.1285]T mm
with the corresponding specification error of −0.45 dB (Fig. 5). It
should be emphasized that the MM algorithm exhibits a very consistent
convergence pattern as shown in Fig. 6. The optimization cost is 13 fine
model evaluations (termination condition was set to ‖x(i) − x(i−1)‖ <
10−4). The cost of coarse/surrogate model operations can be neglected
(evaluation time for Rc is a small fraction of a second versus about 15
minutes for Rf ).

For the sake of comparison, the filter was also optimized using
pattern search [49]. The quality of the design obtained with pattern
search is similar to that found by the MM algorithm (specification error
−0.44 dB), however, computational cost is substantially higher (114
fine model evaluations). Optimization using Matlab’s fmincon [50]
failed to find a design satisfying the specifications (the best design
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-25
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-10

-5

0

Frequency [GHz]

|S
21

|

Figure 5. Miniature dual-mode bandpass filter: Initial (dashed line)
and optimized (solid line) |S21| versus frequency; optimized design
obtained using MM algorithm. Design specifications are denoted using
horizontal lines.
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Figure 6. Miniature dual-mode bandpass filter: convergence plot.
Iteration index coincides with the number of fine model evaluations.
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obtained after 150 fine model evaluations was still violating the
specifications by 0.1 dB).

3.2. Wideband Bandstop Microstrip Filter [41]

Consider the wideband bandstop microstrip filter [41] shown in
Fig. 7(a). The design parameters are x = [Lr Wr Lc Wc Gc]T . The
fine model Rf is simulated in FEKO [39]. The coarse model Rc is the
circuit model implemented in Agilent ADS [40] (Fig. 7(b)). The design
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Figure 7. Wideband bandstop microstrip filter: (a) geometry [41],
(b) coarse model (Agilent ADS).
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Figure 8. Wideband bandstop filter: Initial (dashed line) and
optimized (solid line) |S21| versus frequency; optimized design obtained
using MM algorithm. Design specifications are denoted using
horizontal lines.
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Figure 9. Wideband bandstop filter: convergence plot. Iteration
index coincides with the number of fine model evaluations.

specifications are |S21| ≥ −3 dB for 1.0 GHz ≤ ω ≤ 2.0GHz, |S21| ≤
−20 dB for 3.0GHz ≤ ω ≤ 9.0GHz, and |S21| ≥ −3 dB for 10.0GHz ≤
ω ≤ 11.0GHz. The initial design is x(0) = [7 1 9 0.1 0.1]T mm.

As in the previous example, Rc was preconditioned by adjusting
the values of the substrate heights and dielectric constants of
the microstrip components Clin1 and TL3 (Fig. 7(b)). The
MM optimization algorithm yields an optimized design x∗ =
[7.15 1.199 8.20 0.05 0.1296]T mm (Fig. 8) with the corresponding
specification error of −2.3 dB. Fig. 9 shows the convergence plot.
The optimization cost is only 9 fine model evaluations (termination
condition ‖x(i) − x(i−1)‖ < 10−4).

3.3. Wideband Ring Resonator Bandpass Filter [42]

Our third example is the wideband ring resonator bandpass
filter [42] shown in Fig. 10. The design parameters are x =
[L1 L2 L3 W1 W2 S]T mm. The fine model is simulated in FEKO [39].
The coarse model (Fig. 11) is implemented in Agilent ADS [40]. The
design specifications are |S21| ≥ −1 dB for 3.0 GHz ≤ ω ≤ 5.5GHz,
and |S21| ≤ −20 dB for 2.0 GHz ≤ ω ≤ 2.7GHz and 5.8 GHz ≤
ω ≤ 6.5GHz. The initial design is the coarse model optimal solution
x(0) = [6.803 6.179 4.598 0.615 0.050 0.159]T mm (specification error
+23.6 dB).

Again, the coarse model was preconditioned using (3). The
optimized design found by the manifold mapping algorithm is x∗ =
[6.672 6.042 4.253 0.621 0.05 0.171]T (specification error −0.52 dB),
Fig. 12. Fig. 13 shows the convergence plot. The optimization
cost is only 10 fine model evaluations (termination condition ‖x(i) −
x(i−1)‖ < 10−4).
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Figure 10. Wideband ring resonator bandpass filter: geometry [42].
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Figure 11. Wideband ring resonator bandpass filter: coarse model
(Agilent ADS).

3.4. UWB Planar Dipole Antenna

Our last example is the planar dipole antenna shown in Fig. 14,
consisting of the main radiator element and two parasitic strips [43].
The design variables are x = [l0 w0 a0 lp wp s0]T . Other variables
are: a1 = 0.5mm, w1 = 0.5mm. Rogers RT5880 laminate is used for
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Figure 12. Wideband ring resonator filter: Initial (dashed line) and
optimized (solid line) |S21| versus frequency; optimized design yielded
by MM algorithm. Design specifications are denoted using horizontal
lines.
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Figure 13. Wideband ring resonator bandpass filter: convergence
plot. Iteration index coincides with the number of fine model
evaluations.
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Figure 14. Dipole antenna geometry [43]: top and side views.
The dash-dot lines show the magnetic (YOZ) and the electric (XOY)
symmetry walls. The 50 ohm source impedance is not shown at the
figure.
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the substrate dielectric, the substrate height is h = 1.58mm. The fine
model Rf of the antenna structure (10,250,412 mesh cells at the initial
design, evaluation time 44 minutes) is simulated using the CST MWS
transient solver [44]. The design objective is to obtain |S11| ≤ −10 dB
for 3.1 GHz to 10.6 GHz. The initial design is x(0) = [20 10 1 10 8
2]T mm.

Because no reliable circuit equivalent is available, we use
the coarse-discretization models: Rcd (108,732 mesh cells at x(0),
evaluation time 43 seconds). This model is too expensive to be used
directly in the manifold-mapping optimization process. Therefore,
we build a kriging-interpolation-based coarse model Rc exploiting
the methodology described in Section 2.5. In the first stage, we
find the approximate optimum of Rcd, x∗cd = [18.66 12.98 0.526
13.717 8.00 1.094]T mm. The computational cost of this step is 127
evaluations of Rcd (which corresponds to about two evaluations of
the fine model). The kriging-based coarse model is constructed in
the neighbourhood X∗

cd of x∗cd determined by the lower and upper
bounds x∗cd − δ and x∗cd + δ, where δ = [0.5 0.5 0.2 0.5 1.5 0.2]T mm
(the region size was determined based on the coarse-discretization
model sensitivity). We use Ncd = 100 samples allocated using Latin
Hypercube Sampling [33]. To set up the coarse model we exploit
Matlab kriging toolbox DACE [45].

Figure 15 shows the responses of the fine model at the initial design
x(0) (specification error +3.3 dB), at the optimal design of the coarse-
discretization model Rcd (specification error −1.3 dB) and at the final
design obtained using the manifold-mapping algorithm its optimized
design x∗ = [19.1478 12.9434 0.3278 13.8905 6.7683 1.0874]T mm
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Figure 15. Dipole antenna: |S11| versus frequency at initial design
(dotted line), coarse-discretization model optimum (dashed line) and
the optimized design obtained using MM algorithm (solid line). Design
specifications are denoted using horizontal lines.
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Figure 16. Dipole antenna: convergence plot. Iteration index
coincides with the number of fine model evaluations.

(specification error −4.1 dB). Figure 16 shows the convergence plot.
The optimization cost is 15 fine model evaluations (the termination
condition is ‖x(i) − x(i−1)‖ < 10−4).

4. CONCLUSION

A robust and computationally efficient design optimization procedure
exploiting a manifold mapping algorithm is presented. Our technique
is easy to implement. Interaction between the coarse and fine model
is simplified because the surrogate model can be constructed using
explicit formulas (there is no need to extract model parameters by
solving a nonlinear regression problem). The robustness of our
approach is demonstrated through the design optimization of several
microstrip filters and a UWB planar antenna.
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