
Progress In Electromagnetics Research, Vol. 109, 123–137, 2010

APPLICATION OF A DIFFERENTIAL EVOLUTION
ALGORITHM WITH STRATEGY ADAPTATION TO THE
DESIGN OF MULTI-BAND MICROWAVE FILTERS FOR
WIRELESS COMMUNICATIONS

S. K. Goudos and Z. D. Zaharis

Telecommunications Center
Aristotle University of Thessaloniki, Thessaloniki 54124, Greece

T. V. Yioultsis

Department of Electrical and Computer Engineering
Aristotle University of Thessaloniki, Thessaloniki 54124, Greece

Abstract—In this paper, we present a new method for the design of
multi-band microstrip filters. The proposed design method is based
on Differential Evolution (DE) with strategy adaptation. This self-
adaptive DE (SaDE) uses previous experience in both trial vector
generation strategies and control parameter tuning. We apply this
algorithm to two design cases of dual and tri-band filters for WiFi
and WiMax applications. We select the Open Loop Ring Resonator
(OLRR) filters, which are comprised of two uniform microstrip lines
and pairs of open loops between them. The results indicate the
advantages of this approach and the applicability of this design
method.

1. INTRODUCTION

Microwave filters are among the important components of a modern
wireless communication system. Several papers exist in the literature
that address the filter design problem [1–14]. Bandpass filter design
is presented in [5, 7, 8, 10, 11] using different filter structures like
hexagonal loop resonators, radial line stubs, parallel-coupled lines,
spiral shaped resonators, and half mode substrate integrated folded
waveguide. Microstrip ultra-wideband filter design is given in [2, 4],
while in [1, 13, 14] dual-band filters are designed. Open Loop Ring
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Resonator (OLRR) filters, which consist of two uniform microstrip
lines and pairs of open loops between them, are widely used as the
building block in several multiband bandpass filter design cases [15–
17]. In [15], two pairs of folded OLRRs operating at two passbands are
proposed to produce dual-band response. In [18], a tri-band bandpass
filter is constructed by using three pairs of stub loaded OLRRs. In [19],
the space-mapping technique is used for OLRR filter design. This is
accomplished in conjunction with FEKO [20] a commercially available
EM solver. FEKO is a hybrid MoM/FEM software, which we also use
for the OLRR filter design.

Evolutionary algorithms (EAs) like Genetic Algorithms (GAs),
Particle Swarm Optimization (PSO) and Differential Evolution
(DE) have been applied to a variety of design problems in
electromagnetics [21–38]. In [21], Multi-objective Particle Swarm
Optimization with fitness sharing (MOPSO-fs) is applied to a
multilayer dielectric filter design problem while in [32] multi-objective
DE is used for both dielectric filter design and bandpass OLRR
filter design. Differential evolution (DE) [39, 40] is a population-
based stochastic global optimization algorithm, which has been used
in several real world engineering problems like fuzzy logic controller
design problem [41], molecular sequence alignment problem [42], and
automatic image pixel clustering [43]. Several DE variants or strategies
exist. One of the DE advantages is that very few control parameters
have to be adjusted in each algorithm run. However, the control
parameters involved in DE are highly dependent on the optimization
problem. Moreover, the selection of the appropriate strategy for trial
vector generation requires additional computational time using a trial-
and-error search procedure. Therefore, it is not always an easy task
to fine-tune the control parameters and strategy. A DE strategy that
self-adapts the control parameters has been introduced in [44]. This
algorithm has been applied successfully to a microwave absorber design
problem [45] and linear array synthesis [33]. A DE algorithm that
self-adapts both control parameters and strategy based on learning
experiences from previous generations is presented in [46–48]. That
way expensive computational costs spent on searching using a trial-
and-error procedure can be avoided. The novelty in our work lies in
the fact that we present a design framework for microwave filters based
on SaDE. To the best of our knowledge, this is the first time that the
SaDE algorithm is applied to a microwave filter design problem.

This paper is organized as follows: Section 2 describes the problem
formulation and objective function. A brief description of the SaDE
algorithm is given in Section 3. Section 4 presents the numerical results
for two distinct filter design cases. Finally, the conclusion is given in
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Section 5.

2. OPEN LOOP RING RESONATOR FILTERS

A dual band OLRR filter is shown in Figure 1. The frequency response
of such a filter depends on the filter dimensions and spacings between
microstrip lines [15, 19]. The design parameters for this case are the
ones shown in Figure 1, (W1, W2, L1, L2, L3, L4, L5, S1, S2, S3, G),
all expressed in mm. A corresponding tri-band filter can be realized
using three pairs of open loops. The geometry of a tri-band filter is
shown in Figure 2. The design parameters of the tri-band filter are
(W1, W2, L1, L2, L3, L4, L5, L6, S1, S2, S3, G1, G2).

Such a filter design problem can be defined by the minimization of
|S11| in the passband frequency range. This design problem is therefore
defined by the minimization of the objective function:

F(x̄) = 20 log {max |S11(x̄, f)| , f ∈ Sp} (1)

Figure 1. Dual-band filter geometry.

Figure 2. Tri-band filter geometry.
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where x̄ is the vector of filter geometry parameters and Sp is the set of
distinct frequencies in the desired passband frequency ranges.

3. THE DIFFERENTIAL EVOLUTION ALGORITHM

A population in DE consists of NP vectors x̄G,i, i = 1, 2, . . . NP ,
where G is the generation number. The population is initialized
randomly from a uniform distribution. Each D-dimensional vector
represents a possible solution. The initial population evolves in each
generation with the use of three operators: mutation, crossover and
selection. Depending on the form of these operators several DE
variants or strategies exist in the literature [40, 49]. The choice of
the best DE strategy depends on problem type [50]. In SaDE the
following four strategies are used for trial vector generation. These
include DE/rand/1bin, DE/rand-to-best/2/bin, DE/rand/2/bin, and
DE/current-to-rand/1 [51]. In these strategies, a mutant vector v̄G+1,i

for each target vector x̄G,i is computed by:

DE/rand/1/bin

v̄G+1,i = x̄G,r1 + F (x̄G,r2 − x̄G,r3), r1 6= r2 6= r3

DE/rand-to-best/2/bin
v̄G+1,i = x̄G,i + F (x̄G,best − x̄G,i) + F (x̄G,r1 − x̄G,r2)
+ F (x̄G,r3 − x̄G,r4), r1 6= r2 6= r3 6= r4

DE/rand/2/bin

v̄G+1,i = x̄G,r1 + F (x̄G,r2 − x̄G,r3)
+ F (x̄G,r4 − x̄G,r5), r1 6= r2 6= r3 6= r4 6= r5

DE/current-to-rand/1/bin
v̄G+1,i = x̄G,i + K(x̄G,r1 − x̄G,i) + F (x̄G,r2 − x̄G,r3), r1 6= r2 6= r3

(2)

where r1, r2, r3, r4, r5 are randomly chosen indices from the
population, which are different from index i, F is a mutation
control parameter, K a coefficient responsible for the level of
recombination that occurs between x̄G,i and x̄G,r1 . After mutation,
the crossover operator is applied to generate a trial vector ūG+1,i =
(uG+1,1i, uG+1,2i, . . . uG+1,ji, . . . , uG+1,Di) whose coordinates are given
by:

uG+1,ji =
{

vG+1,ji, if randj[0,1) ≤ CR or j = rn(i)
xG+1,ji, if randj[0,1) > CR and j 6= rn(i) (3)

where j = 1, 2, . . . , D, randj[0,1) is a number from a uniform random
distribution from the interval [0,1), rn(i) a randomly chosen index from
(1, 2, . . . , D), and CR the crossover constant from the interval [0, 1].
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DE uses a greedy selection operator, which for minimization problems
is defined by:

x̄G+1,i =
{

ūG+1,i, if f(ūG+1,i) < f(x̄G,i)
x̄G,i, otherwise (4)

where f(ūG+1,i), f(x̄G,i) are the fitness values of the trial and the
old vector respectively. Therefore, the newly found trial vector ūG+1,i

replaces the old vector x̄G,i only when it produces a lower objective-
function value than the old one. Otherwise, the old vector remains in
the next generation. The stopping criterion for the DE is usually the
generation number or the number of objective-function evaluations.

3.1. DE with Strategy Adaptation (SaDE)

In the SaDE algorithm, both the trial vector generation strategies and
the control parameters are self-adapted according to previous learning
experiences. SaDE maintains a strategy candidate pool, consisting of
the four strategies given in (2). Each strategy is assigned a certain
probability. The sum of all probabilities is equal to one. These
probabilities are initialized with a value of 0.25 and gradually adapted
during evolution. The probability of applying the m-th strategy is
pm, m = 1, 2, . . . , M , where M is the total number of strategies. At
generation G, the number of successful trial vectors generated by the
m-th strategy is denoted as nsm,G, while the number of trial vectors
that fail to replace the old vectors in the next generation is nfm,G.
An additional parameter called the learning period (LP) is introduced
in [48]. This corresponds to the number of the previous generations
that store the success and fail statistics. After LP generations, the
probabilities of selecting different strategies are updated according to:

pm,G =
Sm,G

M∑
m=1

Sm,G

where, Sm,G =

G−1∑
g=G−LP

nsm,g

G−1∑
g=G−LP

nsm,g +
G−1∑

g=G−LP

nfm,g

+ ε

(5)

where Sm,G is the success rate of the trial vectors generated by the m-
th strategy within the previous LP generation and ε is a constant set
equal to 0.01 to avoid possible null success rates. Therefore, according
to (5) strategies with high success rates have higher probability to be
applied at the current generation.
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The control parameters are self-adapted in the following way.
The mutation control parameter F is approximated by a normal
distribution with mean value 0.5 and standard deviation 0.3, that is
N(0.5, 0.3). The parameter K is a random number in the interval
[0, 1] generated by a uniform distribution. The crossover rate control
parameter CR used by the m-th strategy is also approximated by a
normal distribution with mean value CRm and standard deviation 0.1,
that is N(CRm, 0.1). The initial value of CRm is 0.5 for all strategies.
The values of crossover rates that have successfully generated trial
vectors in the previous LP generations are stored in a crossover rate
memory for each strategy CRmemory

m that is an array of size LP. At each
generation, the median value stored in memory for the m-th strategy
CRmedian

m is calculated and the CR values generated are given by a
normal distribution with mean value CRmedian

m and standard deviation
0.1. That way the crossover values are evolved at each generation
to follow the successful values found. More details about the SaDE
algorithm can be found in [48].

4. NUMERICAL RESULTS

The OLRR filters are modeled in FEKO. Both filters are fabricated
on a substrate with dielectric constant 9.79 and height 26.5 mils
(0.6731mm). An empirical rule in DE [39, 40] states that the
population size should set to 10D, where D is the problem dimension.
That would require a population size of 110 and 130 vectors for the
dual-band and the tri-band case respectively. Such vector numbers
would significantly increase the total computational cost. Using a
trial and error search we have found that 20 vectors is an adequate
population size for that design problems. The total number of
generations is set to 500. The best results after 10 independent trials
are selected. The LP value is set to 20. The authors in [48] suggest a
value between 20 and 60 for the parameter LP. The sensitivity analysis
performed in [48] for the LP parameter showed it had no significant
impact on SaDE performance. All algorithm runs are performed on a
PC with Intel Core 2 Duo E8500 at 3.16 GHz with 4 GB RAM.

In order to integrate the in-house source code of the SaDE
algorithm with FEKO, a wrapper program was created. FEKO, except
of using a graphical user interface, offers the option to run the EM
solver engine from command line. It requires an input file that defines
the model geometry. This input file uses a script language that allows
users to define variables and control options like the frequency range,
the number of frequency points and the required data in the output
file. The wrapper creates a FEKO input file for each random vector
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created by the algorithms and runs FEKO. The output file, which in
our case is defined to contain the frequency and the S-parameters is
read by the wrapper and the objective function is evaluated.

4.1. Dual-band Filter Design Case

The first filter is designed for operation in two WiMax (IEEE
802.16) frequency bands. These are the 3.5 GHz and the 5.8GHz
frequency bands. For each FEKO run 4 frequency sweeps are taken
in the passband frequency ranges. For this case, we set Sp =
{3.55, 3.6, 5.75, 5.8}. The design parameters for the best filter design
obtained by SaDE are shown in Table 1. Figure 3 shows the simulated
frequency response of this design. The simulated current distribution
for the 3.6 GHz and 5.8 GHz frequencies is presented in Figure 4,
where the resonating ring in each case is clearly seen. In the first
passband between 3.508 and 3.809GHz, the filter has a return loss
greater than 10 dB and insertion loss less than 0.5 dB. In the second
passband between 5.744 and 6.121GHz, the results also show a return
loss greater than 10 dB and insertion loss less than 0.5 dB. The rejection
band (between 4.236 and 5.367GHz) has an insertion loss less than
20 dB. In the first passband, the return loss is greater than 29 dB at
both 3.533 GHz and 3.759GHz. In the second passband the return loss
is greater than 22 dB at 5.794GHz and greater than 28 dB at 6.07GHz.

Figure 3. Simulated frequency response of the dual-band filter.
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(a)

(b)

Figure 4. Current distribution simulations for dual-band filter at (a)
3.5GHz and (b) 5.8GHz.

Table 1. Design parameters for the dual-band filter design case (mm).

W1 0.56 L1 27.81
W2 0.41 L2 2.32
S1 0.41 L3 6.43
S2 0.20 L4 1.71
S3 0.54 L5 3.21
G 2.12

4.2. Tri-band Filter Design Case

The tri-band filter is designed for operation in two WiMax (IEEE
802.16) and one WiFi (IEEE 802.11b/g) frequency bands. These are
the 2.4GHz, 3.5GHz, and the 5.8GHz frequency bands. For each
FEKO run, six frequency sweeps are taken in the passband frequency
ranges. For this case, we set Sp = {2.35, 2.4, 3.55, 3.6, 5.75, 5.8}. The
execution time for each algorithm run as it is expected increases
compared with the dual-band case. The increase in time is about 60%
more than time required for the dual-band case. The design parameters
for the best filter design obtained by SaDE are shown in Table 2.
Figure 5 shows the simulated frequency response of the tri-band filter
design. The simulated current distribution for the 2.4 GHz, 3.6 GHz
and 5.8 GHz frequencies is presented in Figure 6, where the resonating
ring in each case is clearly seen. In the first passband between 2.377
and 2.553 GHz, the filter has a return loss greater than 10 dB and



Progress In Electromagnetics Research, Vol. 109, 2010 131

Figure 5. Simulated frequency response of the tri-band filter.

Table 2. Design parameters for the tri-band filter design case (mm).

W1 0.50 L1 40.00
W2 0.41 L2 4.85
S1 0.40 L3 10.15
S2 0.11 L4 1.87
S3 0.39 L5 3.10
G1 1.30 L6 5.80
G2 0.35

insertion loss less than 0.4 dB. The resonant frequency is at 2.402 GHz
with return loss greater than 19 dB and insertion loss less than 0.08 dB.
In the second passband between 3.633 and 3.96 GHz, the return loss
is greater than 10 dB and the insertion loss is less than 0.5 dB. The
return loss is greater than 22 dB at both 3.658 and 3.884GHz. The first
rejection band (between 2.980 and 3.432 GHz) has an insertion loss less
than 20 dB. The third passband is between 5.693 and 6.020 GHz. The
return loss is greater than 10 dB and the insertion loss less than 0.6 dB.
The resonant frequency is at 5.945 GHz with return loss greater than
16 dB and insertion loss less than 0.2 dB. The second rejection band
(between 4.487 and 5.141 GHz) has an insertion loss less than 20 dB.
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(a)

(b)

(c)

Figure 6. Current distribution simulations for tri-band filter at (a)
2.4GHz, (b) 3.65 GHz, and (c) 5.8 GHz.

5. CONCLUSION

In this paper, we have presented a design methodology for microwave
filters based on differential evolution. Two design cases of dual and tri-
band operation for WiFi and WiMax applications have been presented.
The filter best results found exhibit low loss in the passbands and
high isolation between the passbands. The DE algorithms are robust
optimizers. The proposed synthesis procedure can be used to any filter
design problem that requires optimization of the geometry parameters.
The correct selection of the objective function is essential for the
efficient application of the SaDE algorithm. In classical DE algorithms,
the selection of the appropriate strategy for trial vector generation
and control parameters requires additional computational time using
a trial-and-error search procedure. Therefore, it is not always an easy
task to fine-tune the control parameters and strategy given also that
commonly the appropriate control parameters and strategy selection
are problem dependent. The SaDE advantage though, is the fact that
no additional time for solving a given problem is required. SaDE
requires only the adjustment of two parameters: the population size
and the number of iterations. The filter design cases presented show
the applicability of this design method. In our future work, we plan to
explore the SaDE algorithm applicability to other design problems in
electromagnetics.
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