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Abstract—A novel procedure for estimating the Fresnel reflection
coefficient of a transversally homogeneous half-space medium is
introduced. GPR multistatic measurements are exploited as data
whereas the Fresnel coefficient (as a function of the incidence angle)
is retrieved by inverting a linear integral equation. Having estimated
the reflection coefficient it can be exploited to determine the medium
electromagnetic parameters. Numerical examples are used to show the
procedure effectiveness for different types of homogeneous half-space
media within a two-dimensional scalar geometry. The case of a layered
half-space is also discussed.

1. INTRODUCTION

Determining the electromagnetic properties of a half-space medium is
a relevant problem in a number of applicative contexts. For example,
in GPR (Ground Penetrating Radar), the knowledge of medium is
necessary for subsurface imaging to obtain properly focused images [1].
More in general, the medium estimation problem has been largely dealt
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with in the scientific literature. In particular, two main classes of
methods for the dielectric permittivity material characterization can
be identified. The first one is based on transmission and/or reflection
coefficient measurements of material samples allocated, for instance, in
wave-guide [2–4]. The other class of techniques, of major interest for
this work, is based on the measurement of the reflection/transmission
coefficients in free space conditions [5–10] mainly under plane wave
incidence assumption.

Here, we eliminate the requirement of free space measurements by
taking into account the spatial spectrum of the incident field and by
adopting a multistatic scheme to collect data.

More in detail, the estimation of the Fresnel coefficient is cast as
the inversion of a linear integral equation. Such an inversion is “stably”
achieved through a truncated singular value decomposition (TSVD)
scheme. At this juncture, the reflection coefficient is obtained as a
function of the angle of incidence. Therefore, view diversity (instead
of or jointly to the more usual multi-frequency data) can be exploited
for the medium estimation. This last step can be accomplished by a
simple algebraic relationship for a homogeneous half-space.

This approach exhibits similarities with the one presented
in [11] where the complex effective permittivity of a corrugated
slab is determined by comparing the measured and the theoretical
reflection/transmission coefficients as the incidence direction of a plane
wave varies.

The approach has been already introduced in [12, 13]. There,
the method was numerically checked against a very restricted number
of cases. In this contribution, we mean to extend the analysis in
order to better assess the achievable performance. Therefore, the
novel contributions of the present paper, as compared to [12], can
be summarized as follows. To give a more complete analysis of the
approach by investigating its performances for a broader class of half-
space media, including the case where a buried scatterer is present. To
study the role of noise and of the measurement line extent. Finally, a
more rigorous mathematical formulation supports the entire discussion.
In particular, analytical arguments allow to solve the problem of the
truncation index choice in the TSVD procedure, the latter being a
critical question affecting the trade-off between accuracy and stability
against the noise.

We also address the case of a layered half-space. We show
that the procedure for reflection coefficient retrieving works also for
this case. However, unlike the case of a homogeneous half-space,
medium parameters cannot be estimated (starting from the reflection
coefficient) simply by means of an algebraic relationship. In this case,



Progress In Electromagnetics Research B, Vol. 27, 2011 63

one has to tackle problems related to non-linear optimization which
are indeed common to other estimation methods present in literature.

The paper is organised as follows. In Section 2 the considered
scattering scenario is described. In Section 3 the estimation procedure
is presented. Its numerical analysis is presented in Section 4. Finally,
discussion and conclusions end the paper.

2. SCATTERING SCENARIO

We refer to the two-dimensional scalar geometry depicted in Fig. 1.
Two homogeneous half-spaces (the case of more than two layers is
briefly discussed in the sequel) separated by a planar interface (the
air/medium interface located at z = 0) are considered. The upper
layer is the free-space with dielectric permittivity ε0 and magnetic
permeability µ0, respectively. The lower half-space can be dispersive
and contain ohmic losses σS . Therefore, by assuming exp(jωt) time-
harmonic convention, its equivalent dielectric permittivity is given as
εEQ(ω) = εS(ω)− jσS/ω with εS(ω) = εSR(ω)− jεSI(ω).

A multistatic/multiview measurement configuration is considered.
That is, for each transmitting positions the field reflected back by the
air/medium interface is collected over a set of different positions. The
receiving as well as the transmitting positions are taken at the same
height from the air/medium interface over an aperture Σ synthesized
along the x-axis parallel to and at distance d from the air/medium
interface (see Fig. 1). In particular, the antennas are assumed to be
two-dimensional sources and far enough from the air/medium interface
so that they work as if they were in the free-space.

Moreover, antenna radiation properties are assumed known, for
example, by means of a preliminary characterization stage through
experiments and/or numerical analyses [14].

Figure 1. Geometry of the problem.
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3. ESTIMATION PROCEDURE

For the scattering scene described above, the field radiated by a two-
dimensional antenna, Einc, can be conveniently expressed in terms of
its plane-wave spectrum as follows

Einc(r, rS , k0)=

k0∫

−k0

A(k0, kx)exp(−jkz|z−zS |)exp[−jkx(x−xS)]dkx (1)

where r = (x, z) is the generic point on the air/medium interface and
rS = (xS , zS) is the transmitting antenna position. A(k0, kx) is the
source plane-wave spectrum, k0 is the free-space wave-number and
kz =

√
k2

0 − k2
x. Note that, as we are considering antennas not in

close proximity of the air/medium interface, evanescent waves have
been neglected in Eq. (1). Moreover, as the incident field is linearly
polarized along the y-axis we are actually considering a TEz case.

Accordingly, the field reflected back by the interface, ER, can be
expressed as

ER (xO, xS , k0)

=

k0∫

−k0

A(k0, kx) exp(−2jkzd) exp[−jkx(xO − xS)]Γ(k0, kx)dkx (2)

where rO = (xO,−d) and rS = (xS ,−d) are the observation and the
source positions, and Γ(k0, kx) is the Fresnel reflection coefficient at
the air/medium interface.

Equation (2) establishes a relationship between the field
measurements and the reflection coefficient which, in turn, depends
on the electromagnetic parameters of the investigated medium. This
suggests the adoption of a two-step based estimation procedure. First,
Eq. (2) is solved for Γ(k0, kx). Then, εEQ(ω) can be estimated starting
from the retrieved reflection coefficient.

These two steps are detailed below.

3.1. Reflection Coefficient Retrieving

As to the first step, since both ER and Γ depend on the frequency
(through the wave-number k0) this requires solving Eq. (2) separately
for each adopted frequency.

Let us denote by k01, k02, . . . k0N the free-space wave-numbers
corresponding to N frequencies taken within the frequency band
[k0min, ko max].
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Then, Eq. (2) at the h-th frequency (h ∈ (1, 2, . . . , N)) can be
written as

ER (xO, xS , k0h)

=

k0h∫

−k0h

A(k0h, kx) exp(−2jkzhd) exp[−jkx(xO−xS)]Γ(k0h, kx)dkx (3)

Accordingly, the first step of the estimation procedure consists in
solving Eq. (3) for Γ(k0h, kx) in correspondence to a collection of N
frequencies. To this end, we conveniently rewrite Eq. (3) as

ER (η, k0h) = (AhΓ) (η, k0h)

=

k0h∫

−k0h

A(k0h, kx) exp(−2jkzhd) exp(−jkxη)Γ(k0h, kx)dkx (4)

where we have now considered η = xO−xS as the observation variable.
Moreover, for future convenience, in Eq. (4) we also reported operator
notation, Ah (subscript h once again is a reminder that we are working
at the single h-th frequency), of the involved integral operator.

At this stage, one realizes that multi-monostatic or multi-bistatic
configurations cannot be exploited to invert Eq. (4). Indeed, for such
configurations η would assume a single fixed value which would entail
solving Eq. (4) by exploiting a single data. Therefore, we conclude that
multistatic and/or multi-view/multistatic configurations are required
to solve the inverse problem at hand.

In order to obtain a reliable and effective (from the computational
point of view) inversion procedure, the mathematical features of the
linear operator in Eq. (4) have to be investigated and taken into
account.

First, we need to specify the functional sets to which data ER

belong to and where the unknown Γ is searched for. To this end,
we assume ER ∈ L2[−ηmax, ηmax], that is the set of square integrable
functions defined over [−ηmax, ηmax] (ηmax being equal to 2XM since
xO, xS ∈ Σ = [−XM , XM ]), and Γ ∈ L2[−k0h, k0h]. Moreover, it
is easy to see that the operator in Eq. (4) being of Hilbert-Schmidt
class is indeed compact [15]. This entails that, in order to have a
meaningful solution, some regularization scheme must be applied. To
address this issue the Singular Value Decomposition (SVD) of Eq. (4)
is exploited. Indeed, the singular system {uhn, vhn, σhn}∞n=0 of the
operator (4) provides a way to implement the inversion scheme and,
what is more, allows to gather information on how to regularize the
inverse problem and to sample (in the spatial domain) the reflected
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field data. More in detail, the singular functions uhn and vhn are the
eigenfunctions of A∗hAh and of AhA∗h (A∗h being the adjoint of Ah),
respectively, associated with the same eigenvalue σ2

hn. Then, the uhn

form an orthonormal basis in the space of unknowns while the vhn form
an orthonormal basis in the data space. Moreover, they are a solution
of the following shifted eigenvalue problem [15]

Ahuhn = σhnvhn, A∗hvhn = σhnuhn (5)

Accordingly, the least square generalized solution at the single h-
frequency, Γ̃(k0h, kx), can be expressed as

Γ̃(k0h, kx) =
∞∑

n=0

〈ER(k0h, η), vhn(η)〉Y
σhn

uhn(kx) (6)

where 〈·,·〉 denotes the scalar product in the data functional space
L2[−ηmax, ηmax]. In particular, as the operator at hand is a
compactly supported Fourier transform operator, its image (i.e., the
corresponding reflected field) can vanish only when the function
A(k0h, kx)Γ(k0h, kx) is identically zero within [−k0h, k0h]. The
occurrence of the latter circumstance is unlikely. Therefore, it can be
concluded that the operator in Eq. (4) is injective and hence Γ̃(k0h, kx)
coincides with Γ(k0h, kx) in the case of noise-free data.

Unfortunately, due to the compactness of the operator at hand,
its singular values cluster to zero as their index increases. Therefore,
in order to obtain a stable solution (against noise and uncertainties),
series in Eq. (6) must be truncated. This leads to a TSVD
inversion [15], that is

Γ̃(k0h, kx) =
NTh∑

n=0

〈ER(k0h, η), vhn(η)〉
σhn

uhn(kx) (7)

where we once again adopted Γ̃(k0h, kx) to denote the TSVD-
regularized reconstruction and NTh is the truncation index. The key
point, now, is the choice of the truncation NTh which dictates the
compromise between accuracy and stability.

To this end, we introduce the auxiliary operator Bh defined as
follows

BhΓ =

k0h∫

−k0h

max |A(k0h, kx)|exp(−2jkzhd)exp(−jkxη)Γ(k0h, kx)dkx (8)

where max |A(k0h, kx)| picks up the maximum of the amplitude of
A(k0h, kx).
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It can be easily proven that

‖Ahg‖ ≤ ‖Bhg‖ ∀g ∈ L2([−k0h, k0h]) (9)

where ‖·‖ denotes the standard L2 norm in the data space. Eq. (9)
entails that

σhn ≤ σn(Bh) ∀n (10)

where σn(Bh) are the singular values of Bh.
Therefore, the singular values of Bh are larger than those of

Ah. Moreover, as the singular system of operator Bh is related to
the prolate spheroidal functions [16], its singular values have a step-
like behaviour with the knee occurring at the index [2ηmaxk0h/π], [·]
denoting the integer part operator. Thus, by virtue of Eq. (10), we
conclude that an upper bound for the truncation index in Eq. (7) is
NTh = [2ηmaxk0h/π]. A lower bound can be estimated by following
the theory developed in [17]. However, if a source with a broad plane-
wave spectrum is considered (non directive antennas are in general
also useful for imaging purposes as they allow to form a large synthetic
aperture), the previous estimation works well. Properties of the prolate
spheroidal functions can be also exploited to derive the sampling step
while collecting data [16]. Accordingly, the previous estimation for the
truncation index NTh also gives the number of required data.

In the following examples, while the truncation index in Eq. (7) is
chosen according to the previous discussion, that is varying according
to frequency, the number of measurements in the η domain is fixed
and chosen in correspondence to the highest adopted frequency, that
is NTN = [2ηmaxk0N/π].

Finally, we remark that the implementation of Eq. (7) requires
discretizing Eq. (4). To this end, a standard method of moment is
employed by adopting a finite dimensional representation for ER(·)
and Γ(·). In particular, delta functions are adopted to discretize the
unknown whereas a point matching procedure (over NTN points for the
η variable in correspondence to each adopted frequency) is imposed in
the data domain. Accordingly, the discretized counterpart of Eq. (4)
becomes

ER = AhΓ (11)

where ER and Γ are vectors representing the collected reflected field
data and the discretized version of the unknown, respectively, and
Ah is a matrix representing the discretized linear operator in (4).
Afterwards, the singular system of Ah is numerically computed and
used to implement Eq. (7).
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3.2. Determining the Medium’s Parameters

The inversion of Eq. (4) provides an estimation of the Fresnel reflection
coefficient, Γ̃(k0h, kx), as a function of the spectral (angular) variable kx

at each working frequency. At this stage, the working hypothesis about
the investigated medium as homogeneous half-space is not entered yet.
Indeed, the procedure presented is quite general and requires only the
homogeneity of the medium along the x-axis.

When the investigated medium is a homogeneous half-space, the
equivalent dielectric permittivity can be directly derived from the
reflection coefficient via an algebraic mathematical relationship as

ε̃EQ(ωh) =
k2

x + k2
z

{[
1− Γ̃(k0h, kx)

]
/

[
1 + Γ̃(k0h, kx)

]}2

ω2
hµ0

(12)

where ωh is the h-th adopted angular frequency.
In the ideal case of noise and uncertainties free data, regularization

would not be necessary and Eq. (12) would return an ε̃EQ(ωh) which
does not depend on the spectral variable kx. However, due to the
necessity of adopting the TSVD scheme in order to mitigate the
effect of the model error and the noise, the dielectric permittivity
becomes a function of kx, that is ε̃EQ(ωh, kx). Therefore, as the
reflection coefficient is recovered for all the kx ∈ [−k0h, k0h], the
dielectric permittivity can be estimated by averaging ε̃EQ(ωh, kx) over
kx. Accordingly, at the h-th frequency we obtain

ε̃EQAV (ωh) =
1

2αk0h

αk0h∫

−αk0h

ε̃EQ(ωh, kx)dkx (13)

where the factor α < 1 is used to mitigate the loss of accuracy in
the reflection coefficient reconstruction at the edges of the integration
domain.The averaging procedure in Eq. (13) is also useful in curtailing
the effect of the residual noise after the application of the TSVD
scheme.

When the half-space is a layered medium, estimating the
equivalent dielectric permittivity from the retrieved reflection
coefficient becomes a much more difficult task. In this case, it is
generally required to run an optimization algorithm for identifying the
medium parameters. However, the proposed procedure can be useful
as it gives a further degree of freedom in tackling such a problem.
Indeed, the knowledge of the reflection coefficient as a function of the
angle of incidence, besides the more usual multi-frequency data, can
be exploited to estimate the medium parameters.
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4. NUMERICAL RESULTS

This section reports some numerical results with the aim of assessing
the performances of the proposed estimation procedure. To this
end, synthetic data have been generated simply by numerically
implementing Eq. (2) and extending the integration domain slightly
beyond the visible spectrum. The reflected field is collected over an
aperture Σ = [−XM , XM ] synthesized at a height d = 0.2m above the
air/medium interface. Two different transmitting antenna positions
located at the edges of the aperture, that is at xS = −XM and
xS = XM , are employed. This allows the observation variable η =
xO−xS to range within the observation interval [−2XM , 2XM ]. N = 15
frequencies taken uniformly within the frequency band [0.3, 1]GHz are
considered. Hence, according to the discussion reported in the previous
section, for all the frequencies NTN = [2ηmaxk0N/π] data samples are
employed for the reflection coefficient retrieving.

As to the source plane-wave spectrum, we assume that

A(kx) = cos(0.1kx/2)/
[
1− (0.1kx/π)2

]
(14)

which resembles the one of a horn-antenna. Finally, in the averaging
procedure of Eq. (13), the edge factor α is chosen equal to 0.7.

4.1. Homogeneous Half-space

We first consider a homogeneous half-space. In particular, we start
by considering the case of a lossless medium in order to study how
the estimation capability of the proposed method depends on the
dielectric permittivity of the medium and on the noise. To this end,
we assume to collect the data over an aperture with XM = 1m
(this entails considering fourteen equally spaced, over Σ, measurement
points for each source position and for each frequency) and consider
three different values of the relative dielectric permittivity (4, 9 and 18)
representative of a clay dry, a permafrost and a sand wet materials,
respectively [18]. The corresponding estimation results are reported
in Fig. 2. In that figure, the actual and the estimated relative
dielectric permittivity profiles (as a function of the frequency) are
compared for noise free and noisy data. The maximum (over the
frequency band) relative discrepancy, that is er = max[(ε̃EQAV (f)/ε0−
εEQ(f)/ε0)/(εEQ(f)/ε0)] (note that for the example at hand εEQ does
not depend on the frequency), is employed to quantify the estimation
quality.

Moreover, erN is the same as er but refers to the case of data
corrupted by noise. In particular, we considered a zero mean additive
complex white Gaussian noise with the signal to noise ratio (SNR)
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given in the figures. As can be seen, the estimation procedure works
very well in absence of noise. However, it can be also noted that the
estimation accuracy degrades with noisy data, especially for the case of
the medium with the highest value of dielectric permittivity (bottom
panel of Fig. 2).
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Figure 2. Estimation results for lossless media (SNR = 15 dB).
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In order to further investigate about the role of the dielectric
permittivity, in Fig. 3, we analyze the estimation performance for a
larger interval of εEQ/ε0 which ranges from 4 to 40 with a step of
4 [18]. In particular, in that figure we report er and erN15AV , the latter
being erN averaged over 100 different noise realizations with the SNR
equals to 15 dB. As can be seen, according to the previous examples,
the estimation gets worse as the dielectric permittivity increases.

In Fig. 4, we turn to consider the role of the measurement aperture
in conjunction to the case of εEQ = 18ε0. To this end, the measurement
aperture is enlarged to XM = 2 m (thus, the observation domain
and the number of measurement points are doubled compared to
the previous case). As can be seen, all the error figures improve.
This shows how the increase in the extent of the measurement
aperture favorably affects the estimation procedure. This can be
easily explained by recalling Eq. (4) from which one can deduce that
a larger measurement aperture entails a less severe filtering while
reconstructing the reflection coefficient via the regularization scheme.
The improvement is also observed for noisy data. For this case, we also
increased the SNR passing from 15 dB to 25 dB. The corresponding
error figure, denoted by erN25, returned a value of 0.8% which is very
close to the noiseless case. We also considered the averaged error figure
which practically returned the same value.

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

x 10
8

17

17.2

17.4

17.6

17.8

18

18.2

18.4

18.6

18.8

19

f [Hz]

ε
S
/ ε

0

noisless estimation

noisy estimation SNR=25dB

noisy estimation SNR=15dB

actual

e
r
=0.5%

e
rN15

=6.5% e
rN15AV

=6.2%

e
rN25

=0.8%

Figure 4. The same case as at the bottom of Fig. 2 with the
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We turn now to address the case of a medium containing
conductive losses as well (see Fig. 5) so that εEQ(ω) = εS − jσS/ω,
with εS = 4ε0. Two different values of the electric conductivity,
σS = 0.01 S/m and σS = 0.1 S/m are considered and the same
measurement configuration as the one adopted for Fig. 2 is exploited
(XM = 1 m). The noiseless estimations practically coincide with
the actual medium parameters hence we quantified only the noisy
estimation (SNR = 25dB). As can be seen, for both the cases the
real part of εEQ(ω) is well estimated (erN25 returns 0.7% and 1.7%,
respectively) and the error figure gives results comparable to those
obtained in the lossless case. This means that the presence of the
conductivity σS , at least for the value up to 0.1 S/m, does not
significantly affect the estimation of the real part of εEQ(ω). As to
the imaginary part of εEQ(ω), by looking at the corresponding error
figures (denoted as erIN25 and erIN25AV ) it can be noted that the lower
σS the worse the estimation. This, of course, is to be expected. Indeed,
having fixed the SNR, the noise contribution in the estimation does not
depend on the unknown and clearly corrupts the reconstruction of the
lower unknown to a larger extent. On the other hand, the SNR is
linked to the reflected field norm energy but the latter, for the case
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at hand, mainly depends on the dielectric permittivity of the medium.
This conclusion is furthermore supported by the example reported in
Fig. 6 where, by increasing the dielectric permittivity of the medium
to εS = 9ε0, we have that the estimation of the imaginary part of
εEQ(ω) degrades. In fact, in this case, as εS increased so did the
energy norm of the reflected field and hence the noise (having fixed
the SNR = 25dB). In all cases, the estimations are very good and
useful for possible subsequent imaging.

The last example we present refers to a medium which accounts for
conductive losses as well as dispersive phenomena described in terms of
the first order Debye model, that is εEQ(ω) = ε0[ε∞ − j σS

ωε0
+ εST−ε∞

1+jωτe
]

with εST = 16, ε∞ = 4, σS = 0.1 S/m and τe = 64 ns. From Fig. 7, it
can be seen that also in this case the estimation procedure works very
well with both noise-free and noisy data (SNR = 25 dB).

4.2. Estimation in Presence of Buried Scatterers

In all the previous examples, no scatterers were buried in the medium.
This circumstance does not necessarily occur in practical situations.
In these cases, the field scattered by possible buried objects acts
as a disturb which negatively affects the estimation procedure. Of
course, the amount of such a disturbance will depend on the scatterers’
characteristics (i.e., location, shape, material composition) and on
soil’s properties. Therefore, it is useful to check the estimation
procedure also in presence of buried scatterers. To this end, we consider
a metallic circular cylinder of radius equal to 0.1m buried relatively
close to the interface at a depth of 0.2 m beneath it (i.e., the depth of its
center is 0.3 m). In particular, the field scattered by the buried object is
computed numerically by solving an electric field integral equation once
the proper boundary conditions are forced on its contour. The resulting
field is then propagated through the interface by neglecting the mutual
scattering between the object and the interface. In order to analyze the
role of the scatterer’s position relatively to the measurement aperture,
four different centre’s locations are considered, i.e., p1 = (0, 0.3)m,
p2 = (−0.5, 0.3)m, p3 = (−1, 0.3)m and p4 = (−1.5, 0.3)m. As to the
measurement configuration, we maintain XM = 1m and 15 frequencies
taken uniformly within [0.3, 1]GHz. Finally, in order to also examine
different soils we consider two cases with εS = 4ε0, σS = 0 S/m
and εS = 4ε0, σS = 0.1 S/m, respectively. The estimation results
corresponding to these cases are reported in Fig. 8. In particular, there,
the top panel reports er and erN25AV for the lossless case whereas the
bottom panel refers to the lossy case and reports er, erI , erN25AV

and erIN25AV . As expected, when losses are present the estimation is
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Figure 8. Estimation in presence of a buried scatterer for different
scatterer’s positions.

relatively immune to the scatterer disturbance as the error is almost
constant over the scatterer’s positions and comparable to the results
obtained previously for the same medium. In the lossless case, instead,
the error increases, particularly for the position p3 (when the scatterer
is just in front one of the transmitting antennas). However, as soon
as the aperture is slightly slid, so that the object is located in p4,
the estimation procedure turns to be effective. Therefore, if the
measurement aperture is kept small, one can think to slide it over
a different portion of the half-space to reduce the disturbance arising
from the buried objects.

Finally, we remark that, when the object is more deeply located
things get better also in the lossless case.

4.3. Layered Half-space

We end this section by addressing the case of a two-layered half-
space. In this case we report results concerning the reflection coefficient
estimation only. Starting from the reflection coefficient the medium
parameters can be determined by an optimization algorithm but this
part is not addressed herein.

We first consider the case of a two-layered lossless half-space
(hence, actually the medium has three layers with the upper one being
the free-space). The first layer is 13 cm thick with relative dielectric
permittivity of εr

S1 = 4, whereas the second layer is unbounded and has
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Figure 9. The reflection coefficient in the case of a lossless two-layered
half-space medium for f = 0.3 GHz (top panel), f = 0.5GHz (middle
panel) and f = 1 GHz (bottom panel).
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Figure 10. The same as in Fig. 7 but with ohmic losses in the medium.
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a relative dielectric permittivity of εr
S2 = 9. For the same measurement

set-up as already employed in the previous cases, the corresponding
retrieved reflection coefficient is reported in Fig. 9 for three frequencies
( i.e., 300MHz, 500 MHz and 1 GHz) chosen among the adopted fifteen.
A further example, where we now added conductivity losses to the
medium (σS1 = 0.01 S/m and σS2 = 0.1 S/m in the first and the
second layer, respectively) is reported in Fig. 10. In both cases, by
comparing the estimated reflection coefficient and the actual one, the
effect due to the regularization algorithm is well evident. In particular,
the typical oscillating behaviour due to the truncation in the TSVD
expansion can be appreciated. Moreover, the estimation get worsen
at the edge of the kx domain, especially as to the phase estimation
(that is why, while addressing the single-layer half-space medium, we
adopted an edge factor in Eq. (13)). Finally, the estimation obtained
at 1 GHz appears worse than the other ones. It can be shown that this
is because, at that frequency, the filtering introduced by the TSVD
is slightly more severe. Notwithstanding, these estimations look like
the ones obtained in the case of a single-layer half-space medium (not
shown here), hence one can hope to succeed in inferring the medium
parameters as before.

In order to assess the quality of the results, the estimated and
the actual reflection coefficients should be compared according to
some suitable metric. However, having done this, one should be
able to propagate such a mismatch on the estimation of the medium
parameters. We did not followed this path in the previous examples.
Rather, we directly quantified the estimation goodness on the medium
parameters. For a layered half-space, this would entail dealing with a
non-linear optimization problem. Hence, the achievable performance
could be also dependent on the type of optimization algorithm one
may want to adopt. In order to obtain a general indication about
the quality of the reflection coefficient estimation one can look at a
cost functional accounting for the mismatch between the estimated
reflection coefficient and the theoretical one, the latter obtained while
the medium parameters vary. Accordingly, one can conclude that the
reflection coefficient estimation is good when the absolute minimum
of such a functional occurs sufficiently close to the actual medium
parameters. To follow this approach, we consider the functional defined
below

Φ(m) =
∥∥∥Γ(m)− Γ̃

∥∥∥
2
/max

∥∥∥Γ(m)− Γ̃
∥∥∥

2
(15)

where m is a vector containing the parameters of the medium to
be searched for, Γ and Γ̃ are the stacked vectors (over kx and k0)
representing the trial and the estimated reflection coefficients and
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ε
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S2

Figure 11. Contour plot of the cost functional of Eq. (15). The
reflection coefficient estimations for the case reported in Fig. 9 have
been exploited by assuming to know the thickness of the first layer.

the max functional is defined over the interval to which the medium
parameters are assumed to belong to.

Figure 11 reports the functional of Eq. (15) built by exploiting
the reflection coefficient estimations obtained in the case of Fig. 9.
For the sake of convenience of visualization, the functional is displayed
as a function of εr

S1 and εr
S2 whereas the thickness of the first layer

is assumed equal to the actual one. As can be seen, the absolute
minimum just occurs very close to the true medium parameters.
Therefore, according to the previous discussion, we can conclude that
the reflection coefficient estimation is good.

5. DISCUSSION AND CONCLUSIONS

In this paper, we have addressed the problem of the estimation of the
equivalent dielectric permittivity of a homogeneous half-space medium
starting from GPR surface measurements. The problem is of interest
not only for medium characterization but also for subsurface imaging.
In this context, in fact, a preliminary medium characterization allows
to mitigate air/medium clutter and is mandatory to correctly form
subsurface images.

A simple procedure based on the retrieving of the Fresnel reflection
coefficient accounting for the reflection occurring at the air/medium
interface has been presented and checked against synthetic noisy
data. Both the cases of conductive and dispersive half-spaces have
been considered. It is shown that the procedure gives satisfactory
estimations also when a scatterer is buried beneath the air/medium
interface, especially when the medium is lossy or the measurement
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aperture is slid so that the buried object is no more below it.
For the case of a homogeneous half space, the proposed procedure

does not require a medium model. Hence, estimation can be achieved
without the use of a fitting scheme. Furthermore, it works without
a cooperative target that would be needed in some autofocusing
estimation procedures. Finally, the proposed procedure is extremely
quick, almost real time after data collection, even though it must be
run for each adopted frequency. However, the estimation procedure
requires the knowledge of the antenna plane-wave spectra. Such
spectra could be difficult to obtain when antenna are in close proximity
to the air/medium interface as mutual coupling cannot be negligible.
Therefore, to tackle such a problem further efforts must be made. A
first preliminary way to solve that problem is described in [19] where
a simple time-gating procedure is proposed.

Finally, a two-layered half-space medium has been addressed as
well. In this case, we have shown that the estimation of the reflection
coefficient is “sufficiently good” to be used in a subsequent optimization
stage to infer medium’s parameters.
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