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Abstract—The objective of this work is to analyze electronic
transport phenomena, due to ionized impurity scattering in δ-MIGFET
(Delta-Multiple Independent Gate Field Effect Transistor). In this
work, we report theoretical results for electronic transport in a
delta-MIGFET using the device electronic structure and analytical
expression of mobility and conductivity. The results show that
the analytical mobility and conductivity are a good way to analyze
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transport in this device. We find the relative mobility as a linear and
increasing function in different modes; also, we find transconductance
as an almost flat function in all the evaluated interval. Finally, we
analyze the differential capacitance and resistivity, and we report
regions where this device is operating in digital and analogue mode.
These regions are delimited in terms of intrinsic and extrinsic
parameters of this device in symmetrical mode.

1. INTRODUCTION

Rapid and predictable scaling of planar CMOS devices is becoming
difficult. Recently, it is very hard to conserve MOORE’s law with the
conventional microelectronics technology, and it needs to search a new
alternative [1–5].

Now some new devices appear to replace the planar CMOS
devices. These are subject to investigations using multiple surfaces
and are promising to improve scaling and could even make new circuits
feasible, to achieve better characteristics [6–10].

Double gate Silicon On Insulator (SOI) devices have been also
widely researched to replace the current planar SOI devices [8, 11, 12].
The main advantage of this architecture is that it offers a reinforced
electrostatic coupling between the conduction channel and the gate
electrode. A double gate structure can efficiently sandwich the
semiconductor element playing the role of the transistor channel [13].
Recently, double gate structures with independent gate devices have
offered additional advantages and challenges [2, 6, 14–17].

We introduce a new device with double gate and 2DEG (Two-
Dimensional Electron Gas) as conduction channel δ-MIGFET (δ-
Multiple Independent Gate FET) (Figure 1), where double gate
electrodes control a delta-doped channel using double gate electrodes
that are separated from each other.

Mainly, we will study the transport properties of the new δ-
MIGFET (δ-Multiple Independent Gate FET) (Figure 1) transistor
in symmetrical and asymmetrical modes. The transconductance
observed in this system is almost stable in asymmetrical mode as
the experimental work in conventional MIGFET [11]. This feature
is highly desirable in electronics to reduce the noise in amplifications
and improve the stability [18].

Furthermore, we have also found that the mobility is more linear
in the asymmetrical mode than in the symmetrical one and that
it doubles when the contact potentials are high, allowing a better
performance [19, 20].

These properties are due primarily to the good electronic
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confinement achieved in the two contact gates on both sides and
secondly, to the conduction channel control in an independent way
in the two gates.

The transport phenomena is studied in two forms. The first
one requires the electronic structure calculations results, as a preview
study applied to δ-FET and ALD-FET [21–23]. The second one
uses the Thomas Fermi approach; this one has an advantage since
it is not necessary to calculate the electronic structure [eigenfunctions,
eigenvalues].

Finally we present the relative analytical resistivity. It is noted
that it has an almost linear behaviors and depends on the density of
the confined electrons. We specify the regions of operation in analog
and digital systems and present the relative differential capacity of the
system. It has been shown that the behavior of the capacity mainly
depends on the density of the doped delta that is comparable of the
work reported in other systems [24, 25].

2. THEORETICAL BACKGROUND

The δ-MIGFET is a conventional MIGFET [6, 7] with a delta doped as
the conduction channel. The δ-doping technique allows one to obtain
an extremely sharp doping profile and a high-density-doped layer [26–
29], and it is of great interest [30–32].

The potential of this system is formed by a first metal-
semiconductor contact (Schottky barrier), followed by the n-type delta-
doped quantum-well system and second metal-semiconductor contact
(Schottky barrier) (Figure 1). The presence of a confined electronic
gas depends on the parameters used in the construction of the system.

If there is electronic confinement, the model for describing the
conduction band of the semiconductor in the δ-MIGFET system has,
as a main assumptions, the potential profile described by the depletion

Figure 1. Cross-section of Delta-MIGFET in GaAs.
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region approach in the proximity of the first metal-semiconductor
contact [33].

Vdep(z) =
2πe2

εr
Nd(z + d− l)2. (1)

where Nd is the background impurity density; εr is the electric
permittivity constant of GaAs; −d (d) is the distance at which the
first (second) gate is positioned, respectively; and l is the screening
distance for the electric field.

l =
√

εrVc1

2πe2Nd
. (2)

Here Vc1 is the first contact voltage.
The second assumption is that, in the region not too close to

the interface, the delta-doped well potential is described within a self-
consistent Thomas-Fermi approach by:

Vn(z)− Ef = − α2
n

(αn|z|+ z0n)4
, (3)

αn = 2/(15π) and z0n = (α3
n/πN2d)1/5, is the distance at which the

n-type delta-doped well is positioned. N2d is the two-dimensional
impurity density of the n-type delta-doped quantum-well, and Ef is
the Fermi level.

The third potential describes the depletion region approach in the
proximity of the second metal-semiconductor contact.

V
′
dep(z) =

2πe2

εr
Nd(z − d + l

′
)2, (4)

l
′
is the screening distance for the electric field, where

l
′
=

√
εrVc2

2πe2Nd
. (5)

Here Vc2 is the second contact voltage.
The entire potential is then,

V (z) =
2πe2

εr
Nd(z+d−l)2θ(−d+l−z)− α2

n

(αn|z|+z0n)4
θ(z−lp)θ(l

′
p−z)

+
2πe2

εr
Nd(z − d + l′)2θ(z − d + l′). (6)

where lp (l
′
p) is the first (the second) depletion region width, V (lp) = 0

(V (l
′
p) = 0). We have assumed that the Fermi level Ef is close to the

conduction band. θ is the unit-step function.
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We will calculate eigenvalues and eigenfunctions for the following
section, with (6) and Schrödinger equation:

− ~2

2m∗
e

d2Fi(z)
dz2

+ V (z)Fi(z) = EiFi(z) (7)

where Fi(z) (Ei) is the ith eigenfunction (eigenvalue) of n-type delta-
doped respectively.

2.1. Transport Properties

Based on the Thomas Fermi approximation to this δ-MIGFET, we
study the electron transport properties of the system. We only
consider the ionized donor scattering mechanism, because it is the most
important at low temperature. The Coulomb scattering potential due
to the ionized impurities is considered as distributed randomly in the
doped layer. Finally, we take the ratio of the mobility [34]:

µrel =
µVc1,Vc2

µVc1=0,Vc2
=

∫ ∫
ρVc1=0,Vc2

e (z′) ρVc1=0,Vc2
imp (z) |z − z′|dzdz′

∫ ∫
ρVc1,Vc2

e (z′) ρVc1,Vc2
imp (z) |z − z′|dzdz′

, (8)

ρVc1,Vc2
e (z′)

(
ρVc1=0,Vc2

e (z′)
)

is the density of electrons of n-type delta-
doped where the first potential contact is Vc1 (Vc1 = 0), and the second
potential contact is Vc2, respectively;

ρVc1,Vc2
imp (z)

(
ρVc1=0,Vc2

imp (z)
)

is the density of impurities of n-type
delta-doped where the first potential contact is Vc1 (Vc1 = 0), and the
second potential contact is Vc2, respectively.

With ρVc1,Vc2
imp = N2d × δ(z) and δ(z) is Dirac delta.

Expression (8) can be put in the following form:

µrel =
∫

ρVc1=0,Vc2
e (z) |z|dz∫
ρVc1,Vc2

e (z) |z|dz
. (9)

Using the mass effective theory at T = 0 K:

ρe (z) =
em∗

π~2
Σne

1 |Fi(z)|2(Ef − Ei)θ(Ef − Ei), (10)

where Ef is the Fermi level; Ei is the ith level of n-type delta-doped;
ne is electronics states number; and θ is the unit-step function.

Using (10) in (9) the expression (8) will be:

µrel =
µVc1,Vc2

µVc1=0,Vc2
=

Σne
1

∫ |F Vc1=0,Vc2
i (z)|2

(
EVc1=0,Vc2

f −EVc1=0,Vc2
i

)
|z|dz

Σne
1

∫ |F Vc1,Vc2
i (z)|2

(
EVc1,Vc2

f −EVc1,Vc2
i

)
|z|dz

,

(11)
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where F Vc1,Vc2
i (z), EVc1,Vc2

f and EVc1,Vc2
i [F Vc1=0,Vc2

i (z), EVc1=0,Vc2

f and

EVc1=0,Vc2
i ] are the envelope functions, the Fermi level and the ith level

of n-type delta-doped, respectively, where the first potential contact is
Vc1 (Vc1 = 0). The former expression is valid for T = 0 K.

The relative electronic density is defined as

nrel =
nVc1,Vc2

nVc1=0,Vc2
. (12)

Finally the relative conductivity is as

σrel = nrel × µrel. (13)

In this case we need the eigenvalues and eigenfunctions to calculate
µrel, nrel and σrel.

Now, we introduce the analytical transport:
The expression (10) of ρe (z) in the Thomas-Fermi approximation

is:
ρe (z) =

1
2πe2~2

(2m∗)
3
2 (Ef − V (z))

3
2 , (14)

in which it presupposes that there are only electrons in the region
classically allowed, then z ∈ [lp, l

′
p] and V (z) is given by (6).

The analytical relative mobility quantity for (Vc1, Vc2) is defined
as:

µ′rel =
µ′Vc1,Vc2

µ′Vc1=Vc2=0 rmmeV

=

∫ l
′
p

lp
ρVc1=Vc2=0meV

e (z) ρVc1=Vc2=0meV
imp |z − z′|dzdz′

∫ l
′
p

lp
ρVc1,Vc2

e (z) ρVc1,Vc2
imp |z − z′|dzdz′

. (15)

In the first approximation which we will consider only the delta-doped
potential effect when z ∈ [lp, l

′
p] then:

V (z) ' Vn(z) = − α2
n

(αn|z|+ z0n)4
. (16)

Using (9), (14) and (16), µ′rel will be:

µ′rel =

[∫ l
′
p

lp
(Ef − Vn(z))

3
2 |z|dz

]Vc1=Vc2=0meV

[∫ l′p
lp

(Ef − Vn(z))
3
2 |z|dz

]Vc1,Vc2
, (17)

with lp < 0, 0 < l
′
p, V (lp) = V (l

′
p) = 0 and Ef = 0 meV in GaAs.
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The analytical relative mobility expression may be written as

µ
′
rel = 2




(
2− 5lp − a

(lp − a)5
a4 − 5l

′
p + a

(l′p + a)5
a4

)−1



Vc1,Vc2

, (18)

with a = z0n
αn

.
When Vc1 = Vc2 the analytical relative mobility expression may

be written as

µ
′
rel =

[(
1− 5lp − a

(lp − a)5
a4

)−1
]Vc1=Vc2

. (19)

We define the analytical relative electronic density as

n
′
rel =

∫ l
′
p

lp
ρVc1,Vc2

e (z) dz

∫ l′p
lp

ρVc1=Vc2=0meV
e (z) dz

=
ρVc1,Vc2

e

ρVc1=Vc2=0meV
e

. (20)

Using the same approximation as before, we obtain:

n
′
rel =

[
1 +

a5

2
(

1
(lp − a)5

− 1
(l′p + a)5

)
]Vc1,Vc2

. (21)

When Vc1 = Vc2 the analytical relative density will be:

n
′
rel =

[
1 +

a5

(lp − a)5

]Vc1=Vc2

. (22)

Finally, the relative analytical conductivity is

σ′rel = n′rel × µ′rel (23)

Using (19) and (22), σ′rel becomes in case Vc1 = Vc2:

σ′rel =
[

(lp − a)5 + a5

(lp − a)5 − (5lp − a)a4

]Vc1=Vc2

. (24)

2.2. Differential Capacitance

The differential capacitance is give by [33].

C =
∂Qd

∂Vc
, (25)

where
Qd = q ×Nd × lp. (26)
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Here Qd is the carrier due to donors in the depletion region; lp is the
width of the depletion region; q is the charge of the electron; Vc is the
voltage contact measured in the interface of the metal semiconductor
contact; and Nd is the density of background impurities.

Then we find:
C = q ×Nd × ∂lp

∂Vc
. (27)

3. RESULTS AND DISCUSSION

The starting parameters for δ-MIGFET in GaAs are: m∗ = 0.067m0,
εr =12.5, N2d = 7.5× 1012 cm−2, Nd = 1× 1018 cm−3, Ef = 0 meV.

3.1. Case Vc1 6= Vc2

Figure 2 reports results of calculating the profile of the potential and
sub-band energies with their envelope wave functions. We obtained
the results using the Thomas Fermi model with N2d = 7.5×1012 cm−2,
Vc1 = 500meV, Vc2 = 300 meV, and the background impurities density
is Nd = 1 × 1018 cm−3, at T = 0K. Here the n-type delta doped
quantum-well is located at 300Å from the first and the second interface.

The dashed curve represents the obtained confining potential pro-
file, and the solid curves represent the eigenvalues and eigenfunctions,
where blue solid curve, red solid curve and green solid curve are the
fundamental state eigenfunction, the second state eigenfunction and
the third state eigenfunction, respectively.

Figure 2 represents an asymmetric profile of the potential because
Vc1 6= Vc2, and it represents also eigenvalues, E0 = −155.6meV,
E1 = −61.9meV and E2 = −20.3meV with the Fermi level taken close
to the bottom of conduction band for the GaAs. The eigenfunctions
and eigenvalues represent the starting point for transport phenomena
calculations.

Figure 3 shows the relative mobility as a function of the first
contact potential Vc1 with 50 meV < Vc1 < 650meV from N2d =
7.5 × 1012 cm−2. Reference values are taken for (Vc1 = 0, Vc2). The
curves from bottom to top correspond to the second potential contact
Vc2 = 50, 100, 200, 300 and 400 meV, respectively.

The relative mobility (Figure 3) behaves in two forms. The first
one is rising in a almost linear form when Vc2 ≤ 300 meV and the second
is rising in a parabolic form when Vc2 = 400meV and Vc1 > 400meV.

We can see the difference in relative mobility between (Vc1 =
50meV, Vc2 = 50 meV) and (Vc1 = 50 meV, Vc2 = 400 meV) and
between (Vc1 = 650meV, Vc2 = 50 meV) and (Vc1 = 650 meV,
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Figure 2. Conduction band, Eigenvalues and Eigenfunctions,
Energies in meV for Vc1 = 500 meV, Vc2 = 300meV, N2d = 7.5 ×
1012 cm−2, d = 300Å.
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Figure 3. Relative mobility as a function of potential of contact
Vc1 (Correspond to the different value of Vc2) δ-MIGFET in GaAs
for N2d = 7.5× 1012 cm−2, d = 300Å.
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Figure 4. Relative Conductivity as a function of potential of contact
Vc1 (Correspond to the different value of Vc2) δ-MIGFET in GaAs for
N2d = 7.5× 1012 cm−2, d = 300Å.

Vc2 = 400meV). The value of mobility difference increases from 0.18
to 0.44, and it doubles.

Generally the mobility increases when increasing Vc1 and Vc2. This
could be explained by the fact that the electrons in quantum take more
energy to move when the two potentials contacts increase.

Figure 4 shows the relative conductivity as a function of Vc1 with
50meV < Vc1 < 650 meV for different values of Vc2 = 50, 200, 300
and 400 meV. The relative conductivity rises when Vc1 and Vc2 are
rising, and it has an almost linear behavior. In other words, the
transconductance is almost flat. The same behavior was seen in Ultra-
Thin Independent Double Gate MOSFET in Munteanu’s work [13].

This comportment means that this electronic device δ-MIGFET
has a good conductivity when the first and second potentials are
increasing. On the other hand, as we saw before, this device has in
general a lineal behavior, and this feature has a great importance in
electronic systems when a stable transconductivity is desired.

3.2. Case Vc1 = Vc2

Now we analyze the system, δ-MIGFET, in the particular and
interesting case when Vc1 = Vc2.

Figure 5 shows the potential profile (The dashed curve) when
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Vc1 = Vc2 = 500 meV and wave functions (The solid curves) for
N2d = 7.5 × 1012 cm−2. Where blue solid curve, red solid curve and
green solid curve are the fundamental state eigenfunction, the second
state eigenfunction and the third state eigenfunction, respectively.

The band structure can be seen, and the profile potentials are
symmetrical. This is mainly due to the fact that the two potential
contacts are equal. Vc1 = Vc2 = 500meV and inter distances between
quantum-well and the interfaces are equal too.

Table 1 summarizes the results of the eigenvalues calculations
in both cases Vc1 = 500 meV, Vc2 = 300 meV and Vc1 = Vc2 =
500meV. We adopt the transfer matrix method in order to calculate
the eigenvalues [35–37].

We see in Table 1 the second potential influence Vc2 on the energy
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Figure 5. Electronic structure for δ-MIGFET in GaAs, where Vc1 =
Vc2 = 500meV N2d = 7.5× 1012 cm−2, d = 300Å.

Table 1. Energy levels (E0, E1, E2) for different values of gate
potential of Vc2 and for (Vc1 = 500 meV, d = 300Å, N2d = 7.5 ×
1012 cm−2).

Vc2 Ef −E0 (meV) Ef − E1 (meV) Ef −E2 (meV)
300 meV 155.6 61.9 20.3
500 meV 155.5 59.0 9.3
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Figure 6. Electron level structure versus Vc1 = Vc2 in δ-MIGFET in
GaAs, where, N2d = 7.5× 1012 cm−2, d = 300Å.

levels. The fundamental state does not feel the effects of Vc2, as
Ef −E0 = 155.6meV for Vc2 = 300 meV and Ef −E0 = 155.5meV for
Vc2 = 500meV.

In contrast, the superior levels feel the change of Vc2. Specially,
the upper level decreases rapidly from Ef − E2 = 20.3meV at Vc2 =
300meV to Ef − E2 = 9.3meV at Vc2 = 500 meV.

In Figure 6, we represent the energy variation levels as a function
of the voltage contact Vc1 = Vc2. The fundamental state is almost
stable at a value around −155meV when Vc1 < 550 meV. In contrast,
the superior energy levels feel the effect when the potential contacts
grow. On the other hand, the potential contacts severely affect the
superior levels. We observe that the number of levels decreases when
increasing Vc1. If Vc1 < 250meV, we have 4 levels of energy. If 250 meV
< Vc1 < 550meV, we have 3 levels. Finally, if 550 meV < Vc1 the level
number is 2. This observation will help us to explain the transport
phenomena.

Figure 7 gives the variation of the relative mobility as a function of
the potential contacts when the device is operating in the symmetrical
mode (Vc1 = Vc2).

The solid curve presents the result achieved using the expression
(11), and the dashed curve presents the result using the expression
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Figure 7. Relative Mobility as a function of gate potential Vc1

(Vc1 = Vc2) of δ-MIGFET in GaAs for N2d = 7.5 × 1012 cm−2,
d = 300Å.

Table 2. Fluctuation percentage between both expressions of
transport phenomenon for different values of gates potential, Vc1 = Vc2,
d = 300Å and for N2d = 7.5× 1012 cm−2.

Vc1 = Vc2 200 meV 400 meV 600 meV
µrel−µ′rel

µrel
× 100 8.7 18 8.8

σrel−σ′rel
σrel

× 100 4 10 4

follow (19).
The solid curve can be divided into three regions: the first in 50–

250 meV, the second in 250–550meV, and the third in 550–650 meV.
We can explain this subdivision by the change in the number of
quantum states in delta-quantum well in each region. Each interval
can fit in a parabolic curve with a different bending.

In the case of the dashed curve, the relative analytical mobility
behaves in the same way as the mobility for the first form. It increases
in a parabolic way when Vc1 is rising.

Table 2 presents the difference in the results between two ways of
calculating the transport.
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In the case of mobility, the difference does not exceed 8.7 percent
at Vc1 = 200 meV (In the first region). At Vc1 = 400 meV (In the second
region) the order is 18 percent, and in the last region Vc1 = 600 meV
is 8.8 percent. The fluctuation is due to the approach considered in
the analytical mobility calculation. As we can see, the second form
can perfectly predict the tendency of the mobility in the low potential
Vc1 < 250meV and in the high potential Vc1 > 550meV.

Figure 8 presents the behavior of the relative conductivity in the
symmetric mode, as a function of gates potential. The dashed curve
is the relative analytical conductivity using the expression (24). On
the other hand, the solid curve is obtained using structure electronic
results of the system.

Solid curve of the conductivity can be subdivided in three
intervals: The first interval is when Vc1 < 250 meV; the second one
is goes from 250 meV to 550 meV; and the last one is when 550meV
< Vc1. This subdivision is given by changing the number of states in
each region.

Table 2 allows to compare the conductivity calculation between
σrel and σ′rel at some contact potential. We can see that the fluctuation
at Vc1 = 200 meV is 4 percent, at Vc1 = 400 meV is 10 percent and at
Vc1 = 600meV is 4 percent.

We can consider that the relative analytical conductivity σ′rel is

0 100 200 300 400 500 600
Vc1=Vc2(meV)

1

1.5

2

Relative Conductivity

Analytical Conductivity

Relative Conductivity and Analytical Conductivity vs. Vc1=Vc2 in DELTA-MIGFET in GaAs

N2d=7.5X10   (cm  )12 -2

Figure 8. Relative Conductivity as a function of gate potential
Vc1 (Vc1 = Vc2) of δ-MIGFET in GaAs for N2d = 7.5 × 1012 cm−2,
d = 300Å.
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in accordance with σrel, and it is a good approximation of calculating
the relative conductivity without calculating the electronic structure
of this device.

Finally, as a first conclusion we can observe that the relative
mobility and conductivity in the asymmetrical mode has better
linearity than the relative mobility and conductivity in the symmetrical
mode. The same remark was noted for transconductance in previous
experimental work in a conventional MIGFET [11]. Also, we can
conclude that the transport properties in both modes are almost
doubled when the potentials Vc1 and Vc2 are maximum.

In conclusion, the analytical conductivity is a good and quick tool
to calculate and get a good idea about the behavior of conductivity
without calculating the eigenvalues or eigenfunctions.

In Figure 9, we see the variation of the analytical resistivity for
different values of the bidimensional density of system. We see that
this analytical quantity is decreasing in almost linear way when gate
potential is increasing. If we compare the slope of the analytical
resistivity among the four values of N2d (1×1012 cm−2, 2.5×1012 cm−2,
5× 1012 cm−2 and 7.5× 1012 cm−2) we observe that the slope grows.

It is clearly noted that the resistivity of the system rises with

0 100 200 300 400 500 600
Vc1=Vc2(meV)

0.4

0.6

0.8

1

R
el

at
iv

e 
A

n
al

y
ti

ca
l 

R
es

is
ti

v
it

y

N2d=1x10   (cm  )

N2d=2.5x10   (cm  )

N2d=5x10   (cm   )

N2d=7.5x10   (cm   )

N2d=10x10   (cm   )

Relative Analytical Resistivity versus Gate Potential in DELTA-MIGFET in GaAs

d=300(Angstrom), N3d=10   (cm  )18 -3

12 -2

12 -2

12 -2

12 -2

12 -2

Figure 9. Relative analytical resistivity as a function of the voltage
contact for different values of the two-dimensional impurity density,
N2d = 7.5×1012 cm−2, 5×1012 cm−2, 2.5×1012 cm−2 and 1×1012 cm−2

in δ-MIGFET in GaAs.
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increasing the bidimensional density in the delta doped. In this case
the system is more resistive for N2d = 10 × 1012 cm−2 than the rest
densities.

We conclude that the density in the well controls one of the most
important electrical properties which is the resistivity.

In case that we improve the approximation made for the analytical
transport quantity, another parameter which will appear is the
background density, which controls also the resistivity.

In Figure 10, we observe the inverse square of the differential
capacitance as a contact voltage function for different values of the two-
dimensional impurity density, N2d = 7.5 × 1012 cm−2, 5 × 1012 cm−2,
2.5 × 1012 cm−2, 1 × 1012 cm−2 in δ-MIGFET, and in conventional
MIGFET in GaAs. We observe, in Figure 10, that when we have an
electronic localization, the slope of the curve for N2d = 7.5×1012 cm−2

is greater than the slope of the curve for N2d = 5 × 1012 cm−2,
N2d = 2.5× 1012 cm−2 and N2d = 1× 1012 cm−2.

On the other hand, we see that the curvature of C−2 increases with
the rising of δ doped well electronic density. This result is compatible
with other works in δ-FET [24] and in ALD-FET [25].

In the case of the conventional MIGFET, where there is no
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values of the two-dimensional impurity density, N2d = 7.5 ×
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and in Conventional MIGFET in GaAs.
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electronics confinement, we see straight line with the smallest slop.
This straight line will be a reference when it is needed to know if there
is or not a localization.

Also, if we try to determine, in a conventional way, the density
background of impurities when electronic confinement exists, the
concentration change measurement by this method will be less in real
one.

We present in Figure 11 the bottom of the conduction channel in
the function of background density and the contact potential of the
two gates in the symmetric case (Vc1 = Vc2).

We can observe in this figure two interesting dark areas. The
upper dark area shows the conducting channel when the channel
is open, which means that, for a given background density, the
conduction channel does not feel the effects of contact potential of
the two gates.

The dark area below represents a closed conducting channel when
the potential of the conduction channel bottom is zero.

The two dark areas allow in these types of transistors to identify
the digital operation mode of the system. In another way, when
the conduction channel is open (dark area above) the transistor is
saturated, and when the conduction channel is closed (dark area below)
the transistor is blocked.

On the other hand, the intermediate region between the two dark
areas predicts the alteration of the well bottom by the presence of the
two Schottky barriers.

For a given background density Nd, this region will be determined
by the following inequality 6.62× 10−16Nd + 5 meV ≤ Vc ≤ −0.027×
(10−16Nd − 259)2 + 2 × 103 meV. At last, in this intermediate region,
we can see that the transistor can operate in analogue mode.

Figure 11. Bottom of the n-type delta-doped well Vmin vs. N
d

and
Vc1 = Vc2 for N2d = 7.5×, 1012 cm−2 in δ-MIGFET in GaAs.
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Figure 12. Bottom of the n-type delta-doped well (Vmin) vs. d and
Vc1 = Vc2 for N2d = 7.5×, 1012 cm−2 in δ-MIGFET in GaAs.

In Figure 12, we also present the bottom of the conduction
channel in the function of the distance at which the n-type delta-
doped well is positioned and the contact potential of the two gates
in the symmetric case (Vc1 = Vc2). From the figure we can infer
the analogical mode, where 0.0038 × (d − 216)2 + 192.8meV ≤ Vc ≤
0.007× (d + 16)2 − 16.5meV.

4. CONCLUSIONS

This device is characterized mainly by the increasing lineal function in
the mobility and the conductivity for both modes. It was found that
the conductivity in this device has better linearity in the asymmetrical
mode than in the symmetrical mode as occurs in experimental
results of such systems. These features have a great importance in
microelectronics industry when linearity is desired.

The analytical transport is a good and quick qualitative tool for
studying the behavior of conductivity and mobility; it can be applied to
other systems. It is possible to improve the relative analytical transport
if we use a better approximation when calculating this quantity.

The tools presented in this work are helpful to observe at least a
qualitative way for microelectronics industry, to know the behavior of
the resistivity and capacity, to specify the different regions of operation
modes in the device or to determinate if there is or not electronics
confinement.

Thanks to the interesting transport and electrical properties of
δ-MIGFET, this device may be another alternative and concurrent for
the transistors used today.
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