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Abstract—We present a rigorous 2D numerical study of the
transmission, reflection and crosstalk coefficients of the perpendicular,
identical dielectric crossing waveguide with various core-cladding index
contrasts for both TE and TM polarizations. Our method is based
on a hybrid frequency-domain finite-difference (FD-FD) technique
computed with the cross-symmetry model. By varying the intersection
profile, such as the circular, filleted, tapered and elliptical shapes, we
achieve, even for a large 3.5 to 1.5 index ratio, a low 0.25 dB insertion
loss, a nontrivial reduction over the straight direct crossing case.

1. INTRODUCTION

High density photonic interconnecting networks require a more
complex design of planar lightwave circuits than its predecessors.
Therefore, the fabrication of the dielectric waveguide crossings with
low insertion loss and low crosstalk is of great importance [1–3].
There are many publications [4–9] regarding dielectric waveguide
crossings, specifically those implemented on silicon-on-insulator (SOI)
chips [10–12]. In order to enhance the transmission and to lower
the crosstalk [13], there are many different intersection profiles of
the direct crossing structure, including the multimode interference
(MMI) structure [14], resonant cavity and elliptical or parabolic
mode expanders. However, it is difficult to analyze a four-port
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waveguide crossing coupled tightly with the vertical and horizontal
propagating waves in the vicinity of the intersection. For example,
BPM [15] cannot compute the wave fields propagating in the upward
and downward directions of crossing waveguide. Furthermore, the
more complex intersection profiles make the analysis difficult for
the rigorous methods such as the quadridirectional mode matching
methods [16, 17] and the coupled transverse-mode integral equation
CTMIE methods [18, 19]. These mode-based methods adopt PECAM
(Perfect Electric Conductor approximation method), which confines
the wave fields to horizontal propagation. Although it is possible
to modify the mode matching method to obtain a quadridirectional
eigenmode expansion scheme [20–22] for crossing waveguides, this
highly accurate method is difficult to implement for an arbitrary
crossing profile. The general PML boundary conditions are often
combined with PECAM schemes but are not suitable for the waveguide
crossing due to the strong evanescent waves in the cladding region of
guiding modes [23–25].

We observed that there were two different results on the elliptical
mode expanders with different short to long axis ratios. The first
model [7], which is based on a 3D FDTD method [26–32], claimed the
insertion loss and crosstalk were < 0.1 dB and < −25 dB, respectively,
at λ = 1.51–1.57µm for an elliptical region with respective short and
long axes of 1.5µm and 7.2µm. However, the second model [10] for
an elliptical region with short and long axes of 2.5µm and 6.0µm,
at λ = 1.55µm demonstrated a transmission of 32%. The different
crossing profiles lead to contrasting transmission performances, would
confound the readers.

This is an interesting problem regarding the design of intersection
profile parameters to improve the transmission, and reduce reflection
and crosstalk of waveguide crossings. There are many excellent
analytic or semi-analytical methods for studying complex devices,
including but not limited to analytic continuity method [33], finite-
element boundary integral equation method [34], coupled mode
theory [35], combined-field integral equation [36] and etc. These
analytic or semi-analytical methods are difficult to modify for our
proposed crossing structures. On the other hand, the most popularly
used, FDTD method and its variants are not suited for modeling
complex waveguide devices with narrow-band signal. The less popular
FD-FD method and its variants [37–41], due to their need for solving
large sparse linear equations, are more accurate in frequency domain
applications.

In this paper, we apply a rigorous 2D, hybrid FD-FD method
to study the design of an optimal crossing waveguide. Our hybrid
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FD-FD method employs an accurate, layer-mode based, transparent
boundary conditions (LM-TBC) [38] which absorb/transmit guided
modes, discretized radiation modes and even the evanescent modes in
both crossing waveguides.

Although 3D calculations will provide closer results to a real
system, or predicting cross-talk values for the real world, we will now
focus on simulating ideal 2D crossing waveguides with our 2D, full-
wave, hybrid FD-FD method [41]. Let us try to characterize the right
angle crossing waveguide as shown in Fig. 1(a). By applying the cross
(X) symmetric model, which is more stable and precise than the plus
(+) symmetric one [41], as shown in Fig. 1(b), we can simplify the
computational domain with transparent boundary conditions (TBC)
on all four borderlines to one quarter of the original region with only
one borderline needed. The calculation of transmission (or insertion
loss), reflection loss and crosstalk is represented as a function of the
waveguide core thickness and core-cladding indices. We study different
modified intersection profiles and design their parameters to improve
the transmission and crosstalk performance of the waveguide crossing.

2. THE DESIGN OF THE INTERSECTION PROFILE

2.1. The Simple Direct Crossing

From Fig. 1(a), we let D be the core width of both horizontal and
vertical dielectric waveguides. λ is the wavelength of the incident
field. We also assume the fundamental mode is coming from the left
side. In the cross symmetry model shown in Fig. 1(b), we have two
±45◦ symmetric lines perpendicular to each other. We choose the left
quarter as our computational domain. For this cross symmetry model
there are four symmetry condition pairs denoted by the subscript of
MM, EM, ME and EE. The first letter represents the PEC/PMC wall
(EW/MW for short) on the upper right border and the second letter
for the lower right boundary. This model allows us to reduce the
original/full problem to four sub-problems, which individually require
less computing resources [41].

The FD-FD formulations of the two-dimensional Helmholtz
equation for TE and TM modes are listed as follows:

ce
uuu + ce

dud + ce
`u` + ce

rur + ce
cuc = 0,

ch
uuu + ch

dud + ch
` u` + ch

rur + ch
c uc = 0,

(1)
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Figure 1. (a) The open perpendicular dielectric waveguide crossing.
(b) The two-fold symmetry of this crossing produces equivalent
boundary conditions on the two perpendicular, diagonal dotted lines.
Our FD-FD simulation is only performed on the left quarter with the
cross symmetry model [41-Fig. 6].

where the coefficients are given by:
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Here k0 is the wave number in vacuum. n2
c is given by the average of

n2(x, z) centered around the field point uc over a grid cell area ∆x ·∆z

for TE case. TM case requires the average 1/n2
p, which is defined

as a real average of 1/n2
p(x, z) centered at the field point up. When

p = u, d, `, r, the center of the integration point is respectively located
half a grid up, down, left and right from uc. TE and TM FD coefficients
are identical except for those points laid within one grid, away from
boundaries between two materials. These material dependent FD
coefficients are defined differently for TE and TM polarizations, for
a good reason. For a small core-cladding index contrast, TE average
(n2) and TM (1/n2) average are about the same. But when the index
contrast is large, the TM average of 1/n2(x, z) will be different from 1
over the average of n2(x, z). This is explained in further detail in our
first crossing paper Ref. [41].

By combining the quarter-fields of all four cases from different
symmetric conditions, we obtain the sum of all four simulations
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which produces just one incident field coming from the left
waveguide. For a detailed explanation, see [41-Fig. 9]. If we denote
the reflection coefficients of Fig. (1b)’s left-quarter waveguide as
RMM, REE, REM, RME, we obtain the reflection, top and bottom
cross, and transmission coefficients of the dielectric waveguide crossing
in Fig. (1a) as the following equation:

R =
RMM + REE + REM + RME

4
,

Ctop =
RMM −REE −REM + RME

4
,

Cbot =
RMM −REE + REM −RME

4
,

T =
RMM + REE −REM −RME

4
.

(3)

Here R and T are the reflection and transmission coefficients of the
perpendicular crossing waveguide. Ctop and Cbot are the top and
bottom cross coupling coefficients, which are identical in magnitude in
this case. The four coefficient vectors are ratios between the scattered
mode amplitudes and the fundamental incident mode amplitude.
The reflected, transmitted and cross coupling power coefficients are
computed as squared, absolute values times the ratio between the real
parts of the scattered mode propagation constants and the fundamental
mode propagation constant [42].

2.2. Type of Intersection Profiles

Figure 2 shows four types of dielectric waveguide crossings with
different intersection profile variations. These should cover most
similar profile variations with identical horizontal and vertical
waveguides which is the fundamental assumption in this paper.

We define, rc, as the ratio between the radius for the circular
profile (Fig. 2(a)) and the core thickness (Wcor = D) of the slab
waveguide:

rc =
√

2Rc

Wcor
, (4)

At its minimum value, rc = 1, we have a textbook case of straight direct
crossing. The circular model provides a ball lens function, where the
circular intersection helps confine the field in the core for the SOI. Next,
for the filleted shape (Fig. 2(b)), we define rf as the ratio between of
the profile radius and the core thickness of the slab waveguide:

rf =
2Rf

Wcor
. (5)
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In this filleted model, we predict an improved field transfer through the
adiabatic profile. This effect could result in better mode transmission.

When direct crossings of two perpendicular waveguides suffer
from large insertion losses or unwanted mode conversion, the tapered
waveguide can be used to smooth the mode transitions between
waveguides of different widths. An illustration of a tapered crossing,
as seen in Fig. 2(c), has a tapered slope of:

rtaper =
(2H −Wcor)

2L
, (6)

where H is half the height of the end of the taper and L is the
tapered length. The example used in Fig. 2(c) has a positive tapered
slope. The original waveguide width D is gradually and linearly
increased/decreased to the tapered waveguide width of 2H. When
2H < Wcor, the ratio rtaper is negative. This indicates a narrowing
tapered width. By combining the lens-focusing (2a) and tapering (2c)
properties, we have a final design, shown in Fig. 2(d), where the tapered
regions are partially shaped like ellipses. In this case, the functions of

a  

  b

L  

  H

 Rc

R f

(a) (b)

(c) (d)

Figure 2. The different intersection types for a perpendicular crossing
waveguide. (a) The crossing with a circular shape. (b) The crossing
with a filleted shape. (c) The crossing with a tapered shape. (d) The
crossing with an elliptical shape.
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the horizontal and vertical elliptical shapes are:

z2

a2
+

x2

b2
= 1, (horizontal)

z2

b2
+

x2

a2
= 1, (vertical)

(7)

where a and b are, respectively, the long and short axis of the ellipse.
Results from our simulations indicate that this model has the benefit
of a focusing lens, which boosts the fundamental mode transmission
coefficients. Within these models, Fig. 2(d) provides the best design
for achieving minimal insertion losses.

3. RESULTS AND DISCUSSION

We present the numerical results on field distributions and power
reflection, transmission and crosstalk of dielectric crossing waveguides
for the three index contrast ranges currently commercially available.
These contrasts vary from low to high with 3.45/3.38 contrast, an
intermediate 2.5/1.5 contrast, to a high 3.45/1.5 contrast. Using simple
direct crossings as a reference, our results include the analysis for four
intersection profiles, three index contrasts and for both TE and TM
polarizations.

3.1. Two-dimensional Field Plots

Field distributions of five types of crossing waveguides are shown
in Figs. 3 to 7 with the real parts on the upper halves and the
imaginary parts on the bottom halves. The SOI waveguides have a
high index contrast with ncor = 3.45 and ncld = 1.5. For all Figs. 3
to 7, the incident wavelength is set at 1.55µm with the dielectric slab
waveguides width at 0.6µm. These slab waveguides each have two
even and one odd guiding modes. We see in Fig. 3 that the EM fields
in the direct crossing are mostly confined in the core. For this case,
the fundamental mode transmission coefficients for TE and TM cases
are 86% and 77%, respectively. Total crossing power coefficients are
5% and 11% for TE and TM polarizations, of which, more than 95% is
radiation power. The total reflected powers are less than 1% in both
polarizations and are also dominated by radiation energy. Figs. 4 to
7 provide us with the field distributions of circular, filleted, tapered
and elliptical intersection profiles respectively. In Figs. 4 and 5, we see
stronger reflection and crosstalk power in both the circular and filleted
intersections, resulting in a reduced fundamental mode transmission
coefficient less than 66% in both profiles and both polarizations. For
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the tapered profile, the transmission coefficient is calculated to be
86% in the TE case which approximates that of the direct crossing.
Meanwhile the transmission coefficient reaches 81% in the TM case
which is an improvement over the direct crossing. The most dramatic
improvement for waveguides of the same dimensions, is that of Fig. 7’s
profile, where the fundamental mode transmission coefficients are 93%
and 92% for the TE and TM cases.
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Figure 3. The TE (Ey(x, z)) and TM (Hy(x, z)) field distributions of
an open perpendicular dielectric crossing waveguide in the vicinity of
the waveguide junction. These complex EM fields are shown with the
real part on the upper halves and the imaginary part on the bottom
halves which clearly show the dominance of the forward propagating
fundamental mode. The units on both horizontal and vertical axes are
in microns.
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Figure 4. The circular intersection profile for TE and TM field
distributions of an open dielectric crossing waveguide. We can see
the presence of higher-order guide mode in the transmitted waveguide
due to stronger mode conversion in the waveguide junction. The units
on both horizontal and vertical axes are in microns.
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Figure 5. The filleted intersection profile.
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Figure 6. The taper intersection profile.
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Figure 7. The elliptical intersection profile, which possesses the
highest fundamental mode transmission efficiency in all Figs. 3 to 7.

3.2. Power Coefficients of Direct Crossing

With the hybrid FD-FD simulation of crossing waveguides, we are able
to obtain mode-to-mode, through and cross coupling coefficients, as
well as reflection coefficients, as function of wavelength and waveguide
structure parameters. The goal of designing a good waveguide crossing
is to fabricate a crossing profile that minimizes insertion loss, ensuring
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maximized fundamental mode transmission efficiency. This is to
achieved by lowering reflected and cross coupling powers. However,
a high total transmitted power design does not always guarantee
the highest fundamental mode power transmission coefficient, due to
potential transmission of higher-order mode powers in the transmitted
wave fields. In order to construct an ideal waveguide crossing profile,
we should first study scattered power coefficients of the generic direct
waveguide crossing. These standard direct crossing curves will be used
to aide the designing of more complicated crossing profiles.

Figures 8 and 9 plot the total TE/TM transmission power
coefficients for identical, perpendicular dielectric waveguide crossings,
as function of waveguide core thickness. We list three different core-
cladding index contrasts, where nr is the core cladding index ratio with
the actual indices shown in parenthesis. We show combined power
transmission coefficient, Pt, including higher-order guided, and all
radiation modes (Fig. 8(a), Fig. 9(a)) as well as the power coefficient,
Pt1, for the fundamental mode only (Fig. 8(b), Fig. 9(b)). For both
polarizations we observe higher values with the small core thickness.
This would suggest shaping the design towards small Wcor to achieve
low insertion losses. The drawbacks in such designs for dielectric
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Figure 8. The TE transmission power coefficient reference curve for
identical, perpendicular dielectric waveguide crossings. We list three
different core-cladding index contrasts, where nr is the core cladding
index ratio with the actual indices shown in the parenthesis. (a)
Combines the fundamental, higher order guided, and all radiation
modes. (b) Fundamental mode only. The unit on the horizontal axis
is in microns.
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Figure 9. The TM transmission power coefficient reference curve for
identical, perpendicular dielectric waveguide crossings. We list three
different core-cladding index contrasts, as in Fig. 8. (a) Combines
the fundamental, higher order guided, and all radiation modes. (b)
Fundamental mode only. The unit on the horizontal axis is in microns.

waveguides with small core widths are that fields are not confined in
the cores; rather, they extend far into the cladding. Our simulation
results also show that for normal and large waveguide core widths, it
is hard to achieve high Pt1 in direct perpendicular crossings when the
core-cladding index contrast is large.

3.3. Power Coefficients of Crossing with a Circular Shape

From here on we focus only on the fundamental mode power
transmission coefficients Pt1 for the remaining four crossing profiles.
The results for the circular shaped crossing waveguides are shown in
Fig. 10 where Pt1 is plotted against rc (Eq. (4) profile parameter) with
a fixed core thickness Wcor = 0.2µm. We see from Fig. 10 that except
for the low nr case, the circular shape design is ineffective in the TE
mode. However, it does improve the TM fundamental mode power
transmission coefficients for larger nr ratios at ideal, select ranges Rc.

3.4. Power Coefficients of Crossing with a Filleted Shape

The results for the filleted shaped crossing waveguides are shown in
Fig. 11 where Pt1 is plotted against rf (Eq. (5) profile parameter)
with a fixed core thickness Wcor = 0.2µm. As with the previous
shape, the filleted shape is ineffective for TE polarization. But for
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TM polarization the filleted shape can significantly improve the power
transmission in the high index contrast case with a rf value slightly
greater than one.
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Figure 10. The fundamental mode power transmission coefficients
for three different core-cladding index contrasts in a circular profile
crossing waveguide. The horizontal axis, rc, is the Fig. 2(a)
dimensionless profile parameter defined in Eq. (4). (a) TE polarization.
(b) TM polarization.
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Figure 11. The fundamental mode power transmission coefficients
for three different core-cladding index contrasts in a filleted shape
profile crossing waveguide. The horizontal axis, rf , is the Fig. 2(b)
profile parameter defined in Eq. (5). (a) TE polarization. (b) TM
polarization. The horizontal axis is dimensionless.
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3.5. Power Coefficients of Crossing with a Tapered Shape

With the waveguide core thickness fixed at Wcor = 0.4µm and a fixed
tapered length of 4µm so that the position of the taper starts at
z = −4µm for the left incident waveguide, the results for the tapered
crossing waveguides are shown in Fig. 12, where Pt1 is plotted against
rtaper (See Eq. (6)). These plots are for both negative and positive
rtaper. We see that the tapered shape improves Pt1 over the direct
crossing (rtaper = 1) for both TE and TM modes. However, this is not
the optimum profile design when compared with the elliptical profile.

3.6. Power Coefficients of Crossing with an Elliptical Shape

The final crossing design in this paper is the elliptical profile. We
examine this case with a waveguide core thickness fixed at Wcor =
0.4µm and a long axis fixed at a = 3 µm. The short axis is the changing
variable starting from b = 0.2µm to b = 1.5µm, during which, the
assumed wavelength is λ = 1.5µm. In Fig. 13, we plot Pt1 against the
b/a ratio for the three index contrasts. The elliptical shape improves
the direct crossing efficiency for both TE and TM modes at select small
b/a ratios. But when this ratio is larger than 0.3, the insertion loss
increases rapidly. Finally we notice that amongst all crossing profiles,
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Figure 12. The fundamental mode power transmission coefficients
for three different core-cladding index contrasts in a tapered profile
crossing waveguide. The horizontal axis, rtaper, is the Fig. 2(c)
dimensionless profile parameter defined in Eq. (6). (a) TE polarization.
(b) TM polarization.
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Figure 13. The fundamental mode power transmission coefficients for
three different core-cladding index contrasts within an elliptical shaped
crossing waveguide. This is the only design that achieves low insertion
loss for both (a) TE polarization and (b) TM polarizations.

the elliptical shape is the only design that can achieve a low 0.25 dB
insertion loss, even for the large 3.5 to 1.5 index ratios, for both TE
and TM polarizations. This is a nontrivial reduction over the straight
direct crossing case.

4. DISCUSSION: TWO-D VERSUS THREE-D
SIMULATION

In this paper, we apply a rigorous 2D, hybrid FD-FD method to study
the design of an optimal crossing waveguide. As far as we know,
a full 3D, hybrid FD-FD simulation for a real crossing waveguide
design is beyond our capability. In a 2D (z, x) case, six component
EM fields can be exactly decomposed into a three component TE
(Ey, Hx,Hz) and three component TM (Hy, Ex, Ez) case. In each
case the in-plane x-z components can be derived from the out of the
plane component. Thus, we can treat all 2D problems by solving a
scalar Helmholtz equation. There are however no pure TE or TM
modes in a 3D dielectric waveguide device where all six-components are
simultaneously presented. As a result, to conduct full-wave 3D optical
device simulating, it is only possible to do it by the FD-TD method
where numerical time stepping is performed without inversion of a
linear equation. The drawback of FD-TD method is that accurate and
stable implementation of absorbing or transparent boundary conditions
(ABC or TBC) in the 3D complex structure is very difficult except with
padding of large PML regions on the computational boundaries.
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A full 3D FD-FD implantation using multiple field components
is still under development. And even with a working 3D numerical
algorithm, solving a linear equation with up to a billion variables is
totally unpractical with today’s hardware. Hence, 2D calculations have
their own virtues in predicting cross-talk values for the real world. In
this case, the 2D situation makes use of some sort of approximation
to neglect both the third dimension and the polarization effects. The
easiest method is called the effective index method. It tries to correct
3D and polarization effects by an index adjustment. The effective index
method works fine when index contrasts are very small. When we apply
the effective index approximation to high index-contrast cases, such as
a photonics wire [43], the difference between neff and core index is
quite significant and polarization dependent. For instance, at the 1D
single-mode threshold, for Si thickness of 260 nm in SOI the core index
is 3.5. To conduct 2D simulation of this 3D device one may have to use
a TE nTE

eff = 3.0 and a TM nTM
eff = 2.4. That would make conclusions

for silicon photonic wire quite off range.

5. CONCLUSION

We applied a 2D hybrid frequency-domain finite-difference method
to characterize the open dielectric crossings waveguides with various
refractive index contrasts in both TE and TM polarizations. We
have analyzed various typical intersection profile designs for the
improvement of the dielectric waveguide, fundamental-mode forward
crossing coefficients. We found very limited improvement in the
circular and filleted shape designs for the TE polarization while,
contrarily, their TM polarization efficiencies are satisfactory.

Our best low insertion loss results are found with the elliptical
shape, which seems to combine the focusing properties of a lens with
the smooth mode-transition properties of a tapered waveguide. We
have reached our goal of achieving a low 0.25 dB insertion loss, even
for a large 3.5 to 1.5 index ratio for TM as well TE polarizations.
Our numerical data is verified by crossing checking results from two
symmetry models and by using even and odd Nx grids for the cross-
symmetry model [41]. For each simulation, our error margin for energy
conservation is verified to be within less than one percent.
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