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Abstract—In this article, a novel numerical technique, called
Fitness Adaptive Differential Evolution (FiADE) for optimizing certain
pre-defined antenna configuration to attain best possible radiation
characteristics is presented. Differential Evolution (DE), inspired
by the natural phenomenon of theory of evolution of life on earth,
employs the similar computational steps as by any other Evolutionary
Algorithm (EA). Scale Factor and Crossover Probability are two
very important control parameter of DE.This article describes a very
competitive yet very simple form of adaptation technique for tuning
the scale factor, on the run, without any user intervention. The
adaptation strategy is based on the fitness function value of individuals
in DE population. The feasibility, efficiency and effectiveness of the
proposed algorithm in the field of electromagnetism are examined over
a set of well-known antenna configurations optimization problems.
Comparison with the some very popular and powerful metaheuristics
reflects the superiority of this simple parameter automation strategy
in terms of accuracy, convergence speed, and robustness.

1. INTRODUCTION

Optimization techniques are an integral part of antenna design
problems and applications, that must be solved efficiently and
effectively. To solve an antenna design problem, an engineer must have
a proper view of the problem in his/her hand. So, the design demands
the effort from the designer for finding a certain antenna configuration

Received 7 August 2010, Accepted 21 October 2010, Scheduled 27 October 2010
Corresponding author: Swagatam Das (swagatamdas19@yahoo.co.in).



292 Chowdhury et al.

which best suits the sketched view. In support of this need, there
have been gradual advent of various optimization techniques in the
domain of electromagnetism specially antenna design. Among these,
the so-called evolutionary algorithms (EAs) (e.g., genetic algorithms
(GAs) [1], simulated annealing [2], particle-swarm optimizers [3]) have
become widely used in [4–7] due to their simplicity, versatility, and
robustness. However, these methods present certain drawbacks usually
related to the intensive computational effort they demand to achieve
the global optimal and the possibility of premature convergence to a
local optima.

To overcome these difficulties of the commonly used EAs, in this
paper we propose a variant, Fitness Adaptive Differential Evolution
(FiADE) of another vastly used EA called Differential Evolution.
The Differential Evolution (DE) [8–11] algorithm emerged as a very
competitive form of evolutionary computing more than a decade ago.
The first written article on DE appeared as a technical report by
Rainer Storn and Kenneth V. Price in 1995 [10]. In DE community,
the individual trial solutions (which constitute a population) are
called parameter vectors or genomes. DE operates through the same
computational steps as employed by a standard EA. However, unlike
traditional EAs, DE employs difference of the parameter vectors to
explore the objective function landscape. In this respect, it owes a
lot to its two ancestors namely — the Nelder-Mead algorithm [12],
and the Controlled Random Search (CRS) algorithm [13], which also
relied heavily on the difference vectors to perturb the current trial
solutions (for details see p. 23–30, [8]). Like other population-
based search techniques, DE generates new points (trial solutions)
that are perturbations of existing points, but these deviations are
neither reflections like those in the CRS and Nelder-Mead methods,
nor samples from a predefined probability density function, like those
in Evolutionary Strategies (ES) [14]. Instead, DE perturbs current
generation vectors with the scaled difference of two randomly selected
population vectors. In its simplest form, DE adds the scaled, random
vector difference to a third randomly selected population vector to
create a donor vector corresponding to each population vector (also
known as target vector). Next the components of the target and donor
vectors are mixed through a crossover operation to produce a trial
vector. In the selection stage, the trial (or offspring) vector competes
against the population vector of the same index, i.e., the parent vector.
Once the last trial vector has been tested the survivors of all the
pair wise competitions become parents for the next generation in the
evolutionary cycle.

The performance of DE is severely dependent on two of its most
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important control parameters: The crossover rate (Cr) and scale factor
(F ) [15]. Over the past decade many claims and counter-claims
have been reported regarding the tuning and adaptation strategies
of these control parameters. Some objective functions are very
sensitive to the proper choice of the parameter settings in DE [16].
Therefore, researchers naturally started to consider some techniques
to automatically find an optimal set of control parameters for DE [17–
22]. Most recent trend in this direction is the use of self-adaptive
strategies like the ones reported in [17, 18]. However, self-adaptation
schemes usually make the programming fairly complex and run the risk
of increasing the number of function evaluations. This article suggests
a novel automatic tuning method for the scale factor and crossover
rate of population members in DE, based on their individual objective
function values [23]. The key sense of this adaptation mechanism
is that if a search-agent (DE-vector) moves near to the optimum,
its mutation step-size decreases and during crossover, it passes more
genetic information to its offspring (trial vector in DE terminology) so
as to favor exploitation. However, if the agent moves away from the
optima, then it is more perturbed and during DE-type crossover, the
offspring inherits lesser genetic information from the parent, so that
the agent may be able to explore alternate regions quickly.

In this paper, the proposed algorithm FiADE has been used to
optimize certain electromagnetic antenna configurations in a recently
proposed [24] electromagnetic benchmark test-suite. The reason for
selecting particularly these problems has been dealt in details in [24].
Though, all the antenna configurations involve thin wire antenna
geometries just for ease in simulating purpose, but as the complexity
of the equations involved in these problems is quite similar to that
of other computational electromagnetic problems, the utility of the
proposed test cases goes beyond the thin-wire antenna design to the
optimization of arbitrary electromagnetic problems in general.

The rest of the paper is organized as follows. Section 2.1 outlines
the main steps of the Differential Evolution Algorithm. Section 2.2
gives detailed explanation of the proposed fitness based control
parameter adaptation of DE. Section 3 describes the electromagnetic
antenna configuration related test-suit problems and also establishes
the expressions of the objective functions to be optimized by the
evolutionary algorithms. Section 4 then reports and compares
the experimental results obtained by FiADE and other contestant
algorithms on the electromagnetic antenna configuration optimization
problems. Finally Section 5 concludes the paper and unfolds some
future research interests.
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2. CLASSICAL DIFFERENTIAL EVOLUTION & THE
CONTROL PARAMETER ADAPTATION SCHEME

2.1. Classical Differential Evolution

DE is a simple real-coded evolutionary algorithm. It works through
a simple cycle of stages, which are detailed below and shown
as a sequence and repetitions of steps in the flowchart given in
Figure 1. Since, the problems to be discussed in this paper deal with
optimizing antenna configurations, i.e., maximizing the directivity of
the antenna radiation pattern, so DE is discussed in the perspective of
maximization problems though it is equally applicable for minimization
problems.

2.1.1. Initialization of the Parameter Vectors

DE searches for a global optimum point in a D-dimensional continuous
hyperspace. It begins with a randomly initiated population of NP
number of D-dimensional real-valued parameter vectors. Each vector,
also known as genome/chromosome, forms a candidate solution to the
multi-dimensional optimization problem. We shall denote subsequent
generations in DE by G = 0, 1 . . . , Gmax. Since the parameter vectors
are likely to be changed over different generations, we may adopt the
following notation for representing the i-th vector of the population at
the current generation:

~Xi,G = [x1,i,G, x2,i,G, x3,i,G, . . . , xD,i,G]. (1)

For each parameter of the problem, there may be a certain range within
which the value of the parameter should lie for better search results.
The initial population (at G = 0) should cover the entire search space
as much as possible by uniformly randomizing individuals within the
search space constrained by the prescribed minimum and maximum
bounds:

~Xmin = {x1,min, x2,min, . . . , xD,min}
and

~Xmax = {x1,max, x2,max, . . . , xD,max}.
Hence, we may initialize the j-th component of the i-th vector as:

xj,i,0 = xj,min + randi,j [0, 1) · (xj,max − xj,min), (2)

where rand is a uniformly distributed random number lying between 0
and 1 (actually 0 ≤ randi,j [0, 1) < 1) and is instantiated independently
for each component of the i-th vector.
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2.1.2. Mutation with Difference Vectors

After initialization, DE creates a donor vector ~Vi,n corresponding
to each population member or target vector ~Xi,G in the current
generation through mutation. It is the method of creating
this donor vector, which differentiates between the various DE
schemes. Five most frequently referred mutation strategies
implemented in the public-domain DE codes available online at
http://www.icsi.berkeley.edu/∼storn/code.html are listed below:

“DE/rand/1” : ~Vi,G = ~Xri
1,G + F ·

(
~Xri

2,n − ~Xri
3,G

)
. (3)

“DE/best/1” : ~Vi,G = ~Xbest,G + F ·
(

~Xri
1,G − ~Xri

2,G

)
. (4)

“DE/target-to-best/1” :
~Vi,G = ~Xi,G + F ·

(
~Xbest,G − ~Xi,G

)
+ F ·

(
~Xri

1,G − ~Xri
2,G

)
. (5)

“DE/best/2”: ~Vi,G = ~Xbest,G+F ·
(
~Xri

1,G− ~Xri
2,G

)
+F ·

(
~Xri

3,G− ~Xri
4,G

)
.(6)

“DE/rand/2”: ~Vi,G = ~Xri
1,G+F ·

(
~Xri

2,G− ~Xri
3,G

)
+F ·

(
~Xri

4,G− ~Xri
5,G

)
.(7)

The indices ri
1, ri

2, ri
3, ri

4, and ri
5 are mutually exclusive integers

randomly chosen from the range [1, NP ], and all are different from
the index i. These indices are randomly generated once for each
donor vector. The scaling factor F is a positive control parameter for
scaling the difference vectors and it lies usually in the range (0.4, 1) [8].
~Xbest,G is the best individual vector with the best fitness (i.e., highest
objective function value for maximization problem) in the population
at generation G.

2.1.3. Crossover

To enhance the potential diversity of the population, a crossover
operation comes into play after generating the donor vector through
mutation. The donor vector exchanges its components with the target
vector ~Xi,G under this operation to form the trial vector ~Ui,G =
[u1,i,G, u2,i,G, u3,i,G, . . . , uD,i,G]. The DE family of algorithms can use
two kinds of crossover methods — exponential (or two-point modulo)
and binomial (or uniform). In this article, we focus on the widely
used binomial crossover that is performed on each of the D variables
whenever a randomly generated number between 0 and 1 is less than or
equal to a positive constant Cr, called crossover rate. Cr usually lies
in the range (0.8, 1). In this case, the number of parameters inherited
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from the donor has a (nearly) binomial distribution. The scheme may
be outlined as:

uj,i,G =
{

vj,i,G, if (randi,j [0, 1) ≤ Cr or j = jrand

xj,i,G, otherwise, (8)

where, as before, randi,j [0, 1) is a uniformly distributed random
number, which is called a new for each j-th component of the i-th
parameter vector. jrand ∈ [1, 2, . . . , D] is a randomly chosen index,
which ensures that ~Ui,G gets at least one component from ~Vi,G.

2.1.4. Selection

The next step of the algorithm calls for selection to determine whether
the target or the trial vector survives to the next generation, i.e., at
G = G + 1. The selection operation is described as:

~Xi,G+1 = ~Ui,G, if f
(

~Ui,G

)
≥ f

(
~Xi,G

)

= ~Xi,G, if f
(

~Ui,G

)
< f

(
~Xi,G

)
, (9)

where f( ~X) is the objective function to be maximized.
Note that throughout the article, we shall use the terms

objective function value and fitness interchangeably. But, always
for maximization problems, a lower objective function value will
correspond to lower fitness and vice-versa.

2.2. Fitness Adaptation of Differential Evolution

From the above discussion on classical DE algorithm, it is evident
that the two most important control parameters of DE are the scale
factor F and the crossover rate (Cr). The performance of DE
severely depends on the proper choice of these two parameters. So
over the years there have been various researches going on on the
proper selection of these two parameters. The most successful self-
adaptive variants of DE like [12, 17, 25] samples the values of F and
Cr from uniform or Gaussian probability distributions and also uses
the previous experiences (of generating better solutions) to guide the
adaptation of these parameters. The only significant fitness-based
adaptation scheme for F that we come across is [16], where a system
with two evolving populations has been implemented. The crossover
rate Cr has been set equal to 0.5 after an empirical study. Unlike Cr,
the value of F is adaptively updated at each generation by means of
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the following scheme:

F =





max
{

lmin, 1−
∣∣∣fmax

fmin

∣∣∣
}

if
∣∣∣fmax

fmin

∣∣∣ < 1,

max
{

lmin, 1−
∣∣∣ fmin
fmax

∣∣∣
}

otherwise,
(10)

where lmin = 0.4 is the lower bound of F , fmin and fmax are the
minimum and maximum objective function values over the individuals
of the populations, obtained in a generation. It will be evident from
what follows that the proposed adaptation schemes differ significantly
from (10).

In this article, we firstly aim at reducing F when the objective
function value of any target vector nears that of the best vector ~Xbest

in the current generation. In this case, as the vector is located very near
to the detected optima, so it is is expected to suffer lesser perturbation
and hence should have lower F , so that it may undergo a fine search
within a small neighborhood of the suspected optima. Equations (11)
and (12) show two different schemes for varying the value of F for the
i-th target vector and these schemes have been applied alternatively
to determine the scale factor for each individual population member
following a certain criteria to be discussed next.

Scheme 1 : Fi = FC ∗
(

∆fi

λ + ∆fi

)
, (11a)

where, λ = (ε + ∆fi ∗K) and ∆fi =
∣∣∣f( ~Xi)− f( ~Xbest)

∣∣∣, FC = a
constant value within the range [0, 1], ε = a infinitesimally small value
added to avoid the zero division error when ∆fi = 0 and K being a
scaling factor in the range [0, 1].

Scheme 2 : Fi = FC ∗
(
1− e−∆fi

)
(11b)

Clearly, for both of scheme (11) & (12) as ∆fi → 0, i.e., when f( ~Xi) →
f( ~Xbest), Fi → 0 and as ∆fi → ∞, i.e., when f( ~Xi) ¿ f( ~Xbest),
Fi → FC . Thus (11) & (12) satisfies the scale factor adaptation criteria
illustrated above.

Figures 1 and 2 show the variation of F with ∆f in two different
scales. As can be seen from Figure 2, the two plots intersect at
approximately ∆f = 2.4. So from Figure 1, it is evident that as long as
∆f > 2.4 scheme 2 results greater values of F , which helps the vector
to explore larger search volume. But as soon as ∆f falls below 2.4,
scheme 2 starts reducing F drastically which decreases the explorative
power of the vector, consequently resulting into premature termination
of the algorithm in local optima. So, scheme 1 is used for scale factor
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Initialization

NP number of D-dimensional parameter vectors 

are initialized with the prescribed minimum and 

maximum bounds and iter =0 

Mutation

Each population member undergoes mutation 

according to any one of the schemes outlined in 
Section 2.1.2 to produce the donor vector 

Selection

For each target vector, any one of itself and the 

newly generated trial vector is selected depending 

on their fitness values and the selected vector is 
transmitted in the next generation 

Crossover

The donor vector for each population (target) 

vector exchanges its components with the 

corresponding target vector in order to generate the 
trial vector following scheme in Section 2.1.3 

Is iter = iter_max or 

any other stopping 
criterion met? 

YES

NO

STOP

iter = iter+1 

Figure 1. Flowchart for the differential evolution algorithm.
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(a) (b)

Figure 2. (a) Variation of F with ∆f varying in scale of 0 to 10 for
schemes 1 and 2 outlined in Equations (1) and (2). (b) Variation of
F with ∆f varying in scale of 2 to 4 for schemes 1 and 2 outlined in
Equations (11) and (12).

adaptation in this region, as this scheme reduces the value of F at
a lower rate compared to scheme 2, which is evident from Figure 1,
thus minimizing the probability of premature convergence. These two
schemes as a whole help the vector to finely search the surroundings
of some suspected optima. In brief, we are chosing the value of Fi as
the maximum of the value produced by the two schemes to maintain
a sufficient explorative power as well as to eradicate the probability of
premature convergence.

Thus, the adaptation of the scale factor for the i-th target vector
takes place in the following way: let F1 = FC ∗ (

1− e−∆fi
)

and

F2 = FC ∗
(

∆fi
λ+∆fi

)
. Then clearly:

Fi = max(F1, F2) (12)

Vectors that are distributed away from the current best vector ~Xbest

in fitness-space have their F values large (due to scheme 2) and keeps
on exploring the fitness landscape, maintaining adequate population
diversity.

Similarly, we adapt the values of crossover rate Cr associated with
each target vector according to the fitness of the donor vector produced.
We know that, if Cr is higher, then more genetic information will
be passed to the trial vector from the donor vector, whereas if Cr is
lower then more genetic information will be transferred to the trial
vector from the parent vector. So, we propose that, for maximization
problems as the objective function value of the donor vector gets
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higher, value of Cr should be higher and vice-versa. As a measuring
parameter of whether Cr should be increased for a particular donor
vector ~Vi, we define a variable ∆fdonor i = f( ~Xbest) − f(~Vi). Donor
vectors having low positive value of ∆fdonor i are located close to the
best vector ~Xbest obtained so far in the current population, hence their
features are good enough to be transferred to the trial vector, hence for
them Cr should be higher. Following the same line of reasoning, donor
vectors having high positive values of ∆fdonor i should have lower value
of Cr. Now for donor vectors having objective function value higher
than even the best particle ~Xbest of the current population, i.e., having
negative ∆fdonor i, Cr should have an extraordinarily high value, so
that most of it’s features are transmitted in the trial vector. So, we
conclude that, the scheme for determining the value of Cr for i’th
donor vector ~Vi should be be as follows:

if ∆fdonor i < 0
Cri=Crconst;, (13a)

else
Cr i = Crmin +

(Crmax − Crmin)
1 + ∆fdonor i

; (13b)

Equation (13b) has been designed in such a way because, for f(~Vi) ≤
f( ~Xbest), as ∆fdonor i → 0, Cr i should have high value and vice
versa. Equation (13b) follows this property, as can be verified when
∆fdonor i → 0, then Cr i tends to Crmax, which is indeed a high value
and when ∆fdonor i → ∞, then Cr i tends to Crmin which is of low
value. Here, the Crconst should have a very high value. Empirically
we have chosen it as 0.95. Value of Crmax has to be reasonably high,
but not too high, as too high value will result into incorporation of
the features of a not-so-good donor vector (vectors having moderate
value of objective function value hence moderate ∆fdonor i), in the trial
vector during crossover. Hence, Crmax is kept at 0.7. Crmin has to be
small to ensure low crossover probability for donor vectors having high
∆fdonor i. Hence, Crmin is kept at 0.1.

The adaptation schemes for F and Cr has been applied on the
DE/best/1/bin described in Section 2.1.2 and in what follows, we shall
refer to this new DE-variant as FiADE (Fitness-Adaptive DE).

3. ELECTROMAGNETIC ANTENNA CONFIGURATION
TEST-SUITE FORMULATION

In this section, five antenna configurations are discussed in detail which
has been used as a problem suite over which the proposed control
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parameter adaption scheme in FiADE algorithm have been examined
and compared with some other state-of-the-art metaheuristics. The
reason of the selection of these particular antenna configurations has
been explained with details in [24].

3.1. Formulation of Problem 1: Maximization of the
Directivity of a Length Varying Dipole

The first problem considers the radiation characteristics of a finite-
length thin-wire dipole (Figure 3). As the length of the dipole
increases, its radiation pattern becomes more directional, but when the
length is greater than approximately one wavelength, the directional
properties are lost, due mainly to the grating lobes and increasing side
lobe level. The ideal parameter measuring the directional properties of
the dipole is its directivity defined by (14). Hence to obtain optimum
radiation characteristics from the dipole we will aim at maximizing the
directivity. Hence the directivity (17) constructs the objective function
of FiADE for this problem.

Directivity of any antenna configuration [26] can be defined as,

D (θ, φ) =
4π ∗ U (θ, φ)

Prad
(14)

where U (θ, φ) = radiation intensity in the (θ, φ) direction, Prad = total
radiated power by the antenna.

L 

 θ

L max

Figure 3. Length varying dipole.
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Again,

Prad =
∫∫
©
Ω

U (θ, ϕ) · dΩ =

2π∫

0

π∫

0

U (θ, ϕ) sin θ · dθ · dϕ (15)

Now, the radiation intensity U(θ, φ) of a finite length dipole of length
l, located at the origin of the co-ordinate system (considered for
simplicity) and excited by a current of amplitude I0 is given by
(16) [26].

U (θ, φ)=η
|I0|2
8π2

[
cos

(
kl
2 cos θ

)−cos
(

kl
2

)

sin θ

]2 [
k=

2π

λ
= wave number

]

=B0F (θ, φ) , (16)

where B0 = η |I0|
2

8π2 & F (θ, φ) =
[

cos( kl
2

cos θ)−cos( kl
2 )

sin θ

]2

.

Therefore,

D (θ, φ) =
4π ∗ F (θ, φ)

2π∫
0

π∫
0

F (θ, φ) sin θdθdφ

(17)

Figure 4 shows the three-dimensional (3-D) landscape of the directivity
of the dipole as defined by (17) versus its length (normalized to
wavelength λ) and the observation angle θ. To get a more transparent

Figure 4. Directivity of a dipole versus it’s length and the observation
angle.
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understanding of the presence of several local and one global maximum
in the directivity surface we show the projection of the three
dimensional plot on the length-directivity and angle-directivity plane
in Figures 5 & 6 respectively. Hence, this problem is a two dimensional
unimodal optimization problem. The search space ranges for l & θ are
[0.5λ, 3λ] and [0, π/2] respectively.

Figure 5. Projections of the directivity of a dipole onto the length-
directivity plane.

Figure 6. Projection of the directivity of the dipole onto the
observation angle-directivity plane.
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3.2. Formulation of Problem 2: Maximization of the
Directivity of a Uniform Linear Array of Half-wavelength
Dipoles

The second problem proposed is based on the radiation characteristics
of an array of 10 half-wavelength long dipoles contained in the XZ
plane of the conventional three-dimensional coordinate system as
shown in Figure 7. All the dipoles are fed at their centre with current
distribution of same amplitude I0 and zero progressive phase difference.
Here also, the pertinent “figure-of-merit” of the directional property of
the radiation pattern of the array is it’s directivity as defined by (14).
The following mathematical analysis establishes the expression of the
radiation intensity U (θ, φ) of the array shown in Figure 7 and hence
the fitness function of the FiADE algorithm for this problem.

Since the array dipoles are identical, we can assume the radiation
pattern of the array considering the sum of all contributing signals
of the individual dipoles. The above relation as often referred to as
pattern multiplication [26], indicates that the total field of the array is
equal to the product of the field due to a single dipole located at the
origin and a factor called array factor (AF).

Now, the electric field component Eθ due to a single half-
wavelength long dipole located at the origin is given by [26],

Eθ = jη
I0e

−jkr

2πr

[
cos

(
π
2 cos θ

)

sin θ

]
(18)

The array factor AF of the dipole array under consideration is given

by [26], AF =
N∑

n=1
I0e

j(n−1)Ψ, where Ψ = kd cos υ + β, d being the

separation between the successive array dipoles, β being the progressive

d

Z

X L=0.5λ

Figure 7. Uniform linear array of half wavelength dipoles.
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phase difference & as the dipoles are arranged in the XZ plane,
cos υ = sin θ cosφ. For this problem β = 0. Now the expression of
the AF can be considerably simplified to [26],

(AF )n =
1
N

[
sin

(
N
2 Ψ

)

sin
(

1
2Ψ

)
]

(19)

Therefore, the total electric field Eθt according to principle of pattern
multiplication is given by is given by,

Eθt = Eθ ∗ (AF )n (20)

So, now the radiation intensity U (θ, φ) is given by [26]:

U (θ, φ)=
r2

2η
|Eθt|2 =

r2

2η
|Eθ|2 |(AF )n|2

=
η

2
I2
0

4π2

[
cos

(
π
2 cos θ

)

sin θ

]2
1

N2

[
sin

(
N
2 Ψ

)

sin
(

1
2Ψ

)
]2

=B0F (θ, φ)(21)

So, the directivity D (θ, φ) is given by,

D (θ, φ) =
4π ∗ F (θ, φ)

2π∫
0

π∫
0

F (θ, φ) sin θdθdφ

(22)

Now for this particular problem directivity at θ = π
2 , φ = π

2 direction
is maximized. Hence, for this case (22) turns to,

D (θ, φ) =
4π ∗ F (θ, φ) |

θ=π/2,φ=π/2
2π∫
0

π∫
0

F (θ, φ) sin θdθdφ

(23)

Now (23) is modified by adding a randomly generated values from
a normal distribution function of mean 0 and variance 0.2. Then
this modified function constructs the objective function of the FiADE
algorithm for this problem. Figure 8 shows the three-dimensional
landscape of the directivity as defined by (23), i.e., without noise vs.
the separation d (normalized with respect to λ) between the dipoles
and the angle of observation θ. Noise has been added with (23) to
check whether the proposed algorithm is able to detect the position
of the global maxima even in the presence of strong random noise in
the local maxima and the global maxima itself. As, in this problem
D(θ, φ) with noise is maximized as a function of only d, keeping θ fixed
at π/2, hence this is a uni- dimensional noisy optimization problem.
The search space range considered for d is [5λ, 15λ].
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Figure 8. Directivity of a uniform linear array of half wavelength
dipoles as a function of the spacing between the elements and the
observation angle.

Figure 9. Collinear array of N half-wavelength long dipoles.

3.3. Formulation of Problem 3: Maximization of the
Directivity of a Collinear Array of Half-wavelength Dipoles

The third problem proposed is based on the radiation characteristics of
an array of N half-wavelength long dipoles arranged along the Z axis
of the conventional three-dimensional coordinate system as shown in
Figure 9. The position of the dipoles vary along the Z axis. In Figure 9,
the term di refers to the varying distance between i-th and (i + 1)-th
dipole with i varying from 0 to (N − 1). Each di varies between 0.5λ
to 1.5λ. Here, our aim is to optimize the geometry of the N element
collinear array in terms of the spacing between the individual radiators,
which involves (N − 1) dimensions in the search space and therefore
it is selected in our test suite as the high-dimensional test problem.
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Here we have analyzed two cases of such arrays involving 7 and 13
dipoles respectively. All the dipoles are fed at their centre with current
distribution of same amplitude I0 and zero progressive phase difference.
Here also, the pertinent “figure-of-merit” of the directional property of
the radiation pattern of the array is it’s directivity as defined by (14).
Here, the mathematical deduction of the directivity and hence the
fitness function of FiADE is completely identical with problem 2 as
described in Section 3.2. The only difference is in the expression of the
array factor which is given by (24).

(AF )n =
N∑

i=1

I0e
j(βdi cos θ+θi) (24)

Here, we optimize the directivity of the above described configuration
at θ = π

2 . Hence the final expression of the directivity for this problem
is,

D (θ, φ) =
4π ∗ F (θ, φ) |θ=π/2

2π∫
0

π∫
0

F (θ, φ) sin θdθdφ

(25)

This expression (25) also serves as the fitness function of the FiADE
algorithm for this problem. In this problem, we optimize D (θ, φ) as a
function of di with i ranging from 0 to N −1. Hence, this problem is a
high-dimensional (N − 1 dimension for N element array) optimization
problem. Here to anticipate the nature of the fitness function landscape
of the given problem we have plotted the directivity variation of the
collinear array as a function of distance between dipoles assuming
that the separation between the successive array elements is same,
i.e., di = d, for N = 7 and 13 as shown in Figure 10.

3.4. Formulization of Problem 4: Maximization of the
Directivity of a Circular Array of Dipoles

The fourth and final problem proposed is based on the radiation
characteristics of an array of eight half wavelength long dipoles
arranged in a circular manner on x-y plane as shown in Figure 11.
The dipoles are distributed uniformly along a one wavelength radius,
and they are fed with uniform amplitude-voltage sources, for which the
phase αn varies according to the equation αn = − [2πβ (n− 1)] , n =
1, 2, 3, . . . , 8 where β is a non-dimensional parameter to be optimized,
which determines the distribution of the phase excitations in the array.
Here also, the pertinent “figure-of-merit” of the directional property of
the radiation pattern of the array is it’s directivity as defined by (14).
The following mathematical analysis establishes the expression of the
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Figure 10. Directivity of a collinear array of half wavelength dipoles
as a function of the distance between the dipoles.

 θ

Figure 11. Circular array of 8 half-wavelength dipoles.

radiation intensity U (θ, φ) of the array and hence the fitness function
of the FiADE algorithm.

The array factor of N equally spaced half wavelength dipoles [26]
arranged along a circular geometry is

AF (θ, φ) =
N∑

n=1

Inej[ka sin θ cos(φ−φn)+αn] (26)

where φn = 2π∗(n/N) = angular position of the nth element on the x-
y plane. In = amplitude excitation of the nth element, a = the radius
of the circle.
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Now the electric field component Eθ due to a single half-
wavelength long dipole located at the origin is given in (18).
Therefore, the total electric field Eθt according to principle of pattern
multiplication is given by is given by the product of the AF (θ, φ) and
Eθ. So the radiation intensity U (θ, φ) is given by (27) [26].

U (θ, φ) =
r2

2η
|Eθt|2 =

r2

2η
|Eθ|2 |AF (θ, φ)|2

=
η

2
I2
0

4π2

[
cos

(
π
2 cos θ

)

sin θ

]
|AF (θ, φ)|2 = B0F (θ, φ) (27)

The expression for directivity D (θ, φ) is obtained in same manner
as (22). This expression serves as the objective function of FiADE
for this problem. Here, the directivity is maximized as a function of β
and the observation angle θ, in the φ = 0 plane. Figure 12 shows the
variation of directivity computed in the direction φ = 0, θ = π/2 as
a function of β. Figure 12 clearly establishes the multimodal nature
of the directivity surface, as there are four global maxima along the
directions βi = i − 0.5, i = 1, 2, 3, 4. Figure 13 shows the variation of
directivity as a function of θ for a fixed value of β = 2. It is clear from
the Figure 13, that maximum directivity is obtained along the direction
θ = π/2. The position of these four global maxima, situated along the
direction of the search space, enables the determination of whether
FiADE and other competitor algorithms can explore the search space
uniformly — producing a uniform distribution of success optimizations
in the different global maxima — or whether they produce a non

Figure 12. Directivity of a circular array of eight dipoles as a function
of β for θ = π/2, φ = 0.
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Figure 13. Directivity of a circular array of eight dipoles as a function
of θ for β = 2, φ = 0.

uniform distribution of convergence. Hence, this problem is two-
dimensional multimodal problem with search ranges for θ and β being
[0, π] & [0, 4] respectively.

4. EXPERIMENTAL SET-UP AND RESULTS

In this section, the results obtained by applying FiADE over
the discussed antenna configurations optimization test suite and a
comparison with some other state-of-the art metaheuristics have been
reported.

4.1. Algorithms Compared

In order to evaluate merits of the proposed control parameter
adaptation strategies in FiADE, it has been compared with two
variants of classical DE and two other extremely popular optimization
algorithms. A brief account of these algorithms and the philosophy
behind their selection for comparison is given below.

1. DE/rand/1/bin: This algorithm as discussed in Section 2 has
been chosen because it employs the most commonly used trial
vector generation scheme in DE.

2. DE/best/1/bin: This algorithm has been chosen, as the
proposed FiADE algorithm employs it’s control parameter
adaptation scheme over this particular variant of DE.

3. Particle Swarm Optimization (PSO): Particle swarm
optimization (PSO) is a method for performing numerical
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optimization without explicit knowledge of the gradient of the
problem to be optimized. PSO is originally attributed to Kennedy,
Eberhart and Shi [27, 28] and was first intended for simulating
social behavior of a flock of bird.

4. Invasive Weed Optimization (IWO): It is a recently proposed
stochastic numerical optimization method inspired from the
colonizing behavior of weeds. It was first proposed by Mehrabian
and Lucas [29].

4.2. Results

In this section, we provide a detailed analysis of the optimized
directivity values obtained using FiADE and the other competiting
algorithms on the above stated test problems. Table 2 shows the
mean and standard deviation along with the best and worst directivity
value of 50 independent runs for the first three problems in the
electromagnetic test-suite for each of the five algorithms. Table 3
shows the mean percentage of detecting each of the four global maxima
in the directivity landscape for the fourth problem as discussed in
Section 4.4. These results have been obtained with their respective
parametric set-up as described in Table 1. These parameters have
been chosen after rigorous experimentation to obtain the best possible
performance for each algorithm. Table 4 shows the Optimal spacing
between the successive array elements in the collinear array of problem
3 in terms of l for N = 7 and 13. Mean percentage of detecting each of
the four global maxima in the directivity landscape of a circular array of
eight dipoles with linear phase excitation (corresponding to problem 4)
has been reported in Table 5. Figure 14 shows how the fitness function
value converges to their respective optima by each algorithm for each

Table 1. Parametric set-up for the algorithms.

FiADE DE/rand1/bin DE/best/1/bin IWO PSO 

Maximum 

Population 

Size 

10*

problem 

dimension 

Maximum 

Population

Size 

10* 

problem 

dimension 

Maximum 

Population 

Size 

10* 

problem 

dimension 

Initial 

Population

Size 

5 

Maximum 

Population 

Size 

10* 

problem 

dimension 

Fc 0.8 F 0.8 F 0.8 
Max no of

Plants 
5 

Inertia 

weight,w 0.729

Crmax 0.7 Cr 0.5 Cr 0.5 
Max No of

Seeds 
25 

Learning 

factor 1 
1.49 

Crmin 0.1 
Min No of

Seeds 
0 

Learning 

Factor 2 
1.49 

ε 10-3
Nonlinear 

Modulation

Index 

3 Max 

Velocity 
6 

K 0.1 i
σ , 

f
σ 2, 0.01 

Min 

Velocity 
−6
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Table 2. Mean and standard deviation along with the best and
worst fitness function value and optimal parameters of the best-of-run
solutions for 50 independent runs tested on electromagnetic test-suite.

Problem 1,directivity of  length varying dipole
Problem 2, directivity of an uniform linear

array of half wavelength dipoles

Algorithms Best 

Fitness 

Worst 

Fitness 

Mean 

Fitness    

(Std_dev) 

l 
Best 

Fitness 

Worst 

Fitness 

Mean 

Fitness 

(Std_dev) 

d 

FiADE 3.2989 3.2956 
3.2973 

(0.0009) 
2.5919 0.6135

 
19.2035 

19.0072 

18.0021 

19.1072 

(0.0588) 
5.8705 

DE/rand/1/bin 3.2967 3.2659 
3.2759 

(0.0069) 
2.5917 2.5359 18.0250 17.5098 

17.7545 

(0.1451) 
14.5122 

DE/best/1/bin 3.2962 3.2923 
3.2933 

(0.0004) 
2.5804 0.6051

 
19.1632 

19.0039 

18.0052 

19.0885 

(0.0457) 
14.7016 

IWO 3.2958 3.2943 
3.2950 

(0.0003) 
1.2691 1.5708

 
16.9751 15.3871 

16.1458 

(0.5014) 
5.9999

 

PSO 3.2926 3.2791 
3.2838 

(0.0052) 
1.2638 0.7357

 
17.9914 17.1875 

17.5841 

(0.2534) 
5.6089

 

θ

Table 3. Mean and standard deviation along with the best and worst
fitness function value of the best-of-run solutions for 50 independent
runs tested on electromagnetic test-suite.

Algorithms

N = 7 N = 13

Best

Fitness

Worst

Fitness

Mean

Fitness

(Std dev)

Best

Fitness

Worst

Fitness

Mean

Fitness

(Std dev)

FiADE 14.5374 13.0019
14.1061

(0.5113)
31.6025 27.1871

29.4098

(0.7086)

DE/rand/1/bin 13.6883 13.0002
13.3566

(0.1897)
28.8753 25.4219

27.1403

(0.8579)

DE/best/1/bin 13.1607 12.7893
12.9462

(0.1017)
28.8198 25.9031

27.4316

(0.7423)

IWO 14.0396 12.5429
13.2334

(0.4484)
27.213777 24.7864

25.7679

(0.7114)

PSO 14.4397 12.9188
13.7760

(0.3694)
26.3216 24.5995

25.4409

(0.4946)

problem in the test-suite during the course of the respective best of
run solutions.

A non-parametric statistical test called Wilcoxon’s rank sum test
for independent samples [30, 31] is conducted at the 5% significance
level in order to judge whether the results obtained with the best
performing algorithm differ from the final results of rest of the
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Table 4. Optimal spacing between the successive array elements in
the collinear array in terms of λ for N = 7 and 13.

Algorithms d0 d1 d2 d3 d4 d5

FiADE 0.8877 0.8468 1.0306 1.2726 1.22281 1.1977

DE/rand/1/bin 0.9577 1.4361 1.1806 0.8198 0.66021 1.1485

DE/best/1/bin 0.8420 1.0756 1.0951 1.0575 1.25310 0.8710

IWO 0.8017 0.6831 0.7451 1.1067 0.61701 1.2370

PSO 0.9251 1.1992 1.0085 1.1263 0.64781 1.0085

Algorithms d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11

FiADE 0.5453  0.8872 0.6223 1.4269 1.4657 1.4783 0.7133 1.0842 0.8498 1.2807 0.6877 1.4994 

DE/rand/1/bin 0.8240    0.9313 1.4566 0.6848 1.0534 0.7895 1.0693 1.4861 1.1471 1.0749 1.3615 1.0896 

DE/best/1/bin 0.9809    1.1931 0.5298 0.5094 1.4871 1.3530 1.2193 0.8836 1.4840 1.4278 0.9946 1.0400 

IWO 1.5000    0.7747 0.9112 0.5376 1.4499 0.5321 0.6911 0.6674 0.8670 0.8592 1.3626 0.5000 

PSO 0.7180    1.0869 1.1051 0.9297 1.4915 1.3076 0.5313 1.2705 1.3423 0.7996 0.6174 0.8673 

Table 5. Mean percentage of detecting each of the four global maxima
in the directivity landscape of a circular array of eight dipoles excited
by linear phase excitation.

Algorithms

1st Global

Maxima

β = 0.5,

θ = π/2

2nd Global

Maxima

β = 1.5,

θ = π/2

3rd Global

Maxima

β = 2.5,

θ = π/2

4th Global

Maxima

β = 3.5,

θ = π/2
FiADE 26% 30% 24% 20%

DE/rand/1/bin 28% 40% 20% 12%

DE/best/1/bin 10% 40% 28% 22%

IWO 20% 40% 18% 22%

PSO 6% 40% 34% 20%

Table 6. Wilcoxon’s rank sum test results.

Algorithm
Problem 1 Problem 2

Problem 3,

N = 7

Problem 3,

N = 13

P -Value P -Value P -Value P -Value

FiADE N.A. N.A. N.A. N.A.

DE/rand/1/bin 1.2120e-17 1.1417e-17 2.2133e-10 7.7150e-13

DE/best/1/bin 2.7844e-17 5.3812e-16 4.4602e-17 8.5910e-12

IWO 5.6428e-16 7.0661e-18 3.3933e-11 7.9688e-18

PSO 7.0661e-18 7.0661e-18 1.0844e-04 7.0661e-18
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Figure 14. (a) Convergence curve for fitness functions corresponding
to length varying dipole (Problem 1). (b) Convergence curve for fitness
functions corresponding to Uniform linear array of half wavelength
long dipoles (Problem 2). (c) Convergence curve for fitness functions
corresponding to Collinear array of half wavelength dipoles having
N = 7 (Problem 3). (d) Convergence curve for fitness functions
corresponding Collinear array of half wavelength dipoles having
N = 13 (Problem 3). (e) Convergence curve for fitness functions
corresponding to Circular array of eight half wave length long dipoles
(Problem 4).

competitors in a statistically significant way. P values obtained
through the rank sum test between the best algorithm and each of the
remaining algorithms over the tested problems are shown in Table 6.
In these tables, NA stands for Not Applicable and occurs for the best
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performing algorithm itself in each case. The rank sum test tries to
detect the shift from the null hypothesis that the two sets of runs
from the two algorithms have same continuous probability distribution.
If the P -values are less than 0.05, it is strong evidence against the
null hypothesis and the difference of the results obtained by the two
algorithms (between which the test is being performed) can be inferred
as statistically significant within 5% significance level [31].

Among all the entries in Tables 2 and 3, the best values are shown
as bold-faced. From Table 2 and Figure 14 it is clearly understood
that the proposed algorithm FiADE has produced better results for
all the problems in the electromagnetic test-suite compared to all
of its competitors and it has done so consuming lesser number of
fitness function evaluations (FEs) and hence at the cost of lesser
computational time. In case of the multimodal problem also, FiADE
has shown a more uniform distribution of hitting all the four the global
maxima than the other algorithms. It can be seen that hit rate is
maximum at 2nd global maxima. This is because central search space
is more frequently explored and the global maxima located there are
more easily reached. Only at some instances, the other algorithms have
matched the outcome of FiADE, but have not produced better result
than it. For all the problems the difference of final objective function
values and the other design parameters obtained with FiADE and any
other contestant algorithm is practically significant from a design point
of view.

5. CONCLUSION

This paper illustrated the use of the FiADE algorithm in the
synthesis of certain antenna configurations for the purpose of
achieving maximum directivity. FiADE was successfully used to
optimize the locations of array elements to exhibit optimum radiation
characteristics. Over all the problems, the FiADE algorithm easily
achieved the optimization goal, beating four other state-of-the-art
optimization techniques. Thus it also establishes the novelty of the
proposed fitness based control parameter adaption scheme of DE.
Future research may focus on achieving more control of the array
pattern by using the FiADE algorithm to optimize, not only the
location, but also the excitation amplitude and phase of each element
in the array, and exploring other array geometries.

As a metaheuristic algorithm, DE and the proposed adaptive
variant will most likely be an increasingly attractive alternative, in
the electromagnetics and antennas community, to other evolutionary
algorithms such as GAs and PSO. Compared to genetic algorithms
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and particle swarm optimization, DE is much easier to understand
and implement, minimizes the need for problem-dependent parameter
tuning, and requires minimum mathematical preprocessing.

REFERENCES

1. Goldberg, D. E., Genetic Algorithms in Search, Optimization and
Machine Learning, Addison-Wesley, Reading, MA, 1989.

2. Kirkpatrick, S., C. D. Gellat, Jr, and M. P. Vecchi, “Optimization
by simulated annealing,” Science, Vol. 220, 671–679, 1983.

3. Kennedy, J. and R. C. Eberhart, Swarm Intelligence, Morgan
Kauffman, San Francisco, CA, 2001.

4. Rahmat-Samii, Y. and E. Michielssen, Electromagnetic Optimiza-
tion by Genetic Algorithms, Wiley, New York, 1999.

5. Coleman, C., E. Rothwell, and J. Ross, “Investigation of simulated
annealing, ant-colony optimization, and genetic algorithms
for self-structuring antennas,” IEEE Trans. Antennas Propag.,
Vol. 52, 1007–1014, Apr. 2004.

6. Robinson, J. and Y. Rahmat-Samii, “Particle swarm optimization
in electromagnetics,” IEEE Trans. Antennas Propag., Vol. 52,
397–407, 2004.

7. Boeringer, D. and D. Werner, “Particle swarm optimization versus
genetic algorithms for phased array synthesis,” IEEE Trans.
Antennas Propag., Vol. 52, 771–779, 2004.

8. Price, K., R. Storn, and J. Lampinen, Differential Evolution — A
Practical Approach to Global Optimization, Springer, Berlin, 2005.

9. Storn, R. and K. Price, “Differential evolution — A simple and
efficient heuristic for global optimization over continuous spaces,”
Journal of Global Optimization, Vol. 11, No. 4, 341–359, 1997.

10. Storn, R. and K. V. Price, “Differential evolution — A
simple and efficient adaptive scheme for global optimization
over continuous spaces,” Technical Report TR-95-012, ICSI,
http://http.icsi.berkeley.edu/∼storn/litera.html, 1995.

11. Storn, R. and K. V. Price, “Minimizing the real functions of
the ICEC 1996 contest by differential evolution,” Proceedings
of the 1996 IEEE International Conference on Evolutionary
Computation, 842–844, Nagoya, Japan, 1996.

12. Nelder, J. A. and R. Mead, “A simplex method for function
minimization,” Computer Journal, Vol. 7, 308–313, 1965.

13. Price, W. L., “Global optimization by controlled random search,”
Computer Journal, Vol. 20, No. 4, 367–370, 1977.



318 Chowdhury et al.

14. Rechenberg, I., “Evolutionsstrategie — Optimerung technischer
systeme nach prinzipien der biologischen evolution,” Ph.D. Thesis,
1971, Reprinted by Fromman-Holzboog, 1973.

15. Price, K., R. Storn, and J. Lampinen, Differential Evolution — A
Practical Approach to Global optimization, Springer, Berlin, 2005.

16. Liu, J. and J. Lampinen, “On setting the control parameters of
the differential evolution method,” Proc. of Mendel 2002, 8th
International Conference on Soft Computing, R. Matoušek and
P. Ošmera (eds.), 11–18, 2002.

17. Qin, A. K., V. L. Huang, and P. N. Suganthan, “Differential
evolution algorithm with strategy adaptation for global numerical
optization,” IEEE Transaction on Evolutionary Computation,
Vol. 13, No. 2, 398–417, April 2009.

18. Brest, J., S. Greiner, B. Boskovic, M. Mernik, and V. Zumer,
“Self-adapting control parameters in differential evolution: A
comparative study on numerical benchmark problems,” IEEE
Transactions on Evolutionary Computation, Vol. 10, No. 6, 646–
657, 2006.

19. Liu, J. and J. Lampinen, “A fuzzy adaptive differential evolution
algorithm,” Soft Computing — A Fusion of Foundations,
Methodologies and Applications, Vol. 9, No. 6, 448–462, 2005.

20. Liu, J. and J. Lampinen, “Adaptive parameter control of
differential evolution,” Proc. of Mendel 2002, 8th International
Conference on Soft Computing, R. Matousek and P. Osmera
(eds.), 19–26, 2002.

21. Ronkkonen, J. and J. Lampinen, “On using normally distributed
mutation step length for the differential evolution algorithm,”
Proc. of Mendel 2003, 9th International Conference on Soft
Computing, 11–18, Brno, Czeck Republic, Jun. 5–7, 2003.

22. Ali, M. M. and A. Torn, “Population set based global
optimization algorithms: Some modifications and numerical
studies,” Computers and Operations Research, No. 31, 1703–1725,
Elsevier, 2004.

23. Chowdhury, A., R. Giri, A. Ghosh, S. Das, A. Abraham,
and V. Snasel, “Linear antenna array synthesis using fitness
adaptive differential evolution algorithm,” Proceedings of the 2010
International Conference on Evolutionary Computation, 3137–
3144, IEEE Press Barcelona, Spain, 2010.

24. Pantoja, M. F., A. R. Bretones, and R. G. Martin, “Benchmark
antenna problems for evolutionary optimization algorithms,”
IEEE Trans. Antennas Propag., Vol. 55, No. 4, 1111–1121, 2007.



Progress In Electromagnetics Research B, Vol. 26, 2010 319

25. Das, S., A. Konar, and U. K. Chakraborty, “Two improved
differential evolution schemes for faster global search,” ACM-
SIGEVO Proceedings of GECCO, 991–998, Washington D.C.,
Jun. 2005.

26. Balanis, C. A., Antenna Theory. Analysis and Design, 2nd edition,
Wiley, New York, 1997.

27. Kennedy, J. and R. Eberhart, “Particle swarm optimization,” Pro-
ceedings of IEEE International Conference on Neural Networks,
Vol. 4, 1942–1948, 1995.

28. Shi, Y. and R. C. Eberhart, “A modified particle swarm
optimizer,” Proceedings of IEEE International Conference on
Evolutionary Computation, 69–73, 1998.

29. Mehrabian, A. R. and C. Lucas, “A novel numerical optimization
algorithm inspired from weed colonization,” Ecological Informat-
ics, Vol. 1, 355–366, 2006.

30. Wilcoxon, F., “Individual comparisons by ranking methods,”
Biometrics, Vol. 1, 80–83, 1945.
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