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Abstract—To simulate imaging systems, Fourier optics has been
applied very successfully to optics for decades. However, when simply
moving to indoor millimeter wave imaging systems, some assumptions
underlying the Fourier optics may break down, which contribute to the
errors by applying Fourier optics. During the review of mathematical
derivation of the Fourier optics, we point out how the errors are
introduced by making the Fresnel approximation and omitting the
phase factors. To distinguish from much literature, we discuss the
accuracy of Fresnel approximation rather than plane wave. Moreover,
we check the simulation results for millimeter wave imaging systems
working in both pixel scanning mode and focal plane array mode
and compare them to the results predicted by Fourier optics. It is
shown that the difference can be 28% for the speckle contrast when
the object is with certain roughness. The optical routine is that when
the lens is four times’ larger than the object, the imaging system can be
considered as isoplanatic, thus Fourier optics can hold. Our simulation
results imply that it may not be valid in indoor millimeter wave imaging
systems. The goal of this paper is to draw some attention to the
possibly large errors when modeling or designing the indoor millimeter
wave imaging systems by Fourier optics directly. The mathematical
discussions of the inaccuracies due to some approximations in Fourier
optics can serve to understand and deal with aberrations.
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1. INTRODUCTION

In Fourier optics, imaging is considered as a linear spatial invariant
process with a corresponding impulse response called “amplitude
transfer function” defined by the optical pupil [1]. Consequently, linear
system theory holds. Due to the elegant mathematical expression
of this approach and ease of calculations by Fast Fourier Transform
(FFT), it is widely applied to simulate various kinds of optical imaging
systems, including human vision [2] and photolithography [3]. On
the other end of the spectrum, researchers in microwave imaging are
influenced by this concept as well. Recently, millimeter wave imaging
is becoming more and more important in the areas of public security
and industrial detection, since waves in this frequency band allow both
good resolution and penetration ability [4]. Based on Fourier optics,
simulations are implemented for both active [5] and passive systems
at 100GHz [6]. The question is how accurate the method can be
in such cases. We will show how the assumptions made during the
mathematical derivation of the Fourier relationship lead to possibly
large errors in case of coherent millimeter wave imaging. Due to the
cost of the component at millimeter wave frequencies, in most labs,
studies of focal plane array imaging generally originate from prototypes
which work in the pixel scanning mode. We will prove that the imaging
array setup is more than a parallel realization of the pixel scanning
system, while the illuminated area plays an important role.

This paper is structured as follows: in Section 2, we compare
the different imaging properties between optical and millimeter wave
imaging systems. Next, we briefly reviewed the derivation of Fourier
optics. In Section 4, we compare the imaging results for both
smooth and rough objects based on Fourier optics and the scalar
diffraction model. In Section 5, we analyze the accuracy of the Fresnel
approximation and the influence of the quadratic phase factor by
stationary phase method and spectrum analysis respectively. The
two points above contribute to the inaccuracies due to approximations
towards Fourier optics, which can be large in case of indoor millimeter
wave imaging systems. Moreover, the two sections above help to
explain the imaging results in Section 4. In the end, we will come
to conclusions in Section 6.

2. COMPARISON BETWEEN OPTICAL AND
MILLIMETER WAVE IMAGING SYSTEMS

Either optical or millimeter wave imaging can be considered as an
information transmission process, and the lens provides a channel. In
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practice, we can only sense certain parts of the object, whose radiations
are captured by our lenses and projected to sensors. Fast phase shift
corresponds to roughness of the object physically, while from the wave
optics point of view, it leads to large diffraction angles. In Figure 1,
we conclude the imaging process in four cases. When the object is flat,
wave propagates in a paraxial manner. Geometrical optics (GO) works
well in this case. In optical imaging systems, generally we are interested
at electrically large features and we use line (1) to represent this case.
As the spatial frequency goes higher, diffraction angle becomes larger.
For line (2), the diffracted beams can still be captured by lens’ aperture.
In this case, it is possible to recover the image with high fidelity once
the aberration problem can be solved. However, for lenses with small
f-numbers, aberration is a challenging problem. When the spatial
frequency of a certain part of objects is high enough, as line (3) shows,
large diffraction angles generate escaping beams and a dark spot will
appear on image plane. For those parts with extremely high spatial
frequency components, evanescent waves can be generated, as shown
by line (4). The information is totally lost in this case.

There are five reasons which contribute to the success of Fourier
optics at optical frequencies: first, paraxial condition is usually satisfied
(Line 1 in Figure 1), which means that phase errors are small; second,
Fraunhofer diffraction is the most important case encountered in
engineering optics [7], so that incident field on the lens’ aperture can
be considered as a simple Fourier transform of the object’s field; third,
considering the resolution, it is large in terms of electrical size, which
means that only the relatively low spatial frequency components gain

Figure 1. Image formation process.
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interest; fourth, there are very good lenses to deal with aberrations,
so as to guarantee the isoplanatic condition in a large area; fifth, the
illumination is quite flexible, which can help to eliminate the influence
of the quadratic phase factor, making the system more isoplanatic [1].

Compared to optical imaging systems, the challenge for millimeter
wave imaging systems is to realize higher resolution in terms of
electrical size in a more non-paraxial case. In [8], by simply scaling
an optical imaging system to a millimeter wave imaging system based
on wavelengths, an optical camera would have at millimeter wave
frequencies a system scale of hundreds of meters with a lens’ diameter
of tens of meters. Considering the resolution, it is in the order of
tenths of a millimeter for the human eye in the optical case, while
the corresponding value for a millimetre wave imaging system would
be around ten meters. However, the dimension of practical millimeter
wave imaging systems is limited to a few meters for indoor applications,
with a resolution of interest at the level of centimetres or even less. In
such a compact system, we have to be cautious about the physical size
of the object to be imaged and how paraxial it can be. The resolution
for a millimeter wave imaging system is generally a few wavelengths.
To achieve high resolution considering the wavelength, it is common to
apply a lens with a small f-number so as to collect more transmitted
or reflected waves within a larger solid angle. For general optical
imaging systems, the f-number is 2.5 or larger, while for millimeter
wave imaging systems, it is common to be around one, making the wave
propagation from lens to image plane not quite paraxial. Moreover, the
field-of-view of millimeter wave imaging systems is generally very large,
which can be even 60 degrees in contraband detection systems [4]. This
requirement is more demanding than most optical imaging systems.
Nowadays, at millimeter wave frequencies, the performance of the
lens can not compete with optical systems, which means that more
significant aberrations can not guarantee a large enough isoplanatic
area. Compared to optical lenses, the design work at millimeter
frequencies is still very young, which mainly follows the optical
routine based on GO, without considering much about millimeter wave
features [9, 10]. However, the validity of GO or expanded version of
GO is limited to high frequency problems [11, 12]. At millimeter wave
frequencies, considering the much smaller electrical size of interested
object’s features and lens compared to optics, diffraction effects are
much more important. Optical lens design is a good starting point,
but millimeter wave lens design is more complicated for imaging
applications and full-wave calculations should be included. Last but
not least, for millimeter wave imaging systems in focal plane array
mode, it is common to realize the large-area illumination by expanding
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the Gaussian beam, which means that the illumination is not as good
as in optics, making the aberration problem more serious.

According to the discussions above, in practical indoor millimeter
wave systems which work in the focal plane array imaging mode, we
should consider the practical size of the components, dimension of the
system and objects with possible roughness. In order to capture more
radiations from the object, we hope to decrease the distance between
object and lens, while in order to weaken the aberration of the image,
we wish to make the distance larger. So trade-offs are required for
system design.

3. IMAGING MODEL

The considered imaging system is shown in Figure 2, including three
components: an object, a lens and an image plane, with the following
denotations: (ξ, η): object plane; (x, y): lens plane; (u, v): image
plane; Uo: field distribution on the object plane; Ul: field distribution
in front of the lens; U ′

l : field distribution behind the lens; Z1: distance
between object plane and lens; Z2: distance between lens and image
plane.

According to the scalar diffraction theorem, propagated fields can
be calculated by the Rayleigh-Sommerfeld formula (1), where (x, y)
and (ξ,η) are the spatial coordinates in two planes of which the latter
one is the source plane. Concerning the exponential factor in (1),
r is approximated by retaining the first two terms of its binominal
expansion. For the denominator part, r is the distance between the
two planes, as a constant. Consequently, (1) is approximated by (2),

Figure 2. Imaging system setup, which contains an object, a lens and
an image plane.



250 Qi et al.

which is called the Fresnel approximation [1].
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Essentially, the derivation of Fourier optics is based on two Fresnel
approximations in the zone of Z1 and Z2, plus a thin lens model as a
phase shift component [1]. In this case, the field distribution in the
image plane is expressed as in (3), where P (x, y) stands for the aperture
of the lens. By deleting all the linear and quadratic phase factors,
(3) is casted into (4), in which the Fourier relationship is attained in
normalized coordinates considering the amplification ratio. In spatial
frequency domain, formula (4) implies a low-pass filtering process.
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However, we should pay attention to the approximations towards
formula (4), which essentially implies a Fraunhofer approximation
between object and lens plus a Fresnel approximation between lens
and image plane. In [13], the omission of quadratic phase factor which
interacts with the object field directly, is the key to change the kernel
as pulse response from spatial variant to spatial invariant. This is
often called “isoplanatic” and it requires a very large distance (infinite
theoretically) between object and lens, which matches our discussions
of the Fraunhofer diffraction condition above. Tichenor pointed out
that this requirement can be loosened and the imaging model can be
applied if the size of the object does not exceed one-fourth of the linear
dimension of the lens’ aperture [14].

4. IMAGING RESULTS COMPARISON

In this section, we will compare Fourier optics, as described by
Formula (4) to another model, which is based on Rayleigh-Sommerfeld
diffraction in [15]. Moreover, the influence of illuminated area will
be shown. Considering the huge electrical size of the millimeter
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wave imaging system, it is extremely difficult to implement full-wave
calculations at the system level by the computer nowadays. Thus,
system simulations based on scalar diffraction can be considered as a
good tradeoff between accuracy and calculation speed. More advanced
algorithms for electromagnetic scattering can be found in [16–23].

In a millimeter wave imaging system that works in pixel scanning
mode, the illuminated region can be controlled by Gaussian beam
transforms by a set of lenses. However, for a focal plane array
imaging system, it means that an object has a larger illuminating area
accompanied with more serious distortions during wave propagation.
In Figure 3, we compare the imaging results at 100GHz, working at
pixel scanning mode, focal plane array mode, and the simulation results
from Fourier optics. The size of the object is 0.18× 0.18m2 including
both the gun and the background. The contrast between them is 9 dB,
which corresponds to the case of metal and skin [4]. The periods of
the random roughness are 8 wavelengths for the background and 4
wavelengths for the rough object. The maximum height difference
of the object’s surface is 1.5 mm. The diameter of the lens is 0.1 m
for the scanning system and 1 m for the focal plane imaging system
respectively. The focal distances are 0.2 m and 1 m respectively. The
resolution is two wavelengths and the amplification ratio of the system
is 1. We consider both the cases for smooth and rough objects with
different roughness definitions.

As shown in Figure 3, for smooth objects, the imaging results
are similar by applying all the three approaches. In case of rough
objects, the pixel scanning system gives slightly worse results than
the prediction by Fourier optics, while the focal plane array imaging
system gives clearly the worst result. Among the three methods above,
Fourier optics provides the best description of the object. To evaluate
the image quality of the gun, we follow the concept of speckle contrast
in [15], which is the deviation of the intensity divided by the average
value. In Figure 3(e), the speckle contrast is 0.23, while the value is
0.18 in Figure 3(f). This means that by applying the focal plane array
imaging approach, the difference in terms of speckle contrast is around
28% compared to the prediction by Fourier optics, which accounts for a
more seriously blurred image. Note that in this case, even the diameter
of the lens is more than five times’ larger than the object, Fourier
optics does not hold well. This obeys the conclusions in [14]. Focal
plane array imaging is a very hot topic in millimeter wave imaging
systems nowadays. However, before upgrading the scanning system,
it should be clear that the focal plane imaging system is more than a
parallel realization of pixel scanning systems and the image distortion
is possibly much worse than the prediction by Fourier optics.
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5. MATHEMATICAL ANALYSIS TO PREVIOUS
RESULTS

In previous section, we have shown that for smooth objects, there is
a good convergence for simulation results between Fourier optics and
the method based on scalar diffraction in case of a smooth object;
while for a rough object with a large illuminated area, the results
attained by the two methods are quite different. Since Fourier optics
can be considered as a simplified version of the method based on scalar
diffraction, in this section, we will investigate the influence of the two
procedures for simplification as follows, Fresnel approximation and the
omission of the most important quadratic phase factor.

5.1. Influence of the Fresnel Approximation

Fresnel approximation is widely applied since it has a nice expression
which can be calculated by Fourier transform. In this section, we
will examine the effect that the Fresnel approximation has on wave

(a) (b) (c)

(d) (e) (f)

Figure 3. Comparison of different imaging approaches for a smooth
and a rough object with random roughness. Upper row, smooth object;
bottom row, rough object (a), (d) pixel scanning mode; (b), (e) focal
plane array mode (c), (f) results predicted by Fourier optics.
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propagation, which would influence the final image consequently.
In [24], it is proved by numerical integrations that the Fresnel
approximation is accurate even in extremely near field and phase
errors are ignorable in the region of geometrical projection. The
conclusions strongly promote that Fourier optics be valid at a much
shorter distance. However, we should also pay attention to the fact
that all the discussions on the accuracy of the Fresnel approximation,
are limited to plane waves, without considering the phase shift of the
wave source which can have high spatial-frequency components.

For simplicity, we only examine the influence of the phase
factor, which is important to the integral values of formula (1).
Mathematically, the diffraction formula can be expressed as (5), where
k is the wave number, g(x) stands for the amplitude distribution of
the object field and f(x) is the phase distribution of the object field
divided by k plus the influence of propagated distance of the wave.

I =
∫

g(x)ejkf(x)dx (5)

According to the stationary phase theorem [25], if g(x) changes
slowly with the integral variable and k is a large number, the integral
value can be determined mainly by the stationary phase points directly.
Mathematically, the fast oscillations in phase between p and −pi lead
to the cancelation of the contributions from the amplitude distribution
inside the integral. The key points are those who can make the
first-order differential coefficient of the phase function to be equal to
zero. In our discussion of the diffraction either in optics or in the
millimeter wave region, it is suitable to apply the stationary phase
analysis considering the small wavelengths with corresponding large
wave numbers. Here x and x′ represent the coordinates on the source
and destination planes respectively. The distance between them is z.
The overall phase function is expressed in (6), which is changed into (7)
by making the Fresnel approximation. The letter “E” stands for “exact
calculation”, while the letter “F” stands for “Fresnel approximation”.

fE(x) = φ(x)/k + z
√

1 + [(x− x′)/z]2 (6)
fF (x) = φ(x)/k + z + (x− x′)2

/
2z (7)

To describe the object’s spectrum, a simple sine function is
assigned to phase in formula (8), where A stands for the amplitude
of the height difference and T is the spatial period of the sine signal,
and ω=2π/T. For general phase distributions, it is easy to expand the
discussions by using a Fourier transform.

φ(x) = kA sin(ωx) (8)
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Now the first-order derivatives can be expressed as (9) and (10),
with ∆x = x − x′. Both of them are functions of the offset along the
x axis.

f ′E(x) = Aω cos(ωx) + (1/z) ·∆x
/√

1 + (∆x/z)2 (9)

f ′F (x) = Aω cos(ωx) + (1/z) ·∆x (10)

In the following discussions, A is half a wavelength and we are
interested at the distribution of the stationary phase points. So the
calculation of the integral is in fact on how well the stationary phase
points in formulas (9) and (10) can match. The periods of the phase
shifts are 100 wavelengths and 5 wavelengths respectively. Here, we
only show the case of the on-axis point on the destination plane. For
off-axis points, we just need to move the curve to the left and right
accordingly in Figure 4 and the difference between the two curves
becomes larger. The distance between the source and the destination
plane is 1 m. The intersection points between the curve and the
horizontal line in the figure are the stationary phase points.

According to the results above, in case of a large period which
represents a smooth object, the distributions of the stationary phase
points are similar with and without Fresnel approximation. While
as the spatial frequency increases, the amplitude of the differential
function increases with a faster oscillation, as shown in Figures 4(c) and
(d). There exists a case in which the number of stationary phase points
would be clearly different by using or not the Fresnel approximation.
In Figure 4(b), the Fresnel approximation implies around 10% loss of
stationary points, resulting in a large difference between the values of
the approximated and non-approximated integrals. Theoretically, the
introduced phase errors by the Fresnel approximation are cumulative.
As the frequency of the phase function increases, the number of
stationary phase points may become larger as well, leading to possibly
large errors in integral values. Moreover, the drastically increased
number of stationary points would make the coupling between these
points more significant. So, the Fresnel approximation may suffer from
an obvious error when analyzing objects with high spatial frequency
components. In this case, even in the geometrical projection region, the
Fresnel approximation can not guarantee a good result, which obeys
the conclusion of Southwell [24]. As discussed in Section Two, non-
paraxial case is common in millimeter wave imaging systems, due to
the small f-number of the lens, large field of view, large diffraction
angle due to object’s features with high spatial-frequencies and a
small system scale. The Fresnel approximation, as the solution to
paraxial Helmholtz equation, is not very accurate mathematically.
From the Fourier transform point of view, Fraunhofer diffraction can
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(a) (b)

(c) (d)

Figure 4. Comparison of the differential function of phase distribution
for the on-axis point: WITH and WITHOUT approximation at
x′ = 0 (a) comparison of the stationary phase points T = 100λ; (b)
comparison of the stationary phase points distribution T = 5λ, with
an enlarged figure around the boundary in (c) and (d); (c) differential
phase function T = 5λ, no Fresnel approximation; (d) differential phase
function T = 5λ, with Fresnel approximation.

be considered as aberration free, Fresnel approximation introduces
2nd order aberration by deleting all the higher-order terms during
expansion of the phase function. So in millimeter wave imaging
systems, object’s field is possibly distorted during wave propagation
after a few meters due to diffraction. The purpose of optical system
design is to decrease these aberrations introduced by the high-order
terms. It is impossible to deal with all kinds of phase errors by a single
lens. In many millimeter wave imaging systems, there is only one lens
nowadays. Consequently, aberrations deserve our attention and the
system is not as isoplanatic as the optical case. More lenses can be
applied to improve the optical performance of the systems, however,
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we should also consider the large losses at millimeter wave frequencies.

5.2. Influence of the Quadratic Phase Factor

In (3), there are five phase factors omitted by the Fourier relationship
so as to realize mathematical simplicity. In [1], the conditions for
the omission operation are discussed. The most important factor is
exp(jk(ξ2 + η2)), since it interacts with the object field directly. Here,
the interaction between the quadratic phase factor and the object field
is examined. There are two questions: first, how large the difference
between the integrals (11) and (12) can be; second, how the results are
influenced by the spatial frequency of the object. We will analyze the
questions in spatial-frequency domain, where formulas (13) and (14)
are examined instead of formulas (11) and (12).
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The quadratic phase factor in our case and its spectrum are shown
in Figure 5. The spectrum is normalized and is shown in the range of
−250 ∼ 250 cycles per meter. Its bandwidth is considered to be 200
cycles per meter according to the power distribution of the spectrum.
Both rough and smooth objects are investigated with and without the
quadratic phase factor. The phase shift is the same as in previous
discussion and the results are shown in Figure 6.

Here, we use the difference between the maximum and minimum
amplitude divided by the average amplitude to evaluate the contrast
of the image. As shown in Figures 6(a) and (b), for the smooth
object, there is no obvious difference between the two images with and
without multiplying the quadratic phase factor. Since the contrast is
less than 2%, this situation is not sensitive to the difference. While
in case of the rough object, two images are quite different, as shown
in Figures 6(c) and (d). By taking the quadratic phase factor into
account, the obtained image is not as uniform as the former one,
which is quite regular and periodic. The contrast values are 1.5 and
1.8 respectively, corresponding to more than 20% difference. The
irregularity in Figure 6(d) contributes to the distortion of the final
image in reality.

The low-pass filtering effect of the imaging system is shown in
Figure 7 for both the smooth and rough objects with and without the
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quadratic phase factor. For the smooth object, by taking the quadratic
phase factor into account, the spectrum is still in baseband, so that
we get a smooth image correspondingly. For the rough object, the
spectrum is quite different and a lot of new frequency components
appear in the spatial frequency domain, resulting in different images.

Fourier analysis can be applied to analyze the results in Figure 7
The spectrum of the exponential function with a sine phase distribution
is a set of pulses with a constant interval, which is proportional to the
frequency of the sine signal in the spatial frequency domain. The
spectrum manipulation by multiplying the quadratic phase factor can
be understood as follows: first, the spectrum of the quadratic phase
factor is weighted by the coefficient determined by the amplitude of
the phase shift and Bessel functions, as shown in Figure 8; second, the
weighted spectra are repeated at discrete spatial frequencies; third,
interference happens to the overlapped spectra. The amplitude of the
phase shift would influence the weighing factor and the corresponding
spectrum, which can be analyzed according to the discussions above.
The spatial truncation changes the pulse into a sinc function in
transform domain.

To match the results in Figures 6 and 7, we will focus on the
discussions at x = pi and only examine the influence of the period
of the phase function. However, the analysis can be generalized to
other cases. The weighting factor is determined by the intersection
points of Bessel function and x = pi. In Figures 7(c) and (d), the
value for the peaks are according to the intersection points by x = pi
and 0, 1st, 2nd order Bessel functions. Moreover, the intersection
points between x = pi and higher-order Bessel functions have very
small values, thus the result is mainly decided by the low-order Bessel

(a) (b)

Figure 5. Quadratic phase factor and its spectrum, (a) in spatial
domain; (b) in spatial frequency domain.
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(a) (b)

(c) (d)

Figure 6. Influence of the quadratic phase factor on image (a)
T = 100λ, without the quadratic phase factor. (b) T = 100λ, including
the quadratic phase factor. (c) T = 5λ, without the quadratic phase
factor. (d) T = 5λ, including the quadratic phase factor.

functions. When the period of the phase shift is 100 wavelengths,
the pulses are very close to each other. Thus the repeated spectra
after weighting interact with each other are still located in baseband.
The narrower spectrum corresponds to a “flatter” image by including
the quadratic phase factor. When the period of the phase shift is 5
wavelengths, the interval between pulses is expanded. In our case, the
resultant spectrum has new spatial frequency components in a broader
frequency range, which is shown in Figure 7(d). Moreover, interference
between shifted spectra also contributes to some differences between
the spectra with and without including the quadratic phase factor. The
two points above account for the distortion in Figures 6(c) and (d).
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(a) (b)

(c) (d)

Figure 7. Influence of the quadratic phase factor on spectra (a)
T = 100λ, without the quadratic phase factor, (b) T = 100λ, with
the quadratic phase factor, (c) T = 5λ, without the quadratic phase
factor, (d) T = 5λ, with the quadratic phase factor.

Figure 8. Determination of the weighting coefficient by Bessel
function and the amplitude of the phase shift.
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6. CONCLUSION

In this paper, we compare optical imaging systems and millimeter wave
imaging systems. For the latter one, different imaging properties are
discussed. The derivation process of the Fourier relationship between
an object and its image is reviewed accompanied with a discussion
on mathematical inaccuracies due to some approximations. The
Fresnel approximation and omission of quadratic phase factors have
assigned some limitations to this approach considering the practical
non-paraxial case and possibly high spatial-frequency features of the
object in millimeter wave imaging systems. By applying the stationary
phase theorem, we validate the Fresnel approximation qualitatively.
Based on spectrum analysis, we explain how the image is blurred
due to the omission of the quadratic phase factor. Both of the two
points above may break down the linear spatial invariant property
of the imaging system. The analysis approaches can be generalized
to a much wider range. To sum up, the method based on Rayleigh-
Sommerfeld diffraction is accurate at the scale of scalar calculations.
Direct application of Fourier optics forms the first-order approximation
of the imaging system. Second-order approximation can be considered
by including the phase factors omitted in Fourier optics. In practice,
scanning imaging systems can be similar to the predictions by Fourier
optics only if the scanning area is small enough.
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