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Abstract—Scanning a planar array in the x-z plane directs the
beam peak to any direction off the broadside along the same plane.
Reduction of sidelobe level in concentric ring array of isotropic
antennas scanned in the x-z plane result in a wide first null beamwidth
(FNBW). In this paper, the authors propose pattern synthesis methods
to reduce the sidelobe levels with fixed FNBW by making the scanned
array thinned based on two different global optimization algorithms,
namely Gravitational Search Algorithm (GSA) and modified Particle
Swarm Optimization (PSO) algorithm. The thinning percentage of
the array is kept more than 45 percent and the first null beamwidth
(FNBW) is kept equal to or less than that of a fully populated,
uniformly excited and 0.5λ spaced concentric circular ring array of
same scanning angle and same number of elements and rings.
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1. INTRODUCTION

Circular array has received considerable interest over other types of
planar arrays because it is symmetric and provides a nearly invariant
beam pattern for 360◦ azimuthal coverage. A circular ring array, also
known as a concentric circular array (CCA) is a planar array that
consists of one or more concentric rings, which has equally spaced
elements on its circumference. Its main attraction is the cylindrical
symmetry of its radiation pattern and compact structure. Depending
upon implementations, the maximum gain can be directed to broadside
or the array can also be scanned in the elevation plane by properly
arranging the array elements and making the array factor a function
of θ. Other implementations that require the maximum gain to be
directed in θ = 90◦ or scan the beam in the azimuth plane obtained
by proper arrangement of the array elements and making the array
factor a function of ϕ. However, in its modest form the array suffers
from a high sidelobe problem. One of the important configurations
regarding CCA is the uniform concentric circular array (UCCA) where
the inter-element spacing in each individual ring is kept almost half
of the wavelength and all the elements in the array are uniformly
excited. Generally low sidelobes in the array factor are obtained
through optimum amplitude weights of the signals at each array
element. Sidelobe reduction techniques in the concentric circular ring
array appear in the literature.

The radiation pattern function of a concentric ring array has
been expressed by Stearns and Stewart [1] as a truncated Fourier-
Bessel series and the non-uniform distribution of the rings has been
approximated to a smaller number of equally spaced ones. N. Goto
and D. K. Cheng showed that for a Taylor weighted ring array the
maximum allowable inter-element spacing should be about four-tenths
of a wavelength, if high sidelobes are to be avoided [2]. L. Biller and
G. Friedman used steepest descent iterative process to find out element
weights and ring spacing to get lower sidelobe levels and control over
beam width [3]. D. Huebner reduced the sidelobe levels for small
concentric ring array by adjusting the ring radii using optimization
technique [4]. B. P. Kumar and G. R. Branner also proposed optimum
ring radii for getting lower sidelobes [5]. M. Dessouky, H. Sharshar
and Y. Albagory showed that the existence of central element in case of
concentric circular array of smaller innermost ring reduced the sidelobe
levels significantly while minor increase in the beamwidth [6]. Sidelobe
level can be reduced by thinning the array [7–9]. Sidelobe level can also
be reduced by spacing the concentric ring non-uniformly, by varying
the number of elements in each ring or by combining the both [7].
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Gravitational Search Algorithm (GSA) [10] and modified Particle
Swarm Optimization (PSO) [9, 12] algorithm have been introduced to
make the array thin.

Synthesis of thinned array using Genetic Algorithm is reported
in the article [13]. The paper [14] presents thinned concentric array
design using modified PSO when the main beam is broadside.

In this paper, we propose to design a scanned thinned concentric
array, which is different from [14] in three aspects: main beam is off
the broadside, first null beamwidth is prefixed and the results of two
different evolutionary algorithms have been compared.

Thinning the scanned array while keeping FNBW fixed and
variable then reduces the side lobe levels. In case of fixed FNBW,
it is kept less than or equal to that of a uniformly excited circular ring
array consisting of the same number of rings, same number of elements
and also scanned to the same angles. The comparative performance of
GSA and modified PSO in terms of fitness value, computation time is
also shown.

2. SYNTHESIS OF SCANNED THINNED ARRAY

Scanning a concentric ring array in the x-z plane steers the beam
peaks to the scan directions in the same plane as well as changes
the first null beamwidth (FNBW). Further reduction of the side lobe
levels in scanned array again increases its FNBW. The desired array
characteristics with lower sidelobes in scanned array can be obtained
by thinning the array.

Thinning an array means turning off some of the elements from
a uniformly spaced or periodic array to generate a pattern with low
sidelobe levels. Typical applications for thinned array include satellite-
receiving antennas that operate against a jamming environment [11],
ground-based high frequency radars [11] and design of interferometer
array for radio astronomy [11]. Here we assumed that the positions
of the elements are fixed and all the elements have two states either
‘on’ or ‘off’, depending on whether the element is connected to the
feed network or not. In the ‘off’ state, either the element is passively
terminated to a matched load or an open circuited. If there is no
coupling between the elements, it is equivalent to removing them from
the array.

The far field pattern of a concentric circular planar array [6] shown
in Figure 1 on the x-y plane with central element feeding and scanned
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Figure 1. Multiple concentric circular ring array of isotropic antennas
in XY plane.

to a specified angle can be defined as:

E(θ, ϕ) = 1 +
M∑

m=1

Nm∑

n=1

Imn ejkrm[sin θ cos(ϕ−ϕmn)−sin θ0 cos(ϕ0−ϕmn)] (1)

where, M = Number of concentric rings, Nm = Number of isotropic
elements in m-th ring, Imn = Excitation amplitude of the mn-
th element, dm = inter-element arc spacing of m-th circle, rm =
Nmdm/2π, Radius of the m-th ring, ϕmn = 2nπ/Nm, angular position
of mn-th element, with 1 ≤ n ≤ Nm, θ, ϕ = polar, azimuth angle;
(θ0, ϕ0) = steering angle, λ = wave length, k = wave number = 2π/λ;
j = complex number.

Normalized absolute power pattern, P (θ, ϕ) in dB can be
expressed as follows:

P (θ, ϕ) = 10 log
10

[ |E(θ, ϕ)|
|E(θ, ϕ)|max

]2

= 20 log
10

[ |E(θ, ϕ)|
|E(θ, ϕ)|max

]
(2)

In this case, Imn is 1 if the mn-th element is turned ‘on’ and 0
if it is ‘off’. To make the scanned array thinned with desired array
characteristics optimum set of Imn is necessary. The fitness function
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Figure 2. 9-ring concentric
circular ring array of isotropic
antennas.

Figure 3. Thinned array of
isotropic antennas with 9 concen-
tric rings.

for this problem can be defined as:

Fitness 1 = k1 maxSLL + k2 (FNBWo − FNBWd) H(T ) (3)
Fitness 2 = maxSLL (4)

Equation (3) and Equation (4) are reduced individually using GSA and
modified PSO for optimal synthesis of the array, where max SLL is the
value of maximum sidelobe level, FNBWo, FNBWd are obtained and
desired value of first null beam width respectively, k1, k2 are weighting
coefficients to control the relative importance given to each term of
Equation (3). Equation (4) is for keeping FNBW variable.

H(T ) is Heaviside step functions defined as follows:

T = (FNBWo − FNBWd) (5)

H(T ) =
{

0, if T < 0,

1, if T ≥ 0
(6)

3. GRAVITATIONAL SEARCH ALGORITHM (GSA)

Gravitational Search Algorithm is a population based search algorithm
based on the law of gravity and mass interaction. The algorithm
considers agents as objects consisting of different masses. The entire
agents move due to the gravitational attraction force acting between
them and the progress of the algorithm directs the movements of all
agents globally towards the agents with heavier masses. Each agent
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in GSA is specified by four parameters [10]: Position of the mass in
d-th dimension, inertia mass, active gravitational mass and passive
gravitational mass. The positions of the mass of an agent at specified
dimensions represent a solution of the problem and the inertia mass
of an agent reflect its resistance to make its movement slow. Both the
gravitational mass and the inertial mass, which control the velocity
of an agent in specified dimension, are computed by fitness evolution
of the problem. The positions of the agents in specified dimensions
(solutions) are updated with every iteration and the best fitness along
with its corresponding agent is recorded. The termination condition
of the algorithm is defined by a fixed amount of iterations, reaching
which the algorithm automatically terminates. After termination of
the algorithm, the recorded best fitness at final iteration becomes the
global fitness for a particular problem and the positions of the mass
at specified dimensions of the corresponding agent becomes the global
solution of that problem.

The algorithm can be summarized as below:
Step 1: Initialization of the agents:
Initialize the positions of the N number of agents randomly within

the given search interval as below:

Xi = (x1
i , . . . , x

d
i , . . . , x

n
i ), for i = 1, 2, . . . , N. (7)

where, xd
i represents the positions of the i-th agent in the d-th

dimension and n is the space dimension.
Step 2: Fitness evolution and best fitness computation

for each agents:
Perform the fitness evolution for all agents at each iteration and

also compute the best and worst fitness at each iteration defined as
below (for minimization problems):

best(t) = min
j∈{1,...,N}

fit j(t) (8)

worst(t) = max
j∈{1,...,N}

fit j(t) (9)

where, fit j(t) represents the fitness of the j-th agent at iteration t,
best(t) and worst(t) represents the best and worst fitness at generation
t.

Step 3: Compute gravitational constant G:
Compute gravitational constant G at iteration t using the

following equation:
G(t) = G0e

(−αt/T ) (10)
In this problem, G0 is set to 100, α is set to 20 and T is the total
number of iterations.
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Step 4: Calculate the mass of the agents:
Calculate gravitational and inertia masses [10] for each agents at

iteration t by the following equations:
Mai = Mpi = Mii = Mi, i = 1, 2, . . . , N. (11)

mi(t) =
fiti(t)− worsti(t)
best(t)− worst(t)

(12)

Mi(t) =
mi(t)∑N

j=1 mj(t)
(13)

where, Mai is the active gravitational mass of the i-th agent [10], Mpi is
the passive gravitational mass of the i-th agent [10], Mii is the inertia
mass of the i-th agent [10].

Step 5: Calculate accelerations of the agents:
Compute the acceleration of the i-th agents at iteration t as below:

ad
i (t) =

F d
i (t)

Mii(t)
(14)

where, F d
i (t) is the total force acting on i-th agent calculated as:

F d
i (t) =

∑

j∈Kbest,j 6=i

randj F d
ij(t) (15)

Kbest is the set of first K agents with the best fitness value and biggest
mass. Kbest is computed in such a manner that it decreases linearly
with time [10] and at last iteration the value of Kbest becomes 2% of
the initial number of agents. F d

ij(t) is the force acting on agent ‘i’ from
agent ‘j’ at d-th dimension and t-th iteration is computed as below:

F d
ij(t) = G(t)

Mpi(t)×Maj(t)
Rij(t) + ε

(
xd

j (t)− xd
i (t)

)
(16)

where, Rij(t) is the Euclidian distance between two agents ‘i’ and ‘j’
at iteration t and G(t) is the computed gravitational constant at the
same iteration. ε is a small constant.

Step 6: Update velocity and positions of the agents:
Compute velocity and the position of the agents at next iteration

(t + 1) using the following equations:

vd
i (t + 1) = randi × vd

i (t) + ad
i (t) (17)

xd
i (t + 1) = xd

i (t) + vd
i (t + 1) (18)

Step 7: Repeat from Steps 2–6 until iterations reaches their
maximum limit. Return the best fitness computed at final iteration as
a global fitness of the problem and the positions of the corresponding
agent at specified dimensions as the global solution of that problem.
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4. MODIFIED PARTICLE SWARM OPTIMIZATION
ALGORITHM

Particle Swarm Optimization (PSO) is a population based stochastic
optimization tool inspired by social behavior of bird flock, fish school
etc. as developed by Kennedy and Eberhart in 1995 [12]. In PSO, a
member in the swarm, called a particle, represents a potential solution,
which is a point in the search space. The global optimum is regarded
as the location of food. Each particle has a fitness value and a velocity
to adjust its flying direction according to the best experiences of the
swarm in search for the global optimum in the D-dimensional solution
space. The steps involved in modified PSO are given below:

Step 1: Initialize positions and associate velocity to all particles
(potential solutions) in the population randomly in the D-
dimension space.

Step 2: Evaluate the fitness value of all particles.
Step 3: Compare the personal best (pbest) of every particle with its

current fitness value. If the current fitness value is better, then
assign the current fitness value to pbest and assign the current
coordinates to pbest coordinates.

Step 4: Determine the current best fitness value in the whole
population and its coordinates. If the current best fitness value
is better than global best (gbest), then assign the current best
fitness value to gbest and assign the current coordinates to gbest
coordinates.

Step 5: Update velocity (Vid) and position (Xid) of the d-th dimension
of the i-th particle using the following equations:

V t
id = w(t) ∗ V t−1

id + c1(t) ∗ rand1t
id ∗

(
pbestt−1

id −Xt−1
id

)

+c2(t) ∗
(
1− rand1t

id

) ∗ (
gbestt−1

d −Xt−1
id

)
(19)

If V t
id > V d

max or V t
id < V d

min, then V t
id = U(V d

min, V
d
max) (20)

Xt
id = rand 2t

id ∗Xt−1
id + (1− rand 2t

id) ∗ V t
id (21)

c1(t), c2(t) = time-varying acceleration coefficients with c1(t)
decreasing linearly from 2.5 to 0.5 and c2(t) increasing linearly
from 0.5 to 2.5 over the full range of the search, w(t) = time-
varying inertia weight changing randomly between U(0.4, 0.9) with
iterations, rand1, rand2 are uniform random numbers between
0 and 1, having different values in different dimension, t is the
current generation number.
Equation (20) has been introduced to clamp the velocity along
each dimension to uniformly distributed random value between
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V d
min and V d

max if they try to cross the desired domain of interest.
These clipping techniques are sometimes necessary to prevent
particles from explosion. The maximum velocity is set to the
upper limit of the dynamic range of the search (V d

max = Xd
max)

and the minimum velocity (V d
min) is set to (Xd

min).
However, position-clipping technique is avoided in modified PSO
algorithm. Moreover, the fitness function evaluations of errant
particles (positions outside the domain of interest) are skipped to
improve the speed of the algorithm.
Step 6: Repeat Steps 2–5 until a stop criterion is satisfied or a
pre-specified number of iteration is completed, usually when there
is no further update of best fitness value.

5. SIMULATION RESULTS

For a fully populated nine-ring concentric ring array of isotropic
antennas [7] the radii of the rings are rm = mλ/2 (m-th ring) and the
interelement spacing of each ring are kept at λ/2. For this arrangement,
the number of elements in the m-th ring is found out by rounding off
the values of Nm expressed as Nm = 2πrm/dm and the total numbers of
isotropic elements becomes 279. A fully populated nine ring concentric
ring array in the x-y plane having a total number of 279 isotropic
elements with center element feeding is shown in Figure 2. The array
with uniform excitation and without scanned to any direction gives
the sidelobe levels of −17.4 dB [7] and FNBW of 14.8 degree. In
this problem, the array is scanned in the x-z plan (θ0, 0) and the
scanning of the array becomes totally dependent on the values of θ0.
The values of θ0 are taken 30 and 45 degrees for this problem. Fully
populated array with uniform excitation and scanned to the direction
θ0 = 30 degree, ϕ0 = 0 degree gives sidelobe level of −17.4 dB and
FNBW of 17.1 degree, whereas array with uniform excitation and
scanned to the direction θ0 = 45 degree, ϕ0 = 0 degree gives sidelobe
levels of −17.4 dB and FNBW of 21.2 degree. The objective is to
find out optimum set of amplitude distribution (on-off) of the array
elements for the scanned array computed individually by GSA and
modified PSO for getting lower sidelobe levels with fixed and variable
FNBW. The array is then thinned in such a manner that the thinning
percentage should always be more than 45% while keeping the desired
array characteristics unchanged. The thinned array in the x-y plane
is shown in Figure 3. Figure 4 shows normalized power patterns of
uniformly excited broadside concentric ring array and scanned array
to the direction θ0 = 30, ϕ0 = 0 degrees. Figure 5 shows normalized
power patterns of a uniformly excited broadside concentric ring array
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Figure 4. Normalized power
patterns in dB in XZ plane
for fully populated array without
scanned to any direction and fully
populated array scanned to the
direction θ0 = 30◦, ϕ0 = 0◦.

Figure 5. Normalized power
patterns in dB in XZ plane
for fully populated array without
scanned to any direction and fully
populated array scanned to the
direction θ0 = 45◦, ϕ0 = 0◦.

and scanned array to the direction θ0 = 45, ϕ0 = 0 degrees.
Table 1 shows that the sidelobe levels in thinned array scanned in

the x-z plane (θ0, 0) for two different values of θ0, 30 and 45 degree
with fixed FNBW computed using GSA are −20.78 dB and −20.76 dB
respectively, whereas sidelobe levels in the thinned array scanned to
same angles with fixed FNBW computed using modified PSO are
−20.38 dB and −20.50 dB respectively. For variable FNBW, sidelobe
levels in the thinned array scanned to above mention angles computed
using GSA are −29.97 dB and −31.29 dB respectively, whereas using
modified PSO with same scanning angles the sidelobe levels are
−24.83 dB and −24.92 dB respectively. Results clearly show that GSA
can be able to reduce the sidelobe levels in a much better way than
modified PSO. Table 1 also shows that the number of switched off
elements in thinned array computed using GSA and scanned to 30
and 45 degree are 138 each for fixed FNBW and 129 each for variable
FNBW. The numbers of switched off elements in the array thinned
using modified PSO and scanned to same angles with fixed FNBW
are 136 and 130 respectively. But for variable FNBW, the numbers of
switched off elements are 127 and 126 respectively. Both the algorithms
are able to fulfill the FNBW requirements while thinning the array
scanned to same angles.

The percentages of thinning for the array scanned to above
mention angles are 49.46% for fixed FNBW case and are 46.23% for
variable FNBW case computed using GSA whereas using modified PSO
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Table 1. SLL, FNBW, number of switched off elements and thinning
percentage of uniform array and optimized array with and without
fixed FNBW.

Types of array

Sidelobe

Level

(dB)

FNBW

(degree)

Number of

switched off

elements

Thinning

percentage

(%)

Fully populated array

(no scan)
−17.40 14.8 0 0

Fully populated array

scan to 30◦
−17.40 17.1 0 0

Fully populated array

scan to 45◦
−17.40 21.2 0 0

Thinned array of fixed

FNBW scanned

to 30◦ using GSA

−20.78 17.1 138 49.46

Thinned array of fixed

FNBW scanned

to 30◦ using

modified PSO

−20.38 17.0 136 48.74

Thinned array of fixed

FNBW scanned

to 45◦ using GSA

−20.76 21.2 138 49.46

Thinned array of fixed

FNBW scanned

to 45◦ using

modified PSO

−20.50 21.2 130 46.59

Thinned array of variable

FNBW scanned to 30◦

using GSA

−29.97 23.2 129 46.23

Thinned array of variable

FNBW scanned to 30◦

using modified PSO

−24.83 20.3 127 45.51

Thinned array of variable

FNBW scanned to 45◦

using GSA

−31.29 29.3 129 46.23

Thinned array of variable

FNBW scanned to 45◦

using modified PSO

−24.92 25.8 126 45.16
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Table 2. Comparative performance of GSA and modified PSO.

Fitness

functions

Types of

array

GSA Modified PSO

Best fitness
Time

(hr : min)
Best fitness

Time

(hr : min)

Fitness 1

Thinned

array scanned

to 30◦
−20.7847 2:21 −20.3887 2:27

Thinned

array scanned

to 45◦
−20.7602 2:27 −20.5055 2.33

Fitness 2

Thinned

array scanned

to 30◦
−29.9756 2:23 −24.8339 2:29

Thinned

array scanned

to 45◦
−31.2994 2:11 −24.9271 2:17

we get 48.74% and 46.54% thinned array with fixed FNBW and 45.51%
and 45.16% with variable FNBW scanned to same angles. GSA thins
the array more than modified PSO. From Table 2, we can see that
the best fitness computed using fitness functions of Equation (3) and
Equation (4) for the array scanned to θ0 = 30 and 45 degrees using
GSA are better than the best fitness computed using modified PSO.
Computation times are also less in case of GSA.

The excitation amplitude distributions for the thinned array of
fixed FNBW scanned to above mention angles computed using GSA
and modified PSO are shown in Table 3 and Table 4.

Table 5 and Table 6 shows the excitation amplitude distributions
for the thinned array of variable FNBW scanned to above mention
angles using GSA and modified PSO.

Both the algorithms are run for 400 iterations and number of
agents in case of GSA is taken to be 50 and number of particles in
case of modified PSO is taken to be 50. Figure 6 shows that the
convergence rate of GSA is better than modified PSO for minimizing
the cost while thinning the array scanned to θ0 = 30 degree, ϕ0 = 0
degree keeping FNBW fixed. The normalized array factors for the
thinned array scanned to θ0 = 30 degree, ϕ0 = 0 degree with fixed
FNBW computed individually using GSA and modified PSO are shown
in Figure 7. Figure 8 again shows that the convergence rate of GSA is
far better than modified PSO for reduction of the cost while thinning
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Table 3. Excitation amplitude distribution (Imn) of thinned array of
fixed FNBW scanned to θ0 = 30◦, ϕ0 = 0◦.
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Figure 6. Convergence of GSA
and modified PSO for minimiza-
tion of cost while thinning the
concentric ring array scanned to
θ0 = 30◦, ϕ0 = 0◦ with fixed
FNBW.

Figure 7. Normalized power
patterns in dB in XZ plane for
the thinned array scanned to θ0 =
30◦, ϕ0 = 0◦ with fixed FNBW
using GSA and modified PSO
algorithms.
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Table 4. Excitation amplitude distribution (Imn) of thinned array of
fixed FNBW scanned to θ0 = 45◦, ϕ0 = 0◦.
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Figure 8. Convergence of GSA
and modified PSO for minimiza-
tion of cost while thinning the
concentric ring array scanned to
θ0 = 45◦, ϕ0 = 0◦ with fixed
FNBW.

Figure 9. Normalized power
patterns in dB in XZ plane for
the thinned array scanned to θ0 =
45◦, ϕ0 = 0◦ with fixed FNBW
using GSA and modified PSO
algorithms.
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Table 5. Excitation amplitude distribution (Imn) of thinned array of
variable FNBW scanned to θ0 = 30◦, ϕ0 = 0◦.
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Figure 10. Convergence of GSA
and modified PSO for minimiza-
tion of cost while thinning the
concentric ring array scanned to
θ0 = 30◦, ϕ0 = 0◦ without fixing
FNBW.

Figure 11. Normalized power
patterns in dB in XZ plane for
thinned the array scanned to θ0 =
30◦, ϕ0 = 0◦ with variable FNBW
using GSA and modified PSO
algorithms.
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Table 6. Excitation amplitude distribution (Imn) of thinned array of
variable FNBW scanned to θ0 = 45◦, ϕ0 = 0◦.

GSA PSO 

Ring number Ring number 

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 

E
lem

en
ts state in

 each
 rin

g
 ( 0

 o
r 1

)

1
1
1
1
0
0
 

1
1
0
1
1
1
1
0
1
1
1
1
 

1
1
0
0
1
0
1
1
0
0
1
1
0
1
1
0
0
1
 

1
1
1
1
1
1
1
1
1
1
0
1
1
1
1
1
0
0
0
0
0
1
0
1
1
 

1
0
1
0
1
1
1
0
1
0
0
0
0
1
1
0
0
0
1
0
1
1
1
1
1
1
1
1
1
0
1
 

1
1
0
1
0
1
1
0
1
0
1
1
0
1
0
0
0
0
0
0
0
1
0
1
0
0
1
1
1
1
0
0
1
1
1
0
1
 

0
1
1
1
0
0
0
0
0
1
0
1
0
1
0
1
0
1
0
0
1
0
1
0
0
1
1
1
1
1
1
1
1
1
1
1
0
0
0
1
0
0
0
 

0
0
0
1
0
0
1
0
0
0
1
1
1
1
0
0
1
0
1
0
0
0
1
0
0
0
0
0
0
0
1
0
0
0
1
1
1
0
1
1
1
0
0
0
0
0
1
0
1
1
 

0
0
0
0
0
1
1
1
1
1
1
1
0
1
1
0
1
1
0
1
0
0
0
1
0
0
1
1
0
0
0
1
0
1
1
1
1
0
1
0
0
1
1
0
0
1
0
0
0
1
0
1
1
0
1
0
 

E
lem

en
ts state in

 each
 rin

g
 ( 0

 o
r 1

)

1
0
1
0
1
1
 

1
0
1
1
0
0
1
1
0
1
1
1
 

1
1
1
0
0
1
1
0
1
1
0
1
1
0
1
0
1
1
 

0
0
1
0
1
1
1
1
1
1
0
1
0
1
1
0
1
0
1
0
1
0
1
1
1
 

1
0
1
0
0
0
0
1
1
1
1
1
0
0
0
1
0
1
0
0
1
0
0
1
1
1
1
0
1
1
1
 

1
1
1
0
0
1
1
1
1
1
0
1
0
1
0
1
0
1
1
0
0
0
0
1
1
1
0
1
0
1
0
0
0
1
0
0
0
 

0
1
0
1
0
1
1
0
1
1
1
0
0
1
1
1
0
0
1
0
0
1
0
1
0
1
1
1
0
1
0
1
1
0
1
0
1
0
1
0
1
0
1
 

0
1
1
0
0
1
0
0
0
0
0
0
0
1
0
1
1
1
1
1
0
0
0
0
1
1
1
1
1
0
0
1
0
0
1
0
1
1
0
1
0
1
0
0
0
0
0
0
1
1
 

0
0
1
1
0
1
1
0
0
1
1
1
1
1
1
1
1
1
1
1
0
1
0
0
1
0
1
1
0
0
0
0
0
1
0
0
1
1
1
1
1
0
1
0
1
1
0
0
0
0
0
0
1
0
0
1
 

Figure 12. Convergence of GSA
and modified PSO for minimiza-
tion of cost while thinning the
concentric ring array scanned to
θ0 = 45◦, ϕ0 = 0◦ without fixing
FNBW.

Figure 13. Normalized power
patterns in dB in XZ plane for
thinned the array scanned to θ0 =
45◦, ϕ0 = 0◦ with variable FNBW
using GSA and modified PSO
algorithms.
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the array scanned to θ0 = 45 degree, ϕ0 = 0 degree keeping FNBW
fixed.

Figure 9 shows the normalized array factors for the thinned
array scanned to θ0 = 45 degree, ϕ0 = 0 degree with fixed FNBW
computed individually using GSA and modified PSO. Figure 10 shows
the convergence of GSA and modified PSO for minimizing the cost
while thinning the array scanned to θ0 = 30 degree, ϕ0 = 0 degree for
variable FNBW. The normalized array factors for the thinned array
scanned to θ0 = 30 degree, ϕ0 = 0 degree with variable FNBW
computed individually using GSA and modified PSO are shown in
Figure 11. Figure 12 again shows that the convergence rate of GSA is
far better than modified PSO for reduction of the cost while thinning
the array scanned to θ0 = 45 degree, ϕ0 = 0 degree without fixing
FNBW. Figure 13 shows the normalized absolute array factors for the
array with variable FNBW scanned to θ0 = 45 degree, ϕ0 = 0 degree
computed individually using GSA and modified PSO.

6. CONCLUSIONS

The authors propose methods of thinning a large scanned concentric
ring array of isotropic elements to reduce sidelobe level while retaining
desired array characteristics. Here Gravitational Search Algorithm and
modified Particle Swarm Optimization (PSO) have been effectively
used as a global optimization algorithm to find out optimal set of
on-off elements. The comparative performance of GSA is shown better
in terms of computed final fitness values, computational time etc. than
modified PSO algorithm. Both the algorithms can also be used for
thinning other array configurations.
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