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Abstract—Electromagnetic wave scattering by many small particles
is studied. An integral equation is derived for the self-consistent field
E in a medium, obtained by embedding many small particles into a
given region D. Here D is a bounded domain in which small inclusions
(particles) are embedded, and E is the electric field in the resulting
medium. The derivation of this integral equation uses a lemma about
convergence of certain sums. These sums are similar to Riemannian
sums for the integral equation for the field E. Convergence of these
sums is essentially equivalent to convergence of a collocation method
for solving this integral equation. By choosing the distribution law for
embedding the small particles and their physical properties one can
create a medium with a desired refraction coefficient. This coefficient
can be a tensor. It may have desired absorption properties.

1. INTRODUCTION

The problem of scalar wave scattering by many small bodies is reduced
in [5] and [8] to solving an integral equation for the effective (self-
consistent) field in the medium.

There is a large literature on homogenization for partial
differential equations and for problems of physics and material science,
which includes many books and dozens of papers (see [1, 3], and
references therein). In most cases a periodic structure of the medium
is assumed and selfadjointness of the operators involved is used in
the mathematical literature. The homogenization in material science
literature often leads to a homogeneous limiting medium. None of
the above assumptions are used in this paper. The limiting medium

Corresponding author: A. G. Ramm (ramm@math.ksu.edu).



204 Ramm

in this paper is not homogeneous, the operators involved are not
necessarily selfadjoint. Our methods differ from the usual methods
in the homogenization theory.

The problem we pose was not studied in the literature, to our
knowledge. This problem is: How can one create a material with a
desired refraction coefficient by embedding in a given material many
small particles or many small inhomogeneities?

A study of this problem was initiated in the works [5–11].
In this paper, an equation is derived for effective (self-consistent)

field in the medium for electromagnetic wave scattering. Convergence
of certain sums to the solution to this equation can be considered as
converegence of a collocation method for solving a limiting equation for
the effective field in the medium, see paper [9] where the convergence of
this collocation method is proved for a wide class of integral equations.

By choosing the distribution law for embedding small particles
into a given domain D, filled with a material with known properties,
namely, with known dielectric parameter, conductivity, and a constant
magnetic parameter, and by choosing the physical properties of the
embedded small particles, namely, their dielectric parameters and
conductivities, one can create a new material with a desired refraction
coefficient. This refraction coefficient can be a tensor, and it may have
desired absorption properties.

In [5] and [8] similar theory was developed for the scalar wave
scattering by many small particles embedded in an inhomogeneous
medium.

In [7], EM wave scattering by many small particles embedded in an
inhomogeneous medium was studied. However, in [7] the basic physical
assumptions were quite different from the assumptions in this paper:
it was assumed in [7] that the material parameters of the particles
pass smoothly into the material parameters of the medium. This
assumption allows one not to deal with the boundary conditions at the
boundaries of the embedded particles. In the current paper no such
assumption is made. As a result, the limiting equation (Equation (76)
in [7]) for the effective field in the medium in [7] is completely different
from the limiting Equation (15) for the effective field in the medium
in this paper.

In Section 1, we prove an auxiliary result, formulated as
Theorem 1. It deals with convergence of certain sums. Our derivation
is simple and is not based on any results concerning weak convergence
of measures.

In Section 2, the integral equation for the electromagnetic field
scattered by many small particles embedded in a given medium is
studied. The limiting Equation (15) is derived for the effective field
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in the medium when the number of the embedded particles tends to
infinity while their size tends to zero.

In Section 3, a derivation of the integral Equation (10) is given,
its relation to the limiting Equation (15) is discussed, and a possible
numerical procedure for solving Equation (15) is proposed. This
procedure is a version of the projection method.

We continue this introduction with the formulation and proof of
an auxiliary result concerning convergence of certain sums. Such sums
appear in a study of wave scattering by many small particles. The
auxiliary result, formulated below as Theorem 1, is used in Sections 2
and 3 in a study of the limiting behavior of the electromagnetic field
in the limiting medium created by embedding many small particles
when their characteristic size a tends to zero and their number tends
to infinity.

The derivation of the integral equation for the effective field in the
medium is based on the existence of the limit of the sums, similar to
the following one (see formulas (13) and (14) below):

I := lim
a→0

ϕ(a)
∑

xm∈D

f(xm). (1)

Here ϕ(a) > 0 is a monotone continuous strictly growing function,
ϕ(0) = 0, xm are some points distributed in a bounded domain D ⊂ R3

according to the following law:
∑

xm∈∆

1 := N (∆) =
1

ϕ(a)

∫

∆
N(x)dx[1 + o(1)], a → 0, (2)

where ∆ ⊂ D is an arbitrary subdomain in D, N(x) ≥ 0 and f(x)
are Riemann-integrable functions, N ∈ P0, and f ∈ Pν . The inclusion
f(x) ∈ Pν means that the following estimate holds:

|f(x)| ≤ c

[ρ(x, S)]ν
, ν ≤ 3, (3)

where c > 0 is a constant and ρ(x, S) is the Euclidean distance
from the point x to the set S. For ν = 0 condition (3) means that
supx∈D |f(x)| ≤ c.

Since we assume f and N to be Riemann-integrable, their sets
of discontinuities have Lebesgue measure zero in R3, see [12]. In
applications to scattering theory, studied in this paper, the set S
consists of the singular point of a Green’s function. This singular point
is not necessarily a fixed point. For example, if the Green’s function is
g(x, y) = eik|x−y|

4π|x−y| , then the singular point y ∈ D can be arbitrary.
Let

Dδ := {x : x ∈ D, ρ(x, S) ≥ δ}.



206 Ramm

We assume that the limit

lim
δ→0

∫

Dδ

f(x)N(x)dx :=
∫

D
f(x)N(x)dx (4)

exists.
If f ∈ Pν , ν < 3, and N ∈ P0, then the existence of the limit (4)

means that the integral on the right-hand side of (4) exists as an
improper integral. If ν = 3, then the integral on the right-hand side
of (4) is a singular integral which exists in the sense of the Cauchy
principal value. The definition and properties of singular integrals one
finds in [2].

If f is unbounded, then the sum (1) is not well-defined because
f(xm) is infinite when xm ∈ S. In this case, we define the quantity I
in (1) as follows:

I := lim
a→0

ϕ(a)
∑

xm∈D

f(xm) := lim
δ→0

lim
a→0

ϕ(a)
∑

xm∈Dδ

f(xm). (5)

Theorem 1 If N ∈ P0, f ∈ Pν , ν ≤ 3, and the assumptions (2)–(4)
hold, then

I =
∫

D
f(x)N(x)dx. (6)

Proof. In the set Dδ the functions f(x) and N(x) are bounded and can
be assumed continuous because the set of discontinuities of Riemann-
integrable functions is of Lebesgue measure zero. This set we include
into the set S.

For such functions we prove below that

lim
δ→0

lim
a→0

ϕ(a)
∑

xm∈Dδ

f(xm) =
∫

Dδ

f(x)N(x)dx, (7)

provided that assumption (4) holds.
If (7) is proved, then (6) follows from (7) and (5).
Let us prove (7).
Consider a partition of Dδ into a union Uδ of cubes ∆j , such that

Dδ = ∪J
j=1∆j := Uδ, where ∆j is a cube with a side b centered at a

point x(j), and b = b(a). The intersection ∆i ∩ ∆j , i 6= j, does not
contain interior points, that is ∆i and ∆j for i 6= j may have common
points of their boundaries but do not have common interior points.
For a finite J such a partition may not exist for Dδ. In this case, we
consider the smallest Uδ containing Dδ and extend f to Uδ \ Dδ by
setting f = 0 in Uδ \Dδ. After this is done, one redefines the set Dδ

by setting Dδ = Uδ, and our arguments remain valid.
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We assume that:

lim
a→0

a

b(a)
= 0, lim

a→0
b(a) = 0. (8)

Let us use relation (2) with ∆ = ∆j and write:

ϕ(a)
∑

xm∈Dδ

f(xm) = ϕ(a)
J∑

j=1

∑

xm∈∆j

f(xm)

= ϕ(a)
J∑

j=1

f(x(j))[1 + o(1)]
∑

xm∈∆j

1

=
J∑

j=1

f(x(j))N(x(j))|∆j |[1 + o(1)], (9)

where |∆j | is the volume of ∆j ,

f(xm) = f(x(j))[1 + o(1)], ∀xm ∈ ∆j ,

and o(1) → 0 as a → 0 because f is continuous in ∆j and diam Dj → 0
as a → 0.

The sum on the right in (9) is the Riemannian sum for the
continuous in Dδ function f(x)N(x). It is known that if the
function f(x)N(x) is Riemann-integrable, then the limit of this sum,
as max1≤j≤J diam(∆j) → 0, exists and is equal to the integral∫
Dδ

f(x)N(x)dx (see, e.g., [12] p. 269). Since diam(∆j) = b(a)
√

3 → 0,
formula (7) is proved. The first assumption (8) guarantees that there
are many points xm in ∆j if N(x) ≥ 0 in ∆j .

Theorem 1 is proved.
Remark 1 In the usual definition of the Cauchy principal value for a
singular integral

∫
D f(x)dx, where D ⊂ R3, one assumes that f ∈ P3,

that is, (3) holds with ν = 3, S = {x} consists of one point, and
Dδ = {y : y ∈ D, |x− y| ≥ δ}. Necessary and sufficient conditions for
the existence of singular integrals in the sense of the Cauchy principal
value can be found in [2], p. 221.

Our definition deals with the case when S may consist of more
than one point. However, in the applications considered in [5, 8], and
in this paper, the set of the points of f at which f is unbounded consists
of one point, and ν = 1, so that the integral on the right-hand side
of (4) exists as an improper integral.

Our arguments are valid in Rn with any n ≥ 1.
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2. ELECTROMAGNETIC WAVE SCATTERING AND
CREATING MATERIALS WITH A DESIRED
REFRACTION COEFFICIENT

Let us consider many-body scattering problem for electromagnetic
(EM) waves in the case of small bodies ka ¿ 1, where a is the
characteristic size of these bodies, k = ω

√
ε0µ0 is the wavenumber

in the free space, ω is the frequency, ε0, µ0 are dielectric and magnetic
parameters.

Assume that there are M À 1 small bodies Dm, 1 ≤ m ≤ M ,
embedded in a bounded domain D. Each of the bodies Dm is
characterized by its dielectric constant

ε′m = εm + i
σm

ω
,

where εm > 0 is the permittivity and σm > 0 is the conductivity of the
material in Dm.

We assume that µm = µ0 for all m, where µm is the magnetic
permeability of Dm and µ0 is a constant magnetic permeability of the
free space.

It is proved in Section 3 that the integral equation for
electromagnetic field scattered by M small particles embedded in D
and having constant refraction coefficients K2

m in Dm, 1 ≤ m ≤ M , is
a vector integral equation, which we write as the following system of
scalar integral equations:

Ei(x) = E0i(x) +
M∑

m=1

(K2
m − k2)

∫

Dm

g(x, y)Ei(y)dy

+
∂

∂xi

M∑

m=1

K2
m − k2

k2

∫

Dm

∂g(x, y)
∂xj

Ej(y)dy, 1 ≤ i ≤ 3, (10)

where E = Eiei, {ei}3
i=1 is the Euclidean orthonormal basis of R3,

summation is understood over the repeated indices here and below, E0i

are the Cartesian components of the incident field E0(x),

g(x, y) =
eik|x−y|

4π|x− y| , K2
m = ω2ε′mµ0 := K2(xm), (11)

ε′(x) is a function in D such that

ε′(xm) = ε′m, (12)

and K2(x) is the refraction coefficient, a function in D, such that (11)
holds, that is, K2(xm) = K2

m.
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From the point of view of applications, it is of interest to emphasize
that K2

m can be a tensor, and it can have an imaginary part, which
describes the absorption of energy in the material of particles. In the
limiting medium, which one obtains in the limit a → 0, the refraction
coefficient K2

1 (x) (see formula (16) below) can be a tensor describing
the anisotropy and absorption of the created material.

To make this paper self-contained, the derivation of Equation (10)
is given in Section 3, where the statement of the electromagnetic wave
scattering problem by a body of an arbitrary shape is also given. This
derivation follows the one in [10].

The first sum in (10) we write as
M∑

m=1

(K2
m − k2)

∫

Dm

g(x, y)Ei(y)dy

=
M∑

m=1

(K2
m − k2)g(x, xm)Ei(xm)|Dm|[1 + o(1)], (13)

where |Dm| = O(a3) is the volume of Dm, x /∈ Dm, and o(1) → 0 as
a → 0.

The second sum in (10) we write as
M∑

m=1

K2
m − k2

k2

∂2g(x, xm)
∂xj∂xi

Ej(xm)|Dm|[1 + o(1)]. (14)

Let us assume that Dm is a cube, centered at the point xm, of side a.
Then |Dm| = a3.

Using Theorem 1 with ϕ(a) = a3, one passes to the limit, as a → 0,
in the sums (13) and (14), and obtains the following integral equation
for the effective electromagnetic field E(x) = Ei(x)ei in the limiting
medium:

Ei(x) = E0i(x) +
∫

D
g(x, y)(K2(y)− k2)N(y)Ei(y)dy

+
∂

∂xi

∫

D

∂g(x, y)
∂xj

K2(y)− k2

k2
N(y)Ej(y)dy, 1 ≤ i ≤ 3, (15)

where N(y) is the function from formula (2), describing the density
of the distribution of small bodies (particles), and K2(x) is a function
such that K2(xm) = K2

m.
The quantities Ej(xm) in the sums (13) and (14) depend on a,

but converge to finite limits as a → 0, as follows from the convergence
of the collocation method, studied in [9]. Therefore, Theorem 1 is
applicable for passing to the limit a → 0 in the sums (13) and (14).
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A continuous in D function K2(x) is uniquely determined by its
values at a set of points {xm} dense in D. In the limit M → ∞, or,
which is the same, in the limit a → 0, the set of points {xm} is dense
in D, so the values K2

m determine K2(x) uniquely in this limit.
As a → 0, one obtains the limiting medium created by embedding

small particles Dm into D.
One may interpret this result from the physical point of view as

follows: As a → 0, the limiting medium, obtained by embedding small
particles Dm according to the distribution law (2) with ϕ(a) = a3 has
the following refraction coefficient:

K2
1 (x) = K2(x)N(x). (16)

By choosing N(x) and K2(x), which are at the disposal of an
experimentalist, one can create a desirable refraction coefficient K2

1 (x),
including tensorial ones. From the point of view of a physicist, the
cofficient K2

1 (x) is an analog of the coefficient K2 in formula (21) in
Section 3.

3. DERIVATION OF EQUATION (10)

Consider the following scattering problem. An incident electromag-
netic field (E0,H0) is scattered by a bounded region D, filled with a
material with parameters (ε, σ, µ0). The exterior region D′ is a homo-
geneous region with parameters (ε0, σ = 0, µ0). Consider for simplicity
the case when ε = const and σ = const ≥ 0 in D. Let ε′ = ε + iσ

ω . The
governing equations in R3 are

∇× E = iωµ0H, ∇×H = −iωε′E. (17)
At the boundary S of D one has boundary conditions

[N, E+] = [N, E−], (18)
and

N · ε′E+ = N · ε0E−, (19)
where N is the unit normal to S, pointing into D′, E+(E−) is the
limiting value of E on S from inside (outside) S, [N, E] is the cross
product, and E ·N is the dot product of two vectors. The fields E and
H satisfy the radiation condition at infinity.

Let

k2 = ω2ε0µ0, K2 = ω2ε′µ0, K2 =
{

k2, in D′,
K2, inD.

(20)

Equations (17) imply

∇×∇× E −K2E = 0, H =
∇× E

iωµ0
in R3. (21)
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Therefore, in order to solve problem (17)–(19) it is sufficient to find E
satisfying the first Equation (21), boundary conditions (18), (19), and
the radiation condition

E = E0 + V ; Vr − ikV = o

(
1
r

)
, r := |x| → ∞. (22)

Equation (21) for E can be written as

LE := ∇×∇× E − k2E = pE;

p := p(x) = K2 − k2 =
{

0, in D′,
K2 − k2, in D. (23)

The incident field E0 solves Equation (23) with p = 0.

Let δ(x) denote the delta-function and δij :=
{

1, i = j,
0, i 6= j.

Let G = Gij(x) be the Green’s function solving the problem:

LG = δ(x)δij , Gr − ikG = o

(
1
r

)
, r →∞. (24)

Then the solution to (23)–(22) solves the integral equation

E = E0 +
∫

R3

G(x− y)p(y)E(y)dy. (25)

The Green’s function G(x) = G(|x|) is symmetric, Gij = Gji, see
formula (31) below.

Let us state and prove three Lemmas.
Lemma 1.1 There is at most one solution to Equation (25) satisfying
conditions (18) and (19).

Proof. If there are two solutions to Equation (25), then their
difference E solves the homogeneous Equation (25), satisfies boundary
conditions (18) and (19), and the radiation condition. Thus, E
solves (23), (22), (18) and (19). Therefore, E and H = ∇×E

iωµ0
solve

Equations (17) and satisfy condition (18), (19) and (22). It is known
(see, e.g., [4]) that this implies E = H = 0.

Lemma 1.1 is proved.
Lemma 1.2 There is at most one solution to Equation (25).

We prove that if E solves Equation (25), then it satisfies (22),
(18), (19) and (23). Therefore, by Lemma 1.1 (25) has at most one
solution.

Proof. Applying operator L to (25) one obtains Equation (23).
The integral in (25) is the term V in formula (22). It satisfies the
radiation condition because G does. Equation (23) is equivalent to
(21). Equation (21) together with the formula H = ∇×E

iωµ0
yield
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both Equation (17). Conditions (18) and (19) are consequences
of Equation (17). Therefore, every solution to (25) is in one-
to-one correspondence with the solution to Equation (17). This
correspondence is given by the formulas E = E, H := ∇×E

iωµ0
. By

Lemma 1.1 Equation (25) has at most one solution satisfying (18) and
(19). We have proved that every solution to (25) satisfies (18) and
(19). Therefore, (25) has at most one solution.

Lemma 1.2 is proved.
Lemma 1.3 Equation (25) has a unique solution.

Proof. Uniqueness of the solution to (25) is proved in Lemma 1.2.
Existence of the solution to (25) follows from the existence of the
solution to the scattering problem and the fact, established in the proof
of Lemma 1.2, that a solution to Equation (25) solves Equation (21),
satisfies the radiation condition (22), and boundary conditions (18),
(19).

Lemma 1.3 is proved.
From Lemmas 1.1–1.3 one obtains the following result:

Theorem 2 Equation (25) has a unique solution E. This solution E
generates the solution to the scattering problem by the formula E = E,
H := ∇×E

iωµ0
.

Let us construct the Green’s function G analytically, in closed
form.

Let us look for G of the form

G(x) =
∫

R3

eiξ·xG̃(ξ)dξ, G̃(ξ) =
1

(2π)3

∫

R3

e−iξ·xG(x)dx. (26)

Take the Fourier transform of (24) and get

−[ξ, [ξ, G̃]]− k2G̃ =
1

(2π)3
I, Iij = δij , (27)

where I is the identity matrix, [a, b] is the cross product of two vectors,
and a · b is their dot product. Equation (27) implies

−ξξ · G̃ + (ξ2 − k2)G̃ =
1

(2π)3
I. (28)

Taking the dot product of (28) with ξ, one finds

ξ · G̃ = − ξ

(2π)3k2
. (29)

From (28) and (29) it follows that

G̃ij =
δij

(2π)3(ξ2 − k2)
− ξiξj

(2π)3k2(ξ2 − k2)
. (30)
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Taking the inverse Fourier transform of (30) and using the radiation
condition (22), one gets

Gij(x) = g(x)δij +
1
k2

∂ijg(x); g(x) =
eik|x|

4π|x| , ∂i :=
∂

∂xi
. (31)

From (31) and (25) one obtains:

Ei(x) = E0i(x) + (K2 − k2)
∫

D
g(x, y)Ei(y)dy

+
K2 − k2

k2

∂

∂xi

∫

D

∂g(x, y)
∂xj

Ej(y)dy, 1 ≤ i ≤ 3, (32)

where summation over the repeated indices is understood. So far we
assumed that K2 does not depend on y in D.

However, Equation (32) yields Equation (10) if one takes the
region D in (32) to be the union of the small regions Dm and sets
K2 = K2

m in Dm.
From Equation (10) one obtains Equation (15) using Theorem 1.
If one applies to Equation (10) the collocation method, discussed

in [9], then one obtains a linear algebraic system for the unknowns
Ei(xm):

Ei(xq) = E0i(xq) +
M∑

m=1,m6=q

(K2
m − k2)g(xq, xm)Ei(xm)|Dm|

+
M∑

m=1,m6=q

K2
m−k2

k2

∂2g(xq, xm)
∂(xq)j∂(xq)i

Ej(xm)|Dm|, 1≤q≤M, (33)

where ∂2g(xq ,xm)
∂(xq)j∂(xq)i

denotes partial derivative of g(x, xm) with respect to
the j−th and i−th component of the vector x, calculated at the point
x = xq, and there is no summation over the index q. The sums in
(13)–(14) are the same as in (33).

It is proved in [9] that if assumption (2) holds for the distribution
of the points xm in D, then the collocation method converges, as a → 0,
to the solution of the limiting integral Equation (15), where N(x) is
the function defined in (2).

In Equation (15) the operator

TE =
∫

D
g(x, y)(K2(y)− k2)N(y)E(y)dy

is compact in L2(D). Let

γ(y) :=
K2(y)− k2

k2
, QE := ∇

∫

D
∇xg(x, y)γ(y)N(y)E(y)dy. (34)
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Then Equation (15) can be written as

E = E0 + TE + QE. (35)

Numerically one can solve Equation (15) by a projection method.
For example, let {φj(x)} be a basis of L2(D) and φj ∈ H1

0 (D), where
H1

0 (D) is the closure of C∞
0 (D) functions in the norm of the Sobolev

space H1(D). Multiply Equation (15) by φm (the bar stands for the
complex conjugate), integrate over D and then the third term by parts,
to get:

Eim = E0im+
∫

D
dxφm(x)

∫

D
dyg(x, y)(K2(y)−k2)N(y)

M∑

m′=1

Eim′φm′(y)

−
∫

D
dx

∂φm(x)
∂xi

∫

D
dy

∂g(x, y)
∂xj

γ(y)N(y)
M∑

m′=1

Ejm′φm′(y),

1 ≤ m ≤ M, 1 ≤ i ≤ 3. (36)

This is a linear algebraic system for finding the coefficients:

E
(M)
im := Eim :=

∫

D
Ei(x)φm(x)dx. (37)

The number M determines the accuracy of the appproximate solution
E(x). One has

lim
M→∞

‖E(M)(x)−E(x)‖L2(D) = 0. (38)
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