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Abstract—Inverse synthetic aperture radar (ISAR) images represent
the two-dimensional (2-D) spatial distribution of the radar cross-
section (RCS) of an object and, thus, they can be applied to the
problem of target identification. The traditional approach to ISAR
imaging is the range-Doppler algorithm based on the 2-D Fourier
transform. However, the 2-D Fourier transform often results in
poor resolution ISAR images, especially when the measured frequency
bandwidth and angular region are limited. Instead of the Fourier
transform, high resolution spectral estimation techniques can be
adopted to improve the resolution of ISAR images. These are the
autoregressive (AR) model, multiple signal classification (MUSIC),
and matrix enhancement and matrix pencil MUSIC (MEMP-MUSIC).
In this study, the ISAR images from these high-resolution spectral
estimators, as well as the FFT approach, are identified using a recently
developed identification algorithm based on the polar mapping of
ISAR images. In addition, each ISAR imaging algorithm is analyzed
and compared in the framework of radar target identification. The
results show that the dynamic range as well as the resolution of the
ISAR images plays an important role in the identification performance.
Moreover, the optimum size of the subarray (i.e., covariance matrix)
for MUSIC and MEMP-MUSIC in terms of target identification is
experimentally derived.

Received 19 July 2010, Accepted 7 September 2010, Scheduled 14 September 2010
Corresponding author: K.-T. Kim (juniorf@yumail.ac.kr).



156 Park and Kim

1. INTRODUCTION

The problem of reliably identifying aerospace objects has been a matter
of primary concern in the field of radar [1–9]. The identification of
radar targets can be achieved using various radar signatures, such
as natural frequencies, high resolution range (HRR) profiles and
inverse synthetic aperture radar (ISAR) images. Natural frequencies
due to the resonance phenomena of a target are insensitive to its
relative orientation, resulting in radar target identification with robust
features [10–13]. However, in a real situation with noise and clutter
signals, as well as the target signals, the accurate estimation of these
natural frequencies is hard to achieve because their information is
included in the late time responses, which are easily corrupted by noise
and clutter [14–16]. In contrast, the early time portions of the received
signals, i.e., the so-called HRR profiles, are very robust to noise and
clutter, but are highly sensitive to the relative aspect angle between
the radar and target. ISAR images are not only less sensitive to the
relative orientation than the HRR profiles, but are also very immune
to noise and clutter, because the coherent integration of the received
signals across various aspect angles effectively increases the signal to
noise ratio (SNR). Recent advances in ISAR imaging techniques can
be found in [17–23].

ISAR images are usually obtained by the range-Doppler algorithm
based on the 2-D Fourier transform to convert the data in the spatial
frequency domain to reflectivity information in the spatial domain.
When the target is moving, a priori processing, such as range alignment
and phase adjustment, must be performed before the 2-D Fourier
transform, in order to eliminate the translational motion component
of the target. In this paper, we assume that the translation motion
compensation process is already performed. The Fourier transform
is very efficient in terms of computation, because it is implemented
using the fast Fourier transform (FFT), but its resolution capability
is limited by the spectral bandwidth of the received radar signals.
Because the frequency bandwidth and aspect angle region of the
received signals are directly proportional to their spectral bandwidth,
high resolution ISAR images based on the FFT require advanced
radar systems with a wide frequency bandwidth and a long coherent
processing interval (CPI).

While high resolution ISAR images with advanced radar systems
can achieve high identification performance, there are more cost
effective solutions which achieve the same goal. These are high
resolution spectral estimation techniques, such as the autoregressive
(AR) model, multiple signal classification (MUSIC), and matrix
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enhancement and matrix pencil MUSIC (MEMP-MUSIC). Although
there are various methods of high resolution spectral analysis, three
techniques, viz. the AR model, MUSIC, and MEMP-MUSIC, are
considered in this study, because the estimation of the continuous
power spectral density (PSD) of the underlying signals is required
to produce ISAR images. The estimation of the discrete PSD of
the underlying signals is usually achieved via parametric spectral
estimation techniques, such as the nonlinear least squares (NLS)
method [24], root-MUSIC [24, 25], and ESPRIT (estimation of signal
parameters via rotational invariance technique) [24, 26]. The estimated
discrete PSD of the radar signal is usually exploited to find the 2-
D locations of the high energy scattering centers on the target and
associated RCS. In this study, the estimation of only the continuous
PSD is considered.

At the cost of additional computation time, these techniques
can improve the resolution of ISAR images compared to that of the
FFT. The additional computational burden comes from the eigenvalue
decomposition of the covariance matrix of received signals. The
resolution capability of high resolution spectral estimators depends on
the size of the covariance matrix, which is often called the subarray
dimension in MUSIC and MEMP-MUSIC, and the model order in
the AR model. As the size of the covariance matrix increases, the
resolution of the ISAR images improves, due to the increased spectral
bandwidth, and vice versa. However, the number of subarrays used to
estimate the covariance matrix becomes smaller as its size increases,
giving rise to the degradation of the estimation accuracy of the
covariance matrix. The estimation accuracy of the covariance matrix
has a direct impact on the variance of the estimated PSD, e.g., the
dynamic range, of the ISAR images. The dynamic range is defined as
the range of pixel amplitudes in a 2-D image, and it has usually been
used as an image quality indicator, together with the resolution, in the
image processing community. Instead of the dynamic range, a similar
metric called the image contrast can be used to measure the quality
of ISAR images but, in this study, the simple dynamic range rather
than the contrast is exploited. The dynamic range is formally written
as follows:

Dynamic range = 20 log10Pmax − 20 log10Pmin = 20 log10

Pmax

Pmin
(1)

where Pmax and Pmin are the maximum and minimum intensity values
in linear scales in the ISAR image, respectively.

As the number of average overlapped subarrays becomes
smaller, the dynamic ranges of the resulting ISAR images become
smaller, implying that the distinction between the target response
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and background response resulting from clutter or noise becomes
ambiguous, lowering the dynamic ranges. In general, a smaller
computation time is preferred for real-time operation and, thus, a
smaller subarray dimension can meet this time requirement with the
additional benefits of improved dynamic range, but with the drawback
of the degraded resolution of the ISAR images. Therefore, for efficient
radar target identification, there are two conflicting conditions in the
selection of the subarray or model order size, i.e., the resolution and
dynamic range.

In this study, we analyze and compare the performance of
the previous ISAR imaging methods, the AR model, MUSIC and
MEMP-MUSIC, as well as the conventional FFT, for radar target
identification. For this purpose, the recently developed identification
algorithm based on the polar mapping of ISAR images is combined
with the four different techniques. In addition, the optimum subarray
size for radar target identification is experimentally determined.

In Section 2, the signal model and four different ISAR imaging
techniques are discussed, and also the classifier based on the polar
mapping of ISAR images is briefly reviewed. Identification experiments
and the associated results will be provided in Section 3, followed by
our conclusion in Section 4.

2. ISAR IMAGING AND ISAR IDENTIFICATION
METHOD

2.1. Signal Model

The received echo signal y(f, θ) of a target at frequency f and aspect
angle θ can be expressed as follows:

y(f, θ) =
L∑

k=1

ak exp
(
−j

4πf

c
(xk cos θ + yk sin θ)

)
+ u(f, θ) (2)

where L is the number of scattering centers on the target, ak is the
amplitude of the k-th scattering center, and (xk, yk) is the position
of the k-th scattering center in the spatial domain. u is the additive
white Gaussian noise (AWGN) with zero mean and variance σ2 and c
is the speed of light.

The received RCS data uniformly sampled in the frequency-
aspect domain (f, θ) does not correspond to the uniformly sampled
data in the spatial frequency domain, because (f, θ) and (fx, fy) are
related by fx = 2f

c cos θ and fy = 2f
c sin θ. Data uniformity in the

spatial frequency domain (fx, fy) is essential for Fourier transform
or high resolution PSD estimators. Therefore, in order to generate
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Figure 1. Polar reformatting from (f, θ) domain to (fx, fy) domain.

a focused ISAR image, the received data should be converted from
polar-formatted samples to Cartesian-formatted samples with uniform
spatial frequency sampling spacings, ∆fx and ∆fy, before applying
the Fourier transform or high resolution PSD estimation. After polar
reformatting as shown Figure 1, the discrete version of the Equation (2)
is given by

y(m,n) =
L∑

k=1

ak exp (−j2π(xkfx(m) + ykfy(n))) + u(m,n) (3)

where
fx(m) = fx(0) + m∆fx, m = 1, 2, . . . , M,

fy(n) = fy(0) + n∆fy, n = 1, 2, . . . N,

and M and N are the number of interpolated data samples in fx and
fy respectively.

2.2. ISAR Imaging Based on FFT

After polar reformatting, the spatial reflectivity function of the
target can be easily reconstructed by means of a 2-D Fourier
transform implemented by a 2-D FFT. The down-range and cross-
range resolutions are inversely proportional to the spatial frequency
bandwidths, M∆fx and N∆fy, respectively. In order to increase the
spatial frequency bandwidths, M∆fx and N∆fy, for high resolution
ISAR images, the frequency bandwidth of the interrogating radar
system and relative angular motion between the radar and target
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should be sufficiently large. Otherwise, the FFT method results
in limited resolution ISAR images, causing unreliable identification
performance. Instead of the FFT, high resolution spectral estimation
techniques, which will be discussed below, can substantially improve
the resolution capability of ISAR images, even with limited data in the
(f, θ) domain, at the cost of additional computation time.

2.3. ISAR Imaging Based on AR Model

High resolution 2-D ISAR images can also be generated using an
autoregressive model. This method is based on the 2-D forward and
backward linear prediction [27]:

PAR(x, y) =
1∣∣∣∣∣∣∣

1 +
L∑

i=0

L∑
j=0

i=j 6=0

aijz
−i
1 z−j

2

∣∣∣∣∣∣∣

2

+

∣∣∣∣∣∣∣
1 +

L∑
i=0

L∑
j=0

i=j 6=0

bijz
−i
1 z−j

2

∣∣∣∣∣∣∣

2 (4)

z1 = exp(j4π/c∆fx · x), z2 = exp(j4π/c∆fy · y),

where aij and bij are the AR coefficients and L is the AR model
order. These coefficients can be calculated using forward-backward
linear prediction and a least square solution. The function PAR(x, y)
will have sharp peaks at the locations of the scattering centers on the
target [27, 28]. However, the function PAR(x, y) may have more peaks
than the number of scattering centers. One can reduce the number
of spurious peaks by the singular value decomposition (SVD) of the
covariance matrix estimated from the received data. This can be
achieved by including only those signal eigenvectors associated with
the largest eigenvalues [27, 28].

2.4. ISAR Imaging Based on Spectral MUSIC

To obtain high resolution ISAR images based on MUSIC, the
covariance matrix should be estimated from the received data. The
eigenvectors of the covariance matrix can be decomposed into the
signal subspace eigenvectors and noise subspace eigenvectors. The
spectral MUSIC algorithm is based on the orthogonal relationship
between the signal and the noise eigenvectors of the covariance matrix.
Therefore, the location of the peaks can be estimated using the
following function [29]:

PMUSIC(x, y) =
e(x, y)He(x, y)

e(x, y)HEH
n Ene(x, y)

, (5)
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where e(x, y) is the mode (direction) vector of the signal subspace,
the matrix En is composed of the noise eigenvectors corresponding to
the smallest eigenvalues of the covariance matrix, and H denotes the
conjugate transpose.

2.5. ISAR Imaging Based on MEMP-MUSIC

It is noted that the rank condition of the covariance matrix can
be significantly improved via the matrix enhancement and matrix
pencil (MEMP) method based on the Hankel block matrices described
in [30], compared to that of the conventional method based on the 2-
D modified spatial smoothing preprocessing method described in [29].
The improved covariance matrix can be combined with the MUSIC
PSD estimator described in (5), providing more robust ISAR images.

2.6. Identification Method

In this study, the method based on the polar mapping of ISAR
images described in [5] was used to identify various ISAR images
from six different targets measured in compact range. The method
in [5] has the benefits of rotation, scale, and translation invariance,
which can mitigate the sensitivity of the ISAR image to the relative
orientation, cross-range scaling, and segmentation. In addition, this
method is a three step classifier consisting of a coarse search, fine
search, and alignment and final decision. After the polar mapping of
the ISAR images, each step makes use of its own identification strategy
based on the r-projected 1-D image, θ-projected 1-D image, and
compressed polar image via principal component analysis (PCA) [31–
34]. Even though three feature components are required to complete
the identification, the whole memory storage required for the training
database is much smaller than that in the case where the original
ISAR images are used. As a result, this method was shown to provide
more robust identification performance, compared to the conventional
template matching with ISAR images [5].

3. EXPERIMENTAL RESULTS

In order to generate the ISAR images, we used six aircraft models with
a scale factor of 1/16: The F4, F14, F16, F22, F117 and Mig 29. The
maximum length of these targets is about 1 [m].

Their RCS data were measured in a compact range using six
scaled models with a frequency bandwidth of the X-band (8.3GHz ∼
12.3GHz) in 401 equally spaced frequency points and an angular region
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of 180◦ (−90◦ ∼ +90◦) in 361 equally spaced angles. The transmit
and receive polarizations are chosen as horizontal. An additive white
Gaussian noise (AWGN) at a signal-to-noise ratio (SNR) of 30 dB was
added to the measured RCS data. The noise added RCS data to
which the noise was added was interpolated by polar reformatting.
Consequently, 181 ISAR images of 100× 100 pixels were generated for
each target, providing 181× 6 = 1086 ISAR images for the six target
models. In this experiment, we assumed that the translational motion
of each target has been perfectly compensated.

To carry out the identification simulation, the 1086 ISAR images
were divided into the training set and test set. For this purpose, the
training set of each target was uniformly sampled across the aspect
angle with an increment of 10◦. The rest of the ISAR images were
reserved for the test set, i.e., 978 test ISAR images. Every test ISAR
image was arbitrarily rotated and down-scaled in order to model the
variation of the relative orientation and cross-range scaling of the
target. Specifically, its rotation angle and scale are randomly sampled
from a uniform distribution between 0 and 2π, and between 1 and

√
2,

respectively. The correct identification performance is measured by
determining the ratio of the number of correct identifications to the
total number of test data.

Pc =
the number of correct identification

the number of all test set
(6)

Polar images with a size of 50 × 50 pixels were generated from
the ISAR images having sizes of 100 × 100 pixels and, then, the r-
projected 1-D images, the θ-projected 1-D images, and the compressed
polar images by PCA were obtained from the polar images. Their
dimensions are selected as 50, 50 and 20, respectively, and, thus, the
final feature dimensionality for identification is 50 + 50 + 20 = 120,
which is a significantly smaller number than that of the ISAR image
itself, 104. In addition, in order to investigate the effect of the subarray
(model order) size on the identification performance, 10 Monte Carlo
identification experiments were carried out at 30 dB. All programs were
written in Matlab 6.4 and run in Window XP on Intel Pentium 2.8 GHz
processor.

3.1. Experiment 1 — Identification Using Wideband Data

The RCS data for each target with a wide frequency bandwidth of
4GHz (8.3GHz ∼ 12.3GHz) and an angular sector of 30◦ (−15◦ ∼
+15◦) with respect to the center of each angular sector were used
to generate the training and testing ISAR images against the various
targets. Note that the target response in the HRR profiles is
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represented by about 27 range bins with a frequency bandwidth of
4GHz, yielding a range resolution of 3.75 cm. The range resolution of
3.75 cm against merely about 1m target corresponds to 0.6 m range
resolution against a real target of 16m in length. That is, the 4 GHz
frequency bandwidth in the experiment is equivalent to the frequency
bandwidth of 250 MHz in a real situation, when considering the scale
factor.

After adding an AWGN of 30 dB to the measured RCS data,
the number of interpolations for polar reformatting was chosen as
M = N = 60, providing 60 equally spaced data points in both
directions, fx and fy. Subsequently, the FFT, AR model, MUSIC and
MEMP-MUSIC techniques for ISAR imaging were applied to these
wide bandwidth-angular sector RCS data.

Figure 2 shows the ISAR image of the F117 scaled model with
various spectral estimation techniques when the subarray size for
MUSIC and MEMP-MUSIC, and the model order for AR model were
chosen as 20. As shown in Figure 2, the dynamic ranges of the
ISAR images using the various techniques are 40 dB (FFT), 31.3 dB
(MUSIC), 26.2 dB (MEMP-MUSIC) and 9.1 dB (AR model). Among
these four techniques, the dynamic range with the FFT is the largest,
whereas that with the AR model is the smallest.

Figure 3 shows the ISAR images with the MEMP-MUSIC versus
the subarray size. As the subarray size becomes larger, the resolution
of MEMP-MUSIC improves, while its dynamic range becomes smaller,
as expected. Although the results are not shown in this paper for the
sake of brevity, we found that the other two high resolution techniques,
the AR model and MUSIC, show very similar behavior to the MEMP-
MUSIC.

Figure 4 presents the identification results as the subarray size is
increased from 15 to 25 in increments of 5. In this figure, the vertical
bars filled with black, dark gray, gray and white colors correspond
to the results obtained from the FFT, AR, MUSIC and MEMP-
MUSIC, respectively. Plots of the correct identification rates versus the
subarray size are presented in Figure 4(a), and the associated standard
deviations are given in Figure 4(b). As shown in Figure 4, the three
high resolution techniques exhibit decreasing correct identification
rates with increasing subarray size. Among the three techniques,
the AR model has the most inferior results, while the other two
have relatively high correct identification rates, because the ISAR
images obtained from the AR model have very high sidelobes on
the background and, thus, the lowest dynamic range, as shown in
Figure 2. However, it is clearly revealed in Figure 4 that the traditional
FFT method with wideband RCS data guarantees the most reliable
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(a) (b)

(c) (d)

Figure 2. ISAR images whose frequency bandwidth is 4 GHz and
angular region is 30◦ (−15 ∼ +15◦). (a) ISAR image via FFT.
(b) ISAR image via AR model. (c) ISAR image via MUSIC. (d) ISAR
image via MEMP-MUSIC.

identification performance. It should be noted that the FFT method
has the most inferior resolution capability, but the most superior
dynamic range among the four techniques, as shown in Figure 2. This
suggests that the dynamic range as well as the resolution of an ISAR
image is essential for successful target identification. If the resolution
capability is guaranteed by wideband measurements, then the dynamic
range has an important effect on the final identification accuracy.

Figure 5 shows the computation times of the four methods versus
the subarray size. As expected, the FFT is the most efficient in terms
of the computation, while the other three methods consume significant
amounts of computation time compared to the FFT, because they
require the time-consuming eigen-decomposition of the covariance
matrix. Since the subarray size determines the size of the covariance
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(a) (b)

(c)

Figure 3. ISAR images using the MEMP-MUSIC vs. subarray size.
(a) Subarray size = 15. (b) Subarray size = 20. (c) Subarray size = 25.

matrix, the computation time increases as the subarray size increases,
as shown in Figure 5.

As a result, if sufficient resolution capability is guaranteed by
wideband RCS data for a target, the traditional FFT is the most
promising ISAR imaging algorithm for target identification, due to
its large dynamic range and small computation time. In contrast, high
resolution spectral estimation techniques can provide high resolution
ISAR images at the expense of additional computation time, but their
smaller dynamic ranges lead to the degradation of the identification
performance, even with their improved resolution capability.
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(a) (b)

Figure 4. Average correct identification rate and standard deviation
vs. subarray size using ISAR images of the data whose frequency
bandwidth is 4GHz and angular region is 30◦ (−15◦ ∼ +15◦).
(a) Average correct identification rates. (b) Standard deviations.

Figure 5. Average computation time for generating an ISAR image
vs. subarray size.

3.2. Experiment II — Identification Using Narrowband Data

In this experiment, the RCS data with narrow bandwidth-angular
sectors were used to generate the training and testing ISAR images.
Their frequency bandwidth and angular sector were chosen as
2GHz (9.3 GHz ∼ 11.3GHz) and 10◦ (−5◦ ∼ +5◦), respectively,
corresponding to half the amount of data in Experiment I. Since the
maximum size of the target models is about 1m, the target response
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corresponds to only about 13 range bins in the HRR profile domain
with a narrow frequency bandwidth of 2 GHz, yielding 125 MHz against
an actual target of length 16 m. As in Experiment I, an AWGN of
30 dB was added to the measured RCS data. However, the number of
interpolated samples was decreased to M = N = 30, due to the reduced
frequency bandwidth and angular sector. This ensures that the spatial
frequency increments, ∆fx and ∆fy, in Experiment I with wideband
RCS data, and those in Experiment II with narrowband RCS data
are nearly identical. Then, the FFT, AR model, MUSIC and MEMP-
MUSIC techniques for ISAR imaging were applied to these narrow
frequency bandwidth-angular sector RCS data.

Figure 6 shows the ISAR images of the F117 scaled model obtained

(a) (b)

(c) (d)

Figure 6. ISAR images of the data whose frequency bandwidth is
2GHz and angular sector is 10◦ (−5◦ ∼ +5◦). (a) ISAR image using
the FFT. (b) ISAR image using the AR model. (c) ISAR image using
the MUSIC. (d) ISAR image using the MEMP-MUSIC.
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(a) (b)

(c) (d)

Figure 7. ISAR images using the MEMP-MUSIC vs. the subarray
size. (a) Subarray size = 5. (b) Subarray size = 8. (c) Subarray
size = 10. (d) Subarray size = 13.

using the various spectral estimation techniques with the narrow
bandwidth RCS data. In Figure 6, the subarray size was selected as
10, i.e., about one-third of the full aperture size, M = N = 30. With
the narrow band RCS data, the three high resolution techniques, as
well as the FFT technique, provide degraded resolution ISAR images,
as predicted. Even with this degraded resolution due to the reduced
bandwidth, the high resolution techniques still show more improved
resolution than the FFT. In terms of the dynamic range, the benefits of
high resolution techniques against FFT are evident with the exception
of AR model. It should be noted that in Experiment I, the FFT was
shown to have a higher dynamic range than the high resolution PSD
estimators. However, in the case of the narrow band RCS data, the
high resolution techniques are able to provide more improved ISAR
images in the framework of both the resolution and dynamic range.
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Figure 7 shows the ISAR images obtained using the MEMP-
MUSIC with various subarray sizes. As outlined in Experiment I, as
the subarray size increases, the resolution capability of the ISAR image
becomes more improved, while its dynamic range is deteriorated, and
vice versa.

(a) (b)

Figure 8. Average correct identification rate and standard deviation
vs. subarray size using ISAR images of the data whose frequency
bandwidth is 2 GHz and angular sector is 10◦ (−5◦ ∼ +5◦).
(a) Average correct identification rates. (b) Standard deviations.

Figure 8 presents the identification results obtained when the
subarray size is 5, 8, 10 and 13. In this figure, the vertical bars
filled with black, dark gray, gray and white colors correspond to
the results obtained from the FFT, AR model, MUSIC and MEMP-
MUSIC, respectively. The plots of the correct identification rates
versus subarray size are presented in Figure 8(a), and the associated
standard deviations are given in Figure 8(b). In contrast to the results
obtained in Experiment I, the two high resolution techniques, such
as viz. MUSIC and MEMP-MUSIC, show higher correct identification
rates than the FFT against all of the subarray sizes considered. The
improvements of the resolution as well as and dynamic range of afforded
by MUSIC and MEMP-MUSIC compared to the FFT, as shown in
Figure 6, lead to high identification outcomes, as shown in Figure 8.

It can be seen in Figure 8 that three methods, viz. the
FFT, MUSIC, and MEMP-MUSIC, have relatively low and similar
identification results when the subarray size is small. However, as
the subarray size is increased (i.e., 8 and 10), the identification
performances of MUSIC and MEMP-MUSIC improve, and, thus, they
significantly outperform the FFT by more than 10%. This comes from
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the fact that the enhancement of the resolution plays an important
role in the identification accuracy when the subarray size is small.
However, further increasing the subarray size to 13 gives rise to a slight
degradation of the identification performance. This suggests that the
dynamic range rather than the resolution comes to have a predominant
effect on the identification performance when the subarray size is large
enough to provide ISAR images with sufficient resolution. Therefore,
subarray sizes of about one-quarter, i.e., 8, or one-third, i.e., 10, of
the full aperture length, M = N = 30, are adequate for target
identification with narrowband RCS data.

Figure 9. Average computation time vs. subarray size.

Figure 9 shows the variation of the average computation times of
the four ISAR imaging methods with the subarray size. There is nearly
no time difference between the FFT and the three high resolution
techniques when the subarray size is relatively small, viz. 5, 8, and
10. The dimension of the covariance matrix depends on the subarray
size, and, thus, with the narrowband RCS data, the computational
efficiency of the high resolution PSD estimators becomes comparable
to that of the FFT, especially for small sized subarrays.

In order to find an optimal subarray size at low SNR level,
the measured data was contaminated by an AWGN of 10 dB. Other
parameters except the SNR are same as those used in the previous
experiment at high SNR.

Figure 10 shows the identification results obtained when the
subarray size is 5, 8, 10 and 13. With lower SNR, the identification
performances of four methods are degraded as expected. The plots
of the correct identification rates versus subarray sizes are presented
in Figure 10(a), and the associated standard deviations are given
in Figure 10(b). The identification rates at subarray size of 8
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(a) (b)

Figure 10. Average correct identification rate and standard deviation
vs. subarray size using ISAR images of the data whose frequency
bandwidth is 2 GHz and angular sector is 10◦ (−5◦ ∼ +5◦).
(a) Average correct identification rates. (b) Standard deviations.

and 10 outperform those at other subarray sizes. Also, the graph
of identification performances versus the subarray size show similar
behavior as in the case of high SNR in Figure 8. It can be clearly
revealed that subarray sizes of about one-quarter, i.e., 8, or one-third,
i.e., 10, of the full aperture length, M = N = 30, are adequate for
target identification with narrowband RCS data even at low SNR.

Summarizing the above results, high resolution techniques
including MUSIC and MEMP-MUSIC may significantly outperform
the traditional low-resolution FFT method with narrowband RCS
data. The identification performance is affected not only by the
resolution, but also by the dynamic range of the ISAR images, as was
discovered in Experiment I. In other words, a large subarray size for
high resolved ISAR images does not always lead to the improvement of
the identification accuracy for high resolution ISAR imaging techniques
other than the FFT. In addition, the computational efficiency of
the time-consuming high resolution techniques approaches that of
the FFT technique without any loss of identification performance,
especially for relatively small sized subarrays, i.e., 8 and 10. With the
above extensive observations on the relations among the identification
outcomes, resolution, dynamic range and computation time, it
is evident that in the case of MUSIC and MEMP-MUSIC with
narrowband data, a subarray size of about one-quarter of the full
aperture size is adequate to achieve high correct identification rates
with a minimal increase in the computational complexity.
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4. CONCLUSION

In this paper, we presented the experimental results and associated
analyses conducted for the purpose of investigating the performance
of various ISAR imaging techniques, including high resolution spectral
estimation techniques, as well as the conventional Fourier transform,
in the framework of target identification. With wideband RCS data,
the Fourier transform with lower resolution was shown to give more
promising identification performance than the high resolution spectral
estimation techniques, because the Fourier transform can provide
ISAR images with more improved, i.e., larger, dynamic ranges. This
suggests that the traditional Fourier transform is the most promising
candidate for ISAR imaging with advanced radar systems having a
large frequency bandwidth.

On the other hand, the high resolution spectral estimation
techniques, except for the AR model, were better than the
Fourier transform with the narrowband RCS data, because the
Fourier transform results in poor resolution ISAR images for target
identification. The high resolution techniques were superior to the
Fourier transform in terms of both the resolution and dynamic ranges
of the ISAR images. Furthermore, they are very efficient in terms
of the computation time, due to their decreased subarray sizes. The
optimum subarray size for high resolution ISAR imaging techniques
was shown to be about one-quarter of the full aperture length, in terms
of the target identification and computational complexity, because the
identification performance depends not only on the resolution, but
also on the dynamic range of the ISAR images. This also implies
that high resolution spectral estimation techniques can be a cost-
effective solution for ISAR imaging with traditional imaging radars
having narrow frequency bandwidths, for example, less than 150 MHz.
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