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Abstract—This paper deals with the development of the Wiener-
Hopf method for solving the diffraction of waves at fine strip-slotted
structures. The classical problem for diffraction of plane wave at a
strip is an important canonical problem. The boundary value problem
is consecutively solved by a reduction to a system of singular boundary
integral equations, and then to a system of Fredholm integral equations
of the second kind, which effectively is solved by one of three presented
methods: A reduction to a system of the linear algebraic equations with
the help of the etalon integral and the saddle point method numerical
discretization based on Gauss quadrature formulas the method of
successive approximations. The solution to the problem in the first
method contains a denominator that takes into account the resonance
process. Moreover, the precision of the main contribution of the short-
wave asymptotic solution is ensured down to the quasi-stationary limit.
The paper presents also comparisons of with earlier known results.

1. INTRODUCTION

To present time, there are in essence only two rigorous analytical
methods for solving diffraction problems: the Wiener-Hopf (WH) [1]
and the Riemann-Hilbert method [2]. The WH method is also known
as the factorization method. Both methods give solutions in closed
form for plane and cylindrical semi-infinite wave guides. The rigorous
formulation of a boundary value problem for semi-infinite structure
is equivalent to a corresponding Riemann-Hilbert boundary value
problem. These methods give solutions to canonical problems that can
be used for checking approximate methods intended for more complex
geometries. It is therefore of high interest to find a way of using the
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WH method for finite structures. The key problem for plane finite
structures is diffraction of electromagnetic waves from a strip or slot.
Generally it concerns a classical problem that has a rigorous solution in
the form of a series of elliptical cylinder functions found by the method
of a separation of variables. However, this series is inconvenient in the
short-wavelength range, because of bad convergence properties [3].

Many works are devoted to an asymptotic solution of diffraction
problems on a strip (slot). Some first terms of asymptotic expansion
for a diffraction field on parameter 1/kl are obtained on the basis of
integral equations in works of Millar [4], Westpfahl [5], Lüneburg [6],
Kieburts [7], Stockel [8], k — wave number, 2l — a width of a strip
(slot). Using asymptotic formulas for an elliptical cylinder function,
Hansen [9] has selected the expressions from a strict solution of
a boundary problem in an elliptic frame corresponding to primary
boundary waves of Sommerfeld. The approximated solution of an
integral equation of the second kind for a current on the plane screen
with a slot is given by Grinberg [10, 11]. The asymptotic solution to
within terms of the order (kl)5/2 of the key equation for a current on
a strip is received by him [12]. The further research of this equation
is carried out by Kuritsin [13], Popov [14]. The substantiation and an
improvement of the approximated expressions for the scattered field is
given by means of a method of integral equations in works Khaskind,
Weinstein [1, 15], Fialkovski [16], Nefyodov [17], Borovikov [18] and
Popichenko [19]. The obtained formulas are valid at arbitrary angle of
incidences and observations. The fullest asymptotic research of strip
problem is given in works of [20, 21]. Other methods like Kobayashi
potential method [22], Maliuzhinet’s techniques [23] may be used to
solve the problem.

The factorization of functions by the WH method corresponds
essentially to a splitting of the Fourier transform into the sum of
two one-sided Fourier integrals along the negative and positive semi-
axes of the coordinate. To put it briefly, the coordinate semi-axis is
mapped on a complex half-plane, where the factorized functions are
determined by the WH method. To split the Fourier integral in more
than two integrals, present in diffraction problems for finite structures,
introduces difficulties in combination with the WH method. In [24],
the diffraction problem for a strip is considered by the WH method
and reduced to system of Fredholm integral equations of the second
kind. Unlike the results of D. S. Jones in this paper, the exact solution
in the current paper is reduced to the form of series and an asymptotic
solution containing a resonant denominator. An important property of
the WH method is that, it keeps simplicity and physical transparency
in the results.
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2. STATEMENT OF PROBLEM. REDUCING OF
PROBLEM TO SYSTEM OF INTEGRAL EQUATION

Let the plane wave impinges on ideally conducting strip |z| ≤ a, y = 0,
−∞ < x < ∞:

Eo
x = −E0 exp

(
ik(y sinϑ0 + z cosϑ0)

)
,

Ho
y = Eo

x

√
ε/µ cosϑ0,H

o
z = −Eo

x

√
ε/µ sinϑ0,

Ho
x = 0, Eo

y = Eo
z = 0, k = ω/c, E0 = const.

(1)

The direction of propagation of the incident wave is orthogonal
to the x axis and makes an angle ϑ0 with the z axis (Fig. 1). Such a
polarization of the incident plane wave is denoted magnetic. Further,
the harmonic time factor exp(−iωt) is everywhere omitted.

With no x dependence present the electromagnetic field

Ex = ikcAx, Hy =
1
µ

∂

∂z
Ax, Hz = − 1

µ

∂

∂y
Ax, (2)

is expressed by means of convolution of the single component Ax of the
vector potential with the fundamental solution ψ of the wave equation:

Ax(y, z) = −µψ ∗ Jx(z), ψ = − i

4
H(1)

0 (k
√

y2 + z2). (3)

Here, * is the symbol of convolution in z, H(1)
0 (x) is the Hankel function

of the first kind, and Jx(z) is the surface current density of the strip.
We can present the convolution through the Fourier transforms of

the surface density and the fundamental solution

Ax(y, z) =
iµ

4π

∫ ∞

−∞

1
v

exp{i(wz + v|y|)}F (w)dw, (4)

where v =
√

k2 − w2. Indeed, the inverse Fourier transform follows
from the boundary condition for the jump of the magnetic field on the
strip

Jx = Hz(+0, z)−Hz(−0, z),

ϑ
ϑ0

ζ 

R

y

za0-a

r

Figure 1. Diffraction of plane wave at a strip.
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as well as (2) and (4):

Jx =
1
2π

∫ ∞

−∞
exp(iwz)F (w)dw. (5)

From the boundary condition for the electric field on the strip

Ex + Eo
x = 0 at |z| ≤ a (y = 0, −∞ < x < ∞),

and (2) and (4) we obtain an integral equation
∫ ∞

−∞
exp(iwz)

1
v
F (w)dw + A0 exp(ihz) = 0 at |z| ≤ a, (6)

where A0 = 4πE0/(ωµ) and h = k cosϑ0. For concreteness the value
h is fixed for example in the lower w half-plane (LHP).

We have the following integral equation from the continuity
condition of the magnetic field (Hz) on the continuation of the strip:

∫ ∞

−∞
exp(iwz)F (w)dw = 0 at a < |z|, (7)

which follows immediately from (5) expressing absence of currents on
the prolongation of the strip.

Thus, for the solution of a boundary value problem it is necessary
to find F (w) that satisfies the system of integral Equations (6) and (7).
It is necessary to note, that the solution of a boundary value problem
should satisfy an additional edge condition (Meixner condition), i.e.,
the magnetic field, for example, should increase asymptotically as
H ∼ ρ−1/2 near the knife edge, when the distance ρ → 0.

3. THE SOLUTION OF THE BOUNDARY VALUE
PROBLEM WITH THE WIENER-HOPF METHOD

Let k have a small positive imaginary part that will vanish in the final
formulas. Taking into account that the edges of a strip are secondary
sources of waves, the Fourier-component of the current density is
written as a sum from two analytical sources:

F (w) = F1 + F2 (8)

where

F2(w) =
√

k − w
(
A2(w) + B+(w)

)
exp(iwa),

F1(w) =
√

k + w
(
A1(w) + B−(w)

)
exp(−iwa).

The fields from the analytical sources must satisfy Meixner’s condition,
i.e., behaving at infinity as w−1/2.
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Figure 2. A plane of a complex variable w (or u).

The functions F1, F2 absorb completely all incident waves and
reradiate them in all directions according to the boundary conditions.
The terms F1 and F2 are constructed by the WH method such
that A1 and A2 correspond to plane wave amplitudes; B+ and B−
correspond to the amplitudes of the reflected waves from the strip
edges. Furthermore, the following cancelations appear: A1 cancels the
incident plane wave at the left of the first edge (z ≤ a), A2 cancels the
plane wave of A1 at the left of the second edge (z ≤ −a), B+ cancels
the incident waves from the first edge (B−) in the field z < −a, B−
cancels the waves from the second edge (B+) in the field z > a.

From this follows, that A1 and A2 should be analytical functions
on the entire complex w plane except for a simple pole at w = h.
As the singular points in the upper half plane (UHP) correspond to
traveling waves to the right along the z axis, B− should be analytical
in the LHP, and B+ in the UHP. Thus,

B+(w) =
1

2πi

∫

C−

ψ1(u)
u− w

du, B−(w) = − 1
2πi

∫

C+

ψ2(u)
u− w

du,

where ψ1 and ψ2 are some analytical functions in the band |Imu| <
Imk, 0 < ε < Imk, C− and C+ are integration contours (IC) laying
parallel at a distance ∓iε from the real axis and consisting of an
infinitely narrow loop enveloping a point w = ±h from below or from
above (Fig. 2).

Let us now consider the system of integral Equations (6) and (7).
Substituting the expression (8) for (6), the integral is calculated using
Jordan’s lemma. Here it is necessary to close the IC for the integrand
F1 by a semicircle of infinite radius in the LHP, and for F2 in the UHP.
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The integrands are analytical inside the closed IC except for a
single simple pole at the point w = h. Calculating the integral in (6)
by means of a residue, we obtain

A1(w) =
Ao

2πi

√
k − h

w − h
exp(iha). (9)

Similarly it is convenient to close the IC in (7) in the w LHP when
z < −a. As the integrands are analytical in the band |Imw| < Imk,
the integration along the real axis in (7) is equivalent to the contour
C− and the additional infinitesimal circle round the point w = h.
Therefore, allowing for the formula (9) we compensate for the pole at
this point and find

A2(w) = − Ao

2πi

√
k + h

w − h
exp(−iha). (10)

(Note that (9) and (10) are valid when the plane wave is incident from
the left.) Note also that the integrand F2 in (7) has a simple pole at
the point w = h. Therefore, the integration path for B+ passes in the
u LHP. Hence, by changing the order of integration and calculating
the integral along the real w axis with help of the theory of residues,
(7) is reduced to:∫

C−
exp(iuz)

(√
k + u

(
A1(u) + B−(u)

)
exp(−iua)

+
√

k − uψ1(u) exp(iua)
)
du = 0, z < −a.

Here, the first term in the integrand has a branch point u = −k in
the LHP. To eliminate the singularity the integrand is equated to zero,
also as well as poles. Using this solution for ψ1, the functional relation

B+(w) = − 1
2πi

∫

C−

exp(−i2au)
u− w

√
k + u

k − u

(
A1(u) + B−(u)

)
du (11)

is achieved. Analogously, the functional relation

B−(w) =
1

2πi

∫

C+

exp(i2au)
u− w

√
k − u

k + u

(
A2(u) + B+(u)

)
du, (12)

is obtained. By means of the replacement u → −u, (11) is represented
as

B+(w) =
1

2πi

∫

C+

exp(i2au)
u + w

√
k − u

k + u

(
A1(−u) + B−(−u)

)
du. (13)

Note that the Equations (12) and (13) is a system of integral equations.
By introducing the integral operator

I(w, u) =
1

2πi

∫

C+

du
exp(i2au)

u− w

√
k − u

k + u
,
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the system of Equations (12) and (13) may be represented compactly
as

B+(w) = I(−w, u)
(
A1(−u) + B−(−u)

)
,

B−(w) = I(w, u)(A2(u) + B+(u)).
(14)

The simple integral I(w) = I · 1 will be used and is represented in
terms of special functions (see appendix A).

Thus, the boundary value problem is reduced to solving the
system (14). It may be readily checked by calculating the integrals (6)
and (7), using the theory of residues and Jordan’s lemma, that the
constructed solutions for F1(w) and F2(w) imply that Ax in (4) meet
the boundary conditions (6) and (7). Below we will present three
methods for the solution of (14).

3.1. 1st Method

It is easy to obtain the solution of (14) in the form of successive
approximations:

B+(w) =
∞∑

n=1

I2n−1(−w, u)A1(−u) +
∞∑

n=1

I2n(−w, u)A2(u),

B−(w) =
∞∑

n=1

I2n−1(w, u)A2(u) +
∞∑

n=1

I2n(w, u)A1(−u).

(15)

Here, the product Ik(w,w0) of integral operators is denoted by

Ik(w, w0) = I(w,wk−1)
1∏

m=k−1

I(−wm, wm−1)

( 1∏

m=k−1

I(−wm, wm−1) ≡ I(−wk−1, wk−2) . . . I(−w1, w0),

I1(w, w0) ≡ I(w,w0), k ≥ 1
)

.

The exact solution of the boundary value problem is obtained in
the form of multiple reflections of waves from the edges of the strip
by substituting (15) in (8) also allowing for (9) and (10) as well as (4)
and (2):

Ex = E1
x + E2

x,

where
E1

x = E0

(
J1(h,w) + J(−h,w1)J(w1, w) + . . .

)
ei(−wz+v|y|),

E2
x = E0

(
J1(−h,w) + J(h,w1)J(w1, w) + . . .

)
ei(wz+v|y|



8 Sautbekov

or

E1
x = E0

∞∑

n=1

E1
n, E2

x = E0

∞∑

n=1

E2
n, (16)

E1
n = J

(
(−1)n−1h,w1

) n−2∏

k=1

J(wk, wk+1)J(wn−1, w)ei(−wz+v|y|),

E2
n = J

(
(−1)nh,w1

) n−2∏

k=1

J(wk, wk+1)J(wn−1, w)ei(wz+v|y|)

(n = 2, 3, . . .).

In (16), the strip diffraction operators

J(w, u) =
√

k − w

2πi
exp(iaw)

∫

C1

du
exp(iau)√

k + u(u + w)
,

and

J1(w, u) =
√

k − w

2πi
exp(iaw)

∫ ∞

−∞
du

exp(iau)√
k + u(u + w)

.

Note that the integration contour C+, present in the integral
representation of the operator I, as well as the real line can be deformed
to the contour C1 without any intersection of poles, except the first
term of the series (Fig. 2). By the coordinate transformation (Fig. 1):

z = r cosϑ, y = r sinϑ (0 < y, 0 < ϑ < π)

and the substitution

w = k sin τ, v = k cos τ, (Imk = 0)

of the integration variable, the diffraction operator J(k sin τ, k sinα) ≡
J(τ, α)

J(τ, α) =
1

4πi

∫

S
dαg(τ, α), J1(τ, α) =

1
4πi

∫

Sz

dαg(τ, α), (17)

g(ϕ, τ) =
(

sin−1 ϕ + τ

2
− cos−1 ϕ− τ

2

)
exp

(
ika(sinϕ + sin τ)

)
,

is represented in polar form, where S and Sz are the Sommerfeld
integration contours (Fig. 3).

The term of the series expansion for E2
x (for the second edge)

corresponds to the n-th diffraction of the plane wave, i.e., the first term
corresponds to diffraction of the plane wave falling on the half-plane
(z = −a), the second corresponds to the diffraction of the primary
cylindrical wave on the second edge, etc.
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Let us now investigate the primary diffraction (for example at the
second edge):

E2
1 = J1(ϑ0 − π/2, τ)eikr sin(τ+ϑ) (0 < ϑ < π).

To calculate the integral

E2
1 =

1
4πi

∫

Sz

eik(r sin(τ+ϑ)+a sin τ+a sin τ0)
( 1

sin τ0+τ
2

− 1
cos τ0−τ

2

)
dτ,

where τ0 = ϑ0−π/2, it is necessary to transfer the origin of coordinates
from the center of the strip to the second edge:

R sin ζ = r sinϑ, R cos ζ = a + r cosϑ. (18)
Introducing a new integration variable α = ζ + τ − π/2, with

integration along the contour Sα (Fig. 3), also excluding the variables
r, ϑ, the integral is easily transformed to the form:

E2
1 =

exp(−ika cosϑ0)
4πi

( ∫

Sα

exp(ikR cosα)
sin

(
(α− ζ + ϑ0)/2

)dα

+
∫

Sα

exp(ikR cosα)
sin

(
(α− ζ − ϑ0)/2

)dα

)
.

It is convenient to introduce the special function

Ξ(R, ω) =
1

4πi

∫

S

exp
(
ikR(cosα− cosω)

)

sin
(
(α + ω)/2

) dα, (19)

which can be represented in the form [1]:

Ξ(R, ω) =
exp(−iπ/4)√

2π

∫ 2
√

kR sin(ω/2)

∞ sin(ω/2)
exp

(
it2/2

)
dt, (20)
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which is a Fresnel integral.
So, the exact expression of primary diffraction is obtained (at

y > 0) by deforming the path of integration Sα into the contour S
(Fig. 3), taking account of a residue in the point α = ζ − ϑ0 if the
contour deformation captures a pole (ζ − ϑ0 > 0):

E2
1 = eikr cos(ϑ−ϑ0)Ξ(R,ϑ0 − ζ)− eikr cos(ϑ+ϑ0)Ξ(R, ϑ0 + ζ) + E2

0 , (21)

E2
0 = −θ(ζ − ϑ0)eikr cos(ϑ−ϑ0).

Here, R =
√

r2 + a2 + 2ar cosϑ, ζ = arcsin(r sinϑ/R) and θ(ζ) is the
Heaviside function.

Although (21) is derived for positive y, it is applicable for any y if
0 < ϑ < 2π

using
E2

0 = −θ(π − ϑ0 − |ζ − π|) exp
(
ikr cos(π − ϑ0 − |ϑ− π|)). (22)

Indeed, cos(ϑ − ϑ0) passes to cos(ϑ + ϑ0) and vice versa when
replacing y with −y (i.e., replacing ϑ with 2π − ϑ and ζ with 2π − ζ),
sin

(
(ϑ0 − ζ)/2

)
with − sin

(
(ϑ0 + ζ)/2

)
and vice versa. Hence, since

the first and the second terms in (21) change places, (21) remains in
force. Note also that the Heaviside function in (21) is responsible for
shielding and reflecting the plane wave. One should take into account
the plane waves also from the first edge. Obviously, the angle ϑ0 in (22)
(Fig. 1) corresponds to the geometrical boundary of a shadow from the
strip edge.

Instead of (18), we have approximately

R ∼= r + a cosϑ, ζ ∼= ϑ− a

r
sinϑ, (23)

for the intermediate wave zone (r > a) and
R ∼ r, ζ ∼ ϑ.

for far-zone (r À a or a/r → 0). The asymptotic formula for primary
diffraction

J(ϑ0 − π/2, τ) exp
(
ikr sin(τ + ϑ)

) ∼= Ag (ϑ0 − π/2, ϑ + π/2) (24)
follows from (21) with help of expressions for R, ζ in (23) and the
asymptotic expression

Ξ(r, ω) ∼= − 1
2
√

2πkr

exp
(
ikr(1− cosω) + iπ/4

)

sin(ω/2)
,

valid for large r. The solution of the diffraction problem for an incident
plane wave on a half-plane [1] is

E2
1 ≈ −cos(ϑ0/2) sin(ϑ/2)

cosϑ− cosϑ0

√
2

πkr
exp(ikr + iπ/4),
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in the far-zone. Now let us consider the secondary diffraction in (16)

E2
2 = J(ϑ0 + π/2, α)J(α, τ) exp

(
ikr sin(τ + ϑ)

)
, (25)

where the diffraction operator J now acts on the cylindrical wave
reflected from the first edge. The asymptotic formula (24) may be
used for the estimate

E2
2
∼= AJ(ϑ0 + π/2, α)g(α, ϑ + π/2).

Introducing a variable τ = α− π/2, using the identity(
cos(ϑ/2)

sin((α−ϑ)/2)
− cos(ϕ/2)

sin
(
(α−ϕ)/2

)
)

1
sin

(
(α−ϑ)/2

) 1
sin

(
(α−ϕ)/2

)

=
1

sin
(
(ϑ− ϕ)/2

) 1
cos(α/2)

and the symmetry of the integrand with respect to τ , the integral
in (25) is calculated by means of the special function Υ(l, α) (A4):

E2
2/A ∼= Υ

(
ka, cos(ϑ0 + π)

)
g(ϑ + π/2, ϑ0 − π/2)

+Υ
(
ka, cos(ϑ + π)

)
g(ϑ0 + π/2, ϑ− π/2) (26)

or using the properties g and Υ:
E2

2/A ∼= −Υ
(
ka, cos(ϑ0 + π)

)
g(ϑ0 + 3π/2, ϑ + π/2)

−Υ
(
ka, cos(ϑ + π)

)
g(ϑ + 3π/2, ϑ0 + π/2).

For future reference the useful integral relation
J(α, β)g(β, ϑ + π/2) = Υ

(
ka, cos(α + π/2)

)
g(ϑ + π/2, α− π)

+Υ
(
ka, cos(ϑ + π)

)
g(ϑ− π/2, α). (27)

is also given. A change of the origin of the angle coordinates in (26)
ϑ → ϑ− π/2, ϑ0 → ϑ0 + π/2,

gives the result in [19]:

E2
2/A = Υ

(
ka, cos(ϑ0 − π/2)

)
g(ϑ0, ϑ)

−Υ
(
ka, cos(ϑ + π/2)

)
g(ϑ + π, ϑ0 + π),

or, using the notation of [19],

E2
2 =

g2
2√
kr

exp
(
i(ka sinϑ + kr + π/4)

)
.

It is easy to incorporate the subsequent terms of the series (16).
For example, the tertiary diffraction may be considered. Using
relations (24) and (27), the expression

E2
3 = J

(
ϑ0 − π

2
, α

)
J(α, β)J(β, γ) exp

(
ikr sin(γ + ϑ)

)
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is represented in the form:

E2
3
∼= AJ(ϑ0 − π/2, α)

(
Υ

(
ka, cos(α + π/2)

)
g(ϑ + π/2, α− π)

+Υ
(
ka, cos(ϑ + π)

)
g(ϑ− π/2, α)

)
. (28)

The contribution of the first term can be neglected since Υ(ka,−1) = 0
is satisfied in the saddle point α = π/2, to be used when estimating
the integral with the saddle point method.

The final estimate of the tertiary diffraction is obtained from (28),
using (27):

E2
3 = −AΥ

(
ka, cos(ϑ + π)

)(
Υ(ka, cosϑ0)g(ϑ0 + π/2, ϑ− π/2)

+Υ(ka, cosϑ)g(ϑ + π/2, ϑ0 − π/2)
)
.

3.2. 2nd Method

By a deformation of the integration contour C+ up to edges of the cut
Cz (Fig. 2), the system (14) is presented in the form:

B+(w) =
1
πi

∫ 1

0

√
1− x

(
exp(i2kax)B−(−kx)

(x + w/k)
√

1 + x

)
dx

+
1
π

∫ ∞

0
exp(−x)

(√
x + i2ka

x− i2ka

B−(−ix/2a)
(x− i2aw)

)
dx + B+

0 ,

and

B−(w) =
1
πi

∫ 1

0

√
1− x

(
exp(i2kax)B+(kx)
(x− w/k)

√
1 + x

)
dx

+
1
π

∫ ∞

0
exp(−x)

(√
x + i2ka

x− i2ka

B+(ix/2a)
(x + i2aw)

)
dx + B−

0 ,

where
B+

0 = I(−w, u)A1(−u), B−
0 = I(w, u)A2(u).

Here, the improper integrals are converging fast. Therefore, it is
convenient for their numerical generation to use Gauss’ quadrature
formulas with weights [25]. In this case, the boundary value problem
is reduced to the solution of a system of linear algebraic equations.

3.3. 3rd Method

The short-wave asymptotic behavior is achieved by means of the etalon
integral

I(w) ≡ I(w, u) · 1,
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using the stationary phase method [26] (see (A5)). Here, the
integration path in (14) is deformed up to the edge of the cut C1,
(Fig. 2) to get the contour of steepest descent that is a line parallel to
imaginary axis upwards from the branch point. The result is

B+(w) ∼= I(−w, u)A1(−u) + B−(−k)I(−w),

B−(w) ∼= I(w, u)A2(u) + B+(k)I(w).
(29)

The functions in (29) are found by solving the following system of
linear algebraic equations:

B+(k)=
(
1−I2(−k)

)−1 (
I(−k, u)A1(−u)+I(−k)I(−k, u)A2(u)

)
, (30)

B−(−k)=
(
1−I2(−k)

)−1 (
I(−k, u)A2(u)+I(−k)I(−k, u)A1(−u)

)
, (31)

I(−k, u)A1(−u) =
(
I(−k)− I(−h)

)
A1(k),

I(−k, u)A2(u) =
(
I(−k)− I(h)

)
A2(−k).

Thus, the above-stated expressions give the dominant contribution
to the solution of (14).

In order to take a account of the corrections of higher order it is
necessary to expand the required functions B+ and B− in (14) in a
Taylor series in the neighborhood of the point u = k with the result:

I(−w, u)B−(−u)=ei2ak
N∑

n=0

(i)n

n!
B−(n)(−k)

∂n

∂(2a)n

(
e−i2akI(−w)

)
, (32)

I(w, u)B+(u)=ei2ak
N∑

n=0

(−i)n

n!
B+(n)(k)

∂n

∂(2a)n

(
e−i2akI(w)

)
. (33)

A substitution of (32), (33) in the system (14), taking the
derivatives in the branch points will yield 2N algebraic equations for
the functions B+(k), B−(−k) and their derivatives.

Substituting the solution (29) in (8), (4) and (2) and using the
result from (18), we get the dominating contribution to the electric
field by the saddle point method and an etalon integral in (A5):

Ex = E1
x + E2

x,

E1
x ' E0

(
E1

1 + E1
2 −

π

A0

√
2k sin

ϑ

2
I(k cosϑ)H(1)

0 (kr)B+(k)
)
,

E2
x ' E0

(
E2

1 + E2
2 −

π

A0

√
2k sin

ϑ

2
I(−k cosϑ)H(1)

0 (kr)B−(−k)
)
.

It is interesting to observe that the precision of the dominating
contribution in the third method turns out to be not less than the
precision of the solution of the tertiary diffraction achieved by the
method of successive approximations in the first method.
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4. RESONANCE

Below, we will consider a resonance on the strip that follows
immediately from the solution (29). Zeroing a denominator in (30)
and (31) gives a characteristic equation in the first approximation:

det1 = 1− I2(−k) = 0, (34)

which determines the complex resonance frequencies of a strip, i.e.,
frequencies of self oscillations in absence of external incident waves.
By means of the formula

∫ z

∞
exp(it)H(1)

0 (t)dt = z exp(iz)
(
H(1)

0 (z)− iH(1)
1 (z)

)
,

we obtain from (A5),

I(−k) =
1
2i

H(1)
0 (2ka)− 2ak

(
H(1)

0 (2ka)− iH(1)
1 (2ka)

)
,

to be used in (34). Using the asymptotic form of the Hankel functions
(ka →∞) in (34) we get the known result [1]:

exp
(
i(2ka− 3π/4)

)
= ±2

√
πka.

Now, we will consider the characteristic equation in the second
approximation for the estimation of the precision of the basic
contribution of the integration by the saddle point method taking into
account only the first derivatives in (32), (33) (N = 1):

I(−w, u)B−(−u) ' B−(−k)I(−w) + B−(1)(−k)
(
kI(−w) + iIa(−w)

)
,

I(w, u)B+(u) ' B+(k)I(w)−B+(1)(k)
(
kI(−w) + iIa(−w)

)
,

where the following notation for the derivatives in the specified
(indicated) points with respect to w and the parameter b = 2a is
introduced:

Ia(−w) ≡ ∂

∂b
I(−w), B−(1)(−k) ≡ ∂

∂w
B−(w)

∣∣
w=−k

,

Ia ≡ Ia(−k), B+(1)(k) ≡ ∂

∂w
B+(w)

∣∣
w=k

.

Substituting these expressions in (14), we find the matrix



1 0 −I(−k) −kI(−k)− iIa

0 1 −Iw −kIw − iIwa

−I(−k) kI(−k) + iIa 1 0
−Iw kIw + iIwa 0 1



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for the system of algebraic equations, where the following notation is
introduced:

Iw ≡ ∂

∂w
I(w)

∣∣
w=−k

, Iwa ≡ ∂

∂b
Iw.

We get the characteristic equation in the second approximation by
equating the determinant of the matrix to zero:

det2 = 1− H4
0

16
+

ka

12
(
8H0H1

(
1 + H2

0

)
+ iH2

0

(
24 + 9H2

0 + H2
1

))

+
(ka)2

36
(
H2

1

(
H2

1 − 112
)

+ 2H2
0

(
312− 47H2

1

)
+ 129H4

0

− i16H0H1

(
H2

1 + 15H2
0 + 42

))
+

8(ka)3

9
(H1 + iH0)

(
H0(7H2

1 − 9H2
0 − 48) + iH1

(
H2

1 + 17H2
0 + 32

))

−64(ka)4

9
(H1 + iH0)2

(
(H1 + iH0)2 − 4

)
= 0, (35)

where for brevity the values of the Hankel functions are designated as

H0 ≡ H(1)
0 (2ak), H1 ≡ H(1)

1 (2ak).

The following values of the derivatives of I have been used in the
characteristic equation:

Iw(−k) = a(H0 − i

3
H1)− 8

3
ika2(H0 − iH1),

Ia = −1
2
kH0 +

i

2
kH1 − ikI(−k),

Iwa =
1
2
H0 − 3ak(iH0 +

7
9
H1)− 8

3
(ak)2(H0 − iH1).

The variation of det1 and det2 with real k is presented in Fig. 5
using the basic contribution of the solution (14) with the saddle point
method.

The behavior of the real part of the characteristic function for real
values of k is maintained if 2ak is larger than about 0.04 in the first and
in the second approach (Fig. 5). The behavior of the imaginary part
of the characteristic functions for real values k are basically identical
both in the first and in the second approximation.

Hence, on solving similar diffraction problems with the saddle
point method and an etalon integral, the basic contribution of the
integration should be restricted to the frequency band 2ka > 0.4.

Note that the characteristic Equations (34) and (35) have no real
roots. Therefore the strip eigenfrequencies are complex.
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Figure 5. Real part of det1, det2 (Imka = 0).

Table 1. Resonance wave lengths for the strip and their asymptotic
values.

n 1 2 3 4 5 6 7
2a/λ 0.23 0.67 1.15 1.64 2.14 2.64 3.13
2a/λ0 0.12 0.62 1.12 1.62 2.12 2.62 3.12

The imaginary part of the roots of the characteristic Equation (34)
approach asymptotically the value

Im(2ak) = −2.305− 1.5 lnRe(2ak) (36)
at Rek À 1, which is conveniently derived by the asymptotical formula
for the Hankel functions:

H(1)
n (ξ) ' exp(−Imξ)H(1)

n (Reξ).
The real parts of the roots of (34) have the asymptotic form:

Re(2ak) ' π(n + 1/4) (n = 1, 2, . . .). (37)
The obtained asymptotic formulas coincide with the result of [17]:

2ak ' (n + 1/4)π − i1.5 ln
(
2 3
√

4π(n + 1/4)π
)
.

Numerical and asymptotic values of the resonance wave lengths of
the strip are presented in Table 1, where λ0 are the asymptotic values
of λ given in (37):

2a/λ0 = (n− 1)/2 + 1/8.

5. CONCLUSION

The WH method is developed for plane structures, e.g., the diffraction
problem for the strip. The exact solution of the boundary value
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problem is obtained in the form of an infinite series by means of a
diffraction integral operator for the strip. The short-wave asymptotic
solution, which contains a resonant denominator is also presented.
The diffraction fields are found for each solution. The characteristic
equation and the numerical values of the complex resonance frequencies
are obtained. The results of the paper are also compared to earlier
known asymptotic solutions obtained by the edge wave method and
the method of self-consistent fields. Numerical calculations have shown
a high precision of the integration by means of the saddle point
method and the etalon integral. Therefore it is possible to use the
basic contribution of the short-wave asymptotic solution for frequencies
above the quasi stationary limit. The developed WH-method can
be applied to other structures than the strip and can also be
extended to a cylindrical geometry without any essential changes. An
important property is that the mathematical apparatus is maintained
for analogous problems with excitation with electromagnetic waves and
diffraction of charged particles.
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APPENDIX A. ETALON INTEGRAL, SPECIAL
FUNCTION Υ

An important ingredient in the current paper is to calculate the etalon
integral to obtain the asymptotic solutions of the system of integral
Equations (6) and (7):

I(w) =
1

2πi

∫

C+

exp(i2au)
u− w

√
k − u

k + u
du,

which can be presented in the form of the sum of two integrals as:

I(w) = − 1
2πi

∫

C+

exp(i2au)√
k2 − u2

du +
k − w

2πi

∫

C+

exp(i2au)
(u− w)

√
k2 − u2

du,

where C+ is the integration contour that is parallel to the real axis in
the upper u half plane (UP) with an additional infinite narrow loop
enveloping the point u = −h from above (Fig. 2).

We use the Sommerfeld integral [27] to calculate the first integral:
1
π

∫

S
exp(ix cosα)dα = H(1)

0 (x), (A1)
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where S is the integration contour passing from top to down in the
second and fourth quadrants through the origin of the coordinates
(Fig. 4).

Note that the Sommerfeld contour Sα in the complex α plane
(Fig. 3) corresponds to the integration contour Sz in the w complex
plane, which passes along the edges of the cut of the function

√
k − w

at 0 < Imk → 0 (Fig. 2).
We calculate the first integral with the help of (A1) by deforming

the contour C+ up to C1 and introducing the new integration variable
u = k cosα, which maps one-to-one and conformally the half-plane
Imu > 0 on the half strip 0 < Reα < π, Imα < 0:

− 1
2πi

∫

C1

exp(i2au)√
k2 − u2

du =
1
2i

H(1)
0 (2ak). (A2)

To get the second integral, we determine the special function as:

Υ(x, cosβ) = sinβ

∫ x

∞
H(1)

0 (2t) exp(−2it cosβ)dt. (A3)

Multiplying both parts of (A2) with exp(i2bw), substituting a by b and
integrating in b from infinity to a with Imu > 0, we get the function
as the contour integral [28]

Υ(ka,w/k) = −
√

k2 − w2

2πi
e−i2aw

∫

C1

ei2au

(u− w)
√

k2 − u2
du. (A4)

With the help of (A4) and (A2) we finally obtain the etalon
integral [29]:

I(w) =
1
2i

H
(1)
0 (2ka)−

√
k − w

k + w
ei2awΥ(ka, w/k). (A5)

The following asymptotic formula is useful for numerical calculations
of the special function Υ [19]:

Υ(ka, cosβ) = e−iπ/4 2√
π

sgn
(

sin
β

2

) ∫ ∞

χ
eiµ2

dµ

− eiπ/4

2
√

πka
ei4ka sin2

(
β/2)

∞∑

n=0

(−i2ak)−nDnctg
β − 2π

4
.

The following properties of the special function is useful:

Υ(ka, cosβ) = Υ(ka, cos(β ± 2π)), Υ(ka, 1) = −1, Υ(ka,−1) = 0.

When estimating the integrals with the saddle point method (or with
the stationary phase method) and the etalon integral I(w) it is assumed
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that the integration contour is the line of fastest descent and also that
the required integrands have no singularities near the saddle-point.
Such a contour on the complex α plane is the path S (Fig. 4). It
corresponds to the integration contour C1 on the w complex plane
which passes along the edges of the cut of the function v =

√
k − w

and is taken vertically from the point k (Fig. 2).
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