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Abstract—The earlier developed combined beam-absent analysis of
the disc-loaded-coaxial waveguide in two-configurations (part-1) has
shown promise for wideband gyro-traveling-wave tube (gyro-TWT) if
the configurations are used as interaction structure. In the present
paper, the beam-present dispersion relation and small-signal gain
equation in Pierce’s format for the disc-loaded-coaxial waveguide were
developed. A broadening of the device bandwidth was presented by
disc-loading the coaxial waveguide interaction structure of a gyro-TWT
with a comparison against the circular cylindrical waveguide, coaxial
waveguide, and disc-loaded circular waveguide in their respective gain-
frequency responses obtained by using a numerical computer code on
the basis of the present beam-present analysis.

1. INTRODUCTION

Beam-absent or cold analysis developed in the preceding paper (part-
1), which in turn gives the dispersion and azimuthal interaction
impedance characteristics of the disc-loaded-coaxial waveguide, is
helpful in characterizing the interaction structure of a gyro-TWT with
the metal loading in two configurations. Thus, one may optimize
the structure parameters for the desired shape of the dispersion
characteristics at relatively higher azimuthal interaction impedance,
which has relevance to the device gain. However, to explore the
potential of the considered structure loading, not only the beam-absent
analysis, but also the hot or beam-present analysis, which would yield
the gain-frequency response of the device, needs to be developed.
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In the past, the beam-present small signal analyses were developed
for various interaction structures for the fast- [1–9] and slow- [10–
13] traveling-wave devices. For the purpose of developing the gain-
frequency response of the present case of gyro-TWT, as done in the
past, with reference to dielectric-loaded [1, 2] or helix-loaded [3] or
metal vane-loaded [4] or annular disc-loaded [5, 6] gyro-TWTs, the
propagation constant predicted by the beam-absent analysis of the
loaded structure was substituted into the beam-present dispersion
relation of a gyro-TWT in an unloaded or smooth-wall structure,
which is subsequently interpreted for the device gain. Hence, the
small-signal analysis of a gyro-TWT in a simple smooth-wall circular
waveguide excited in the TE mode was reviewed [1–6]. In a similar
way, in the present paper, for the two configurations, not only the
propagation constant predicted by the beam-absent analysis of the
loaded structure but also the EM field components, satisfied with
relevant boundary conditions, are considered in the beam-present
analysis. The analysis leads to the hot or beam-present dispersion
relation of a gyro-TWT (Section 2) and, subsequently, the device
gain (Section 3). Finally, the axial phase propagation constant with
reference to the two configurations, obtainable from its beam-absent
analysis (part-1), is fed into the gain equation as an input to obtain
the gain-frequency response of a gyro-TWT (Section 4), and the study
is concluded (Section 5).

2. BEAM-PRESENT DISPERSION RELATION

In a small-orbit gyro-TWT device model, there are a number of thin
hollow electron beams of monoenergetic electrons following helical
trajectories, all with the same Larmor radius rL (say), such that their
guiding centres are located on a common guiding circle of radius rH

(say), referred as the hollow beam radius, and the centre of the guiding
circle lies on the axis of the circular cylindrical interaction structure.
Thus, one may consider 2 rL as the radial beam thickness. Taking the
cylindrical coordinate (r, θ, z) system, for a circular waveguide, excited
in the TE mode (Ez = 0; Hz 6= 0), the wave equation for Bz (= µ0Hz)
in vicinity of such an electron beam, may be written as [1, 6–9]:
∂2Bz

∂r2
+

1
r

∂Bz

∂r
+

1
r2

∂2Bz

∂θ2
+

∂2Bz

∂z2
−µ0ε0

∂2Bz

∂t2
= −1

r

(
∂

∂r
(rJθ)− ∂Jr

∂θ

)

(1)
where Jθ and Jr refer to the azimuthal and the radial components of
current density, respectively.

One may consider negligible perturbation of the radial and axial
fields in the circular waveguide due to hollow electron beam. In that
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case, the solution of wave Equation (1) with its right hand side dropped
would give the field dependence. One may represent (1), using such
field dependence and the recurrence relation of Bessel functions and
their derivatives [7], as

(k2 − β2 − k2
t )Bz = −µ0

r

(
∂

∂r
(rJθ)− ∂Jr

∂θ

)
(2)

where β and kt have now to be interpreted, respectively, as the axial
and the transverse propagation constants of the beam-wave coupled
system representing the device.

One may express Bz under the zero tangential component of
electric field intensities at the metal boundaries (surfaces of waveguide-
inner-wall (r = rW ) and coaxial-rod (r = rC)), for azimuthally
symmetric (∂/∂θ = 0) mode, as

Bz = Bz0Z0{ktr} exp j(ωt− βz) (3)

where Bz0 is the amplitude of axial magnetic flux density; and

Z0{ktr} =





J0{ktr} − J ′0{ktrC}
Y ′0{ktrC}Y0{ktr} Conf.-A

J0{ktr} − J ′0{ktrW }
Y ′0{ktrW }Y0{ktr} Conf.-B



 ,

rC and rW being radii of the coaxial-insert and waveguide, respectively
(Fig. 1).

Configuration-A Configuration-B

Figure 1. Longitudinal-view of disc-loaded-coaxial waveguide with
metal discs radially projecting inward and outward from the metallic
envelope (Configuration-A) and from the coaxial insert (Configuration-
B), respectively. (Recast after previous paper (Part-1).
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Substituting Bz from (3) into (2), multiplying the latter by
rZ0{ktr}, then integrating over the free-space guide cross-section
(rX ≤ r ≤ rY ) (where for Configuration-A: rX = rC and rY = rD,
and for Configuration-B: rX = rD and rY = rW ), and using Lommel’s
integral [14], one obtains

(k2 − β2 − k2
t )χBz0 exp(ωt− βz)=−µ0

rY∫

r=rX

(
∂

∂r
(rJθ)− ∂Jr

∂θ

)
Z0{ktr}dr,

(4)
where

χ =
r2
Y

2

(
Z
′2
0 {ktrY }+ Z2

0{ktrY }
)
− r2

X

2

(
Z
′2
0 {ktrX}+ Z2

0{ktrX}
)

,

that is

χ=
{

(r2
D/2)[Z

′2
0 {ktrD}+Z2

0{ktrD}]− (r2
C/2)Z2

0{ktrC} Conf.-A
(r2

W /2)Z2
0{ktrW }−(r2

D/2)(Z
′2
0 {ktrD}+ Z2

0{ktrD}) Conf.-B

}
;

rD being the radius of disc-hole (Configuration-A) and the outer radius
of disc (Configuration-B) (Fig. 1).

Equation (4) consisting of a definite integral in the radial space
of the waveguide is a non-explicit from of the dispersion relation
of a gyro-TWT, which may be written in an explicit form by first
evaluating Jθ and Jr in the integrand of (4) from the dynamics of
beam electrons described by the relativistic Vlasov equation [7–9, 15],
and then evaluating the integral, as explained in an appendix through
intermediate steps (Appendix). That allows one to express (4) in the
following explicit form of the dispersion relation of a gyro-TWT:

k2 − β2 − k2
t =

−µ0 | e |2 N0

2χγ me0 π

(
v2
t (k

2 − β2)H−s{ktrH , ktrL}
(ω − β vz − sωc/γ)2

−(ω − β vz) Q−s{ktrH , ktrL}
ω − β vz − sωc/γ

)
(5)

where N0 is the number of electrons per unit axial length of the beam;
vt and vz are, respectively, the transverse and the axial velocities of
the electrons in relativistic electron beam;

H−s{ktrH , ktrL} = Z2
s{ktrH}Z ′2s{ktrL}

and
Q−s{ktrH , ktrL} = 2 Z2

s{ktrH} Z
′2
s {ktrL}

+2 kt rL Zs{ktrH}Z ′s{ktrL} Z ′′s {ktrL}.
One may review (5) for the relativistic electron beam in which

high transverse velocity (large value of vt) and near beam harmonic
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resonance ω − β vz − sωc/γ ≈ 0 [7–9]. The first term in right hand
side of (5), involves v2

t in the numerator and (ω−β vz− sωc/γ)2 in the
denominator, obviously dominates over the second term. Therefore,
one may write the dispersion relation of a gyro-TWT, retaining only
the first term in (5), as

k2 − β2 − k2
t =

−µ0 | e |2 N0

2χγ me0 π

v2
t (k

2 − β2) H−s{ktrH , ktrL}
(ω − β vz − sωc/γ)2

,

that may be rearranged to write as

(k2−β2− k2
t )

(
ω−βvz− sωc

γ

)2

=
−µ0|e|2N0v

2
t (k

2−β2)H−s{ktrH , ktrL}
2χγme0π

.

(6)

3. GYRO-TWT GAIN EQUATION

In line with the approach earlier used by Pierce [11] to get the gain
equation of a conventional TWT, the dispersion relation (6) may be
interpreted for the gain equation of a gyro-TWT. For the purpose, one
may substitute the axial phase propagation constant for the waveguide-
mode βmn = (k2−k2

t )
1/2 and the beam propagation constant parameter

βe, gyro = (ω − sωc/γ)/vz into (6), to obtain

β2
mn − β2 =

−µ0 | e |2 N0

2χγ me0 π

v2
t (k2 − β2) H−s{ktrH , ktrL}

(βe, gyro − β)2 v2
z

. (7)

The rearranged form of (7) may be written as

(β2
mn − β2) (βe, gyro − β)2

k2 − β2
=
−µ0 | e |2 N0 v2

t H−s{ktrH , ktrL}
2χγ me0 π v2

z

. (8)

The fourth degree Equation (8) in β would give four solutions for
it. Out of the four, three will be for three forward waves and one for
backward wave. A simplified third degree equation, corresponding to
three forward wave solutions, may be obtained, as for a conventional
TWT formulism (Pierce’s approach [11]) [7–9]. In the present context,
one may proceed as follows by letting

β = βmn(1 + j Cgyroδ) (9)

and
βe, gyro = βmn(1 + bgyro Cgyro), (10)

where each of Cgyro, δ and bgyro are dimensionless quantities assuming
Cgyroδ ¿ 1 and bgyro Cgyro ¿ 1.
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One may square both sides of (9) and rearrange the terms to
obtain:

β2
mn − β2 = −j 2β2

mn Cgyroδ (1 + j Cgyroδ/2). (11)

Under the approximation Cgyroδ ¿ 1, (11) becomes

β2
mn − β2 = −j 2β2

mn Cgyro δ. (12)

Further, subtracting (9) from (10) and squaring the resultant relation
gives

(βe, gyro − β)2 = [βmn Cgyro (bgyro − jδ)]2. (13)

Here, one may recall the waveguide-mode dispersion relation

k2 − β2 = k2
t . (14)

Now, substituting (12), (13) and (14), into left hand side of (8),
one may write

−j2β4
mn C3

gyroδ(bgyro − jδ)2

k2
t

=
−µ0 |e|2 N0v

2
t H−s{ktrH , ktrL}

2χγ me0π v2
z

. (15)

Further, for involving the beam voltage V0 in (15), one may obtain an
expression for v2

z , to be put in (15), in terms of V0 and the beam pitch
factor α0 (= vt/vz). For this, one may first write the relativistic mass
factor γ in terms of vz and vt, as

γ =
[
1− (v2

z + v2
t )/c2

]−1/2
. (16)

Other way, γ may be expressed in terms of the beam potential V0, by
equating the beam potential energy |e| V0 with the relativistic kinetic
energy γ me 0c

2 −me 0c
2, as

γ = 1 + |e| V0/me 0c
2. (17)

With the help of (16) and (17), and making use of the relation
γ/(γ + 1) ≈ 1/2, one may thus obtain

v2
z
∼= 2 |e|V0/

[
γme0

(
1 + α2

0

)]
. (18)

One may substitute v2
z from (18) into (15), and put N0 = I0/(|e| vz),

where I0 is the dc beam current; vt = ηtc and vz = ηzc; and
c = (µ0ε0)−1/2 in the resulting relation, to obtain

−j2β4
mnC3

gyroδ(bgyro−jδ)2

k2
t

=
−(µ0/ε0)1/2I0η

2
t H−s{ktrH , ktrL}(1+α2

0)
4χπV0ηz

,

that may be re-written in simpler form, as

j C3
gyroδ (bgyro − jδ)2 = KgyroI0/4V0 (19)
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where

Kgyro =
(µ0/ε0)1/2 η2

t (1 + α2
0) k2

t H−s{ktrH , ktrL}
2χπ β4

mn ηz
.

If one takes, the arbitrarily chosen dimensionless quantity Cgyro

as C3
gyro = KgyroI0/4V0 [1–3, 7–9] to be substituted into the left hand

side of (19), one obtains the following cubic equation δ(jbgyro+δ)2 = j.
Further, running parallel to the approach used by Pierce [11] for
a conventional TWT, one may then develop the small-signal gain
equation of a gyro-TWT as [7–9]:

G = A + Bguide Cgyro Ngyro, guide, (20)

where A is the lunching loss; Bguide is the growth parameter; and
Ngyro,guide is number of guide wavelength in the interaction length.

4. RESULTS AND DISCUSSION

The field matching technique at the cylindrical interface of
discontinuity of the considered structures gives their dispersion
relations as presented in beam-absent analysis of the configurations
(part-1). The solution of beam-absent dispersion relations (part-1)
may be substituted into the Pierce-type gain Equation (20) of the
considered structures to obtain the gain in dB for different frequencies.
In order to get the gain value for each frequency lying in the passband,
one may use a numerical code followed the analysis (Section 3) and
developed in MATLAB, in which for the value of phase propagation
constant one has to use the numerical code developed on the basis of
beam-absent analysis (part-1). Thus, the idea of part-1 and part-2
completes the study.

The gyro-TWT developed successfully so far mostly uses
cylindrical waveguide as an interaction structure [6], taking that as
a reference author is presenting a comparison study and the possible
applicability of the proposed structures as interaction structures. For
the purpose of comparison of the devices with considered interaction
structures a constant mid-frequency of gain-frequency responses is
selected around 35 GHz (electromagnetic atmospheric window for the
purpose of communication). The frequency range of gain-frequency
response of the circular cylindrical waveguide spreads with all four
types of loading; namely, coaxial loading in circular waveguide, annular
disc loading in circular waveguide, disc-loading in coaxial waveguide in
two configurations; where the coaxial loading spreads the frequency
range maximum. Similarly, the device bandwidth broadens with all
four types of loading, where improvement in bandwidth is minimum
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and maximum for the coaxial loading and disc-loading in circular
waveguide, respectively. There is a mild decrease in gain in case of
disc-loading in circular waveguide, whereas a visible decrease in gain
for the case of disc-loading on coaxial rod. However, there is good
and better improvement in gain for the case of coaxial-loading the
circular waveguide and annular disc-loading the coaxial waveguide,
respectively.

In addition, for the foresaid responses the beam velocity pitch
factor takes lower values than that of circular waveguide interaction
structure. Although, the gain decreases for the case of disc-loading
on coaxial rod, it takes least value of beam velocity pitch factor
(Fig. 2). For the constant value of waveguide/ envelope radius, the
mid-frequency of the gain-frequency response shifts to higher frequency
side for all four types of loading. The shifts for all three disc-loaded
structures are almost constant and more than that of coaxial-loading
the circular waveguide (Fig. 3).

Figure 2. Gain-frequency response of the TE01-mode of circular
cylindrical waveguide (rW = 5.9mm, α0 = 0.7) (broken curve), disc-
loaded circular waveguide (rW = 8.1mm, α0 = 0.4, rD/rW = 0.7,
L/rW = 0.6, T/rW = 0.1) (curve with circles), coaxial waveguide
(rW = 6.6mm, α0 = 0.2, rC/rW = 0.1) (curve with stars), and disc-
loaded-coaxial waveguides with metal discs radially projecting inward
from the metallic envelope (Fig. 1(a)) (rW = 8.15 mm, α0 = 0.35,
rD/rW = 0.7, rC/rW = 0.1, L/rW = 0.6, T/rW = 0.1) (curve with
squares) and metal discs radially projecting outward from the coaxial
insert (Fig. 1(b)) (rW = 8.1mm, α0 = 0.1, rD/rW = 0.4, rC/rW = 0.1,
L/rW = 0.6, T/rW = 0.1) (curve with triangles) taking s = 1, m = 0,
I0 = 9 A, V0 = 100 kV, B0/Bg = 0.99.
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Figure 3. Gain-frequency response of the TE01-mode of circular
cylindrical waveguide (α0 = 0.7) (broken curve), disc-loaded circular
waveguide (α0 = 0.4, rD/rW = 0.7, L/rW = 0.6, T/rW = 0.1) (curve
with circles), coaxial waveguide (α0 = 0.2, rC/rW = 0.1) (curve with
stars), and disc-loaded-coaxial waveguides with metal discs radially
projecting inward from the metallic envelope (Fig. 1(a)) (α0 = 0.35,
rD/rW = 0.7, rC/rW = 0.1, L/rW = 0.6, T/rW = 0.1) (curve with
squares) and metal discs radially projecting outward from the coaxial
insert (Fig. 1(b)) (α0 = 0.1, rD/rW = 0.4, rC/rW = 0.1, L/rW = 0.6,
T/rW = 0.1) (curve with triangles) taking rW = 5.9mm, s = 1, m = 0,
I0 = 9 A, V0 = 100 kV, B0/Bg = 0.99.

5. CONCLUSION

The possibility of a broadband and high-gain gyro-TWT has been
presented in a coaxial-type interaction structure. The gain frequency
responses for four different interaction structures in comparison with
most common circular waveguide interaction structure of a gyro-TWT
have been presented. The disc-loaded-coaxial waveguide with metal
discs radially projecting inward from the metallic envelope, which
has shown maximum promise for device gain and bandwidth, takes
maximum value of waveguide radius among the structures considered.
This may subsequently help in thermal management of the device. The
shifts to higher mid-frequency value of the gain-frequency responses
of the device, developed in considered loadings, suggest the higher
frequency operation while assuming the constant waveguide radius
in different loadings. The analysis involves many interdependent
parameters, each playing actively to mold the performance, therefore,
it is required to optimize each of the parameters for an optimum result
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as per the need. The author is aware that the large signal analysis
would predict a more realistic performance, however, the present small
signal analysis would be fruitful for device-developer in settling to the
first-cut design of a disc-loaded-coaxial gyro-TWT.
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APPENDIX A. EVALUATION OF THE DEFINITE
INTEGRAL OCCURRING IN THE INEXPLICIT FORM
OF GYRO-TWT DISPERSION RELATION

Let us assume

I =

rY∫

r=rX

(
∂

∂ r
(rJθ)− ∂Jr

∂θ

)
Z0{ktr} dr

to rewrite the inexplicit from (4) of the dispersion relation of a gyro-
TWT, as [7]:

(k2 − β2 − k2
t ) χBz 0 exp(ω t− β z) = −µ0I. (A1)

One may express the azimuthal Jθ and the radial Jr components of RF
beam current density in terms of the perturbed part of the electron
distribution function f1, as

Jr = − |e| ∫ f1vrd
3p

Jθ = − |e| ∫ f1vθd
3p

}

d3p = dptptdφdpz (volume element in momentum space)

In the real-space polar coordinates (r, θ), the radial vr and the
azimuthal vθ electron velocities, are related to the corresponding
quantities in the momentum-space polar coordinates (pt, φ), as
(Fig. A1):

vr = vt cos(φ− θ) = pt/(γ meo) cos(φ− θ)
vθ = vt sin (φ− θ) = pt/(γ meo) sin (φ− θ).

Hence, I involved in the right hand side of (A1) is expressed, in terms
of f1, as [6, 7]:

I = kt |e|
rY∫

r=rX

∞∫

pt=0

∞∫

pz=0

2π∫

φ=0

exp jν(θH − θ)
∞∑

h=−∞
Z ′h{ktrL}Zν+h{ktrH}
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×
[
exp−jh

(π

2
− θH + φ

)] rp2
t

γme0
f1dr dpt dpz dφ. (A2)

In order to obtain I in the form of (A2), one has to take the azimuthal
component of current density Jθ = 0 both at r = rX and r = rY (in
view of the location of the thin hollow beam considered away from
both r = rX and r = rY ). Also, one has to make use of the recurrence
relation of Bessel function as used proceeding (2), as well as Graf’s
addition theorem of Bessel function [7]

exp(± i m θ1) Zm{x1} =
+∞∑

p=−∞
exp(± i p θ2) Zm+p{x2}Zp{x3}. (A3)

For the present case, one has to take, in (A3), x1 = ktr, x2 = ktrH and
x3 = ktrL, so that one may now express a function of r as independent
of r but as a function of rL and rH , as follows:

Zν−1 {ktr} exp j (φ− θ) + Zν+1 {ktr} exp[−j (φ− θ)]

= 2j expjν(θH−θ)
∞∑

h=−∞
Z ′h{ktrL}Zν+h{ktrH} exp[−jh(π/2−θH +φ)],

where h is an integer.

Figure A1. Projection of the electron orbit on the guide cross-
sectional plane (X-Y ) showing the centre of the guide (O), the guiding
centre (C) of the gyrating electron, the real-space coordinates (rH , θH)
of the guiding centre, and the real-space (r, θ) and momentum-space
(pt, φ) coordinates of the instantaneous position (P ) of the gyrating
electron (after [7]).
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The relativistic Vlasov equation [7–9, 15], introduced later, is
solved for f1 in terms of the equilibrium or unperturbed part of electron
distribution function f0 (the form of which is assigned later), as [7]:

f1 =
|e|B0

kt
exp j(ωt− βz) exp(−jνθH)

×
[
(ω − βνz)

∂f0

∂pt
+ νtβ

∂f0

∂pz

] ∞∑
p=−∞

Zν+p{ktrH}Z ′p{ktrL}
ω − βνz + pωc/γ

× exp[jp(π/2− θH + φ)]. (A4)

Hence, I given by (A2) can be expressed, in terms of f0, as [7]:

I = kt |e| exp jν(θH − θ)

rY∫

r=rX

∞∫

pt=0

∞∫

pz=−∞

2π∫

φ=0

∞∑

h=−∞

∞∑
p=−∞

Z ′h{ktrL}

×Zν+h{ktrH}rp2
t |e|Bz0

γme0kt
exp j(ωt− βz) exp(−jνθH)

×
(

(ω − βvz)
∂f0

∂pt
+ vtβ

∂f0

∂pz

)(
Zν+p{ktrH}Z ′p{ktrL}

ω − βvz + pωc/γ

)

× exp jp
(π

2
− θH + φ

)
dr dpt dpz dφ. (A5)

The relativistic Vlasov equation [15], from which to obtain the
expression (A4) for f1, may be obtained as [3, 7–9]:

(
∂

∂t
+

p

γmeo
· ∇ − |e| (E + v ×B) · ∇p

)
f1 = 0, (A6)

where f1(r, p, t) is the perturbed part of electron distribution in the
phase space (r, p); ∇f1 is the gradient of f1 in the physical space;
and ∇pf1 is its gradient in momentum space. For making the solution
process for f1 simple, the higher-order terms of (A6) are ignored. Along
the unperturbed trajectory, (A6) involving the partial time derivative
of f1 simplifies to one involving the complete time derivative as [7]:

df1

dt
= |e| (E1 + v ×B1) · ∇pf0, (A7)

which involves only time (t) variable, and gives the rate of change of the
distribution function as observed on the electron trajectory [7–9, 15].
In order to get the solution for f1, the time derivative of f1 (A7) is
integrated between a time t and a time before the electrons enter the
RF fields which may be set as −∞, that is, a time large in magnitude
compared to any time at frequencies of interest. Further, one has to
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use the recurrence relations for Bessel function, as used preceding (2)
and Graf’s addition theorem of Bessel function, as used following (A2),
to get f1 as given in (A4), [7].

Now, a function is assigned to f0 (say) considering a beam of zero
guiding centre spread, in terms of the number of electrons per unit
axial interaction length N0, the Dirac-delta function with reference
to the hollow beam radius rH having equilibrium value rH0, and the
momentum distribution function

g{pt, pz} =
1

2πpt
δ{pt − pt0}δ{pz − pz0},

as:

f0 =
N0

2πr
δ{rH − rH0} 1

2πpt
δ{pt − pt0}δ{pz − pz0}, (A8)

where pz and pt are the axial and transverse electron momenta with
their equilibrium values pz0 and pt0, respectively. The function f0 from
(A8) is substituted into the integral I given by (A5), and then the latter
substituted in (A1), to yield the dispersion relation, as:

k2−β2−k2
t = −µ0N0 |e|2

χ

∞∫

pt=0

∞∫

pt=0

∞∑
p=−∞

(
v2
t (k

2 − β2)Hν,p{ktrH , ktrL}
(ω − βvz + pωc/γ)2

− (ω − βvz)Qν,p {ktrH , ktrL}
ω − βvz + pωc/γ

)
ptδ{pt − pt0}δ{pz − pz0}

γme02πpt
dptdpz (A9)

where
ηt = vt/c = pt/γ meo c

Hν, p = Z2
ν+p{ktrH} Z ′2p{ktrL}

and
Qν,p = 2Hν,p + 2 ktrL Z2

ν+p{ktrH} Z ′p{ktrL} Z ′′p{ktrL}.
Under cyclotron resonance condition, putting (ω − β vz − sωc/γ)

→ 0 (β ≈ βmn) in the dispersion relation (A9), where now the terms
in the summation corresponding to p 6= −s will become negligibly
small as compared to the remaining terms (corresponding to p = −s),
therefore, retaining the terms corresponding to p = −s, one may write
(A9), as:

k2−β2−k2
t =−µ0N0 |e|2

χ

∞∫

pt=0

∞∫

pt=0

(
v2
t (k

2 − β2)Hν,−s {ktrH , ktrL}
(ω − βvz − sωc/γ)2

− (ω−βvz) Qν,−s {ktrH , ktrL}
ω − βvz − sωc/γ

)
ptδ{pt−pt0}δ{pz−pz0}

γme02π pt
dpt dpz. (A10)
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The integral in (A10) may then be evaluated using the unit-impulse
property of Dirac-Delta function, that modifies (A10) as:

k2 − β2 − k2
t =

−µ0 |e|2 N0

2χγme0π

(
v2
t (k

2 − β2)Hν,−s{ktrH , ktrL}
(ω − β vz − sωc/γ)2

−(ω − βvz)Qν,−s{ktrH , ktrL}
ω − βvz − sωc/γ

)
(A11)

where

Hv,−s{ktrH , ktrL} = Z2
v−s{ktrH}Z ′2−s{ktrL} (A12)

and

Qv,−s{ktrH , ktrL} = 2Z2
v−s{ktrH}Z ′2−s{ktrL}

+2ktrLZv−s{ktrH}Z ′−s{ktrL}Z ′′−s{ktrL}. (A13)

The dispersion relation (A11), which is valid for all the TE modes, can
be read for azimuthally symmetric TE mode by substituting ν = 0 in
(A11) as:

k2 − β2 − k2
t =

−µ0 |e|2 N0

2χγme0π

(
v2
t (k

2 − β2)H−s{ktrH , ktrL}
(ω − βvz − sωc/γ)2

−(ω − βvz)Q−s{ktrH , ktrL}
ω − βvz − sωc/γ

)
(A14)

where H−s{ktrH , ktrL} and Q−s{ktrH , ktrL}, in view of the relations
Z−n{x} = (−1)nZn{x} and Z ′−n{x} = (−1)nZ ′n{x} [14], can be read
from (A12) and (A13), respectively, as

H−s{ktrH , ktrL} = Z2
s{ktrH}Z ′2s{ktrL}

and

Q−s{ktrH , ktrL} = 2Z2
s{ktrH}Z ′2s{ktrL}

+2ktrLZs{ktrH}Z ′s{ktrL}Z ′′s {ktrL}.
The dispersion relation (A14) is used as (5) in Section 3.
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