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Abstract—A fractal array is an antenna array which holds a property
called “self-similarity”. This means that parts of the whole structure
are similar to the whole. A recursive procedure for evaluating the
impedance matrix is allowed primarily by exploiting the self-similarity.
However, numerous fractal arrays are extremely complicated in
structure. Therefore, for these arrays, it is extremely elaborate to
formulate explicitly a recursive relation. This paper proposes a simple
procedure for evaluating, without formulating explicitly a recursive
relation, the impedance matrix of fractal and fractile arrays; a fractile
array is any array with a fractal boundary contour that tiles the plane
without gaps or overlaps.

1. INTRODUCTION

The term “fractal”, originally coined by Mandelbrot [1], means broken
or irregular fragments. For fractals that have the property known
as self-similarity, parts of their structure are similar to the whole in
some way. The concept of fractal geometry was originated to describe
complex shapes in nature that cannot be easily characterized using
classical Euclidean geometry. Concepts based on fractal geometry have
been finding an increasing number of applications in engineering and
science [2, 3]; one of which is fractal array engineering.

A fractal array is an antenna array which holds a property called
“self-similarity”. This means that parts of the whole structure are
similar to the whole. Recently a recursive procedure for evaluating
the impedance matrix of linear and planar fractal arrays has been

Received 14 July 2010, Accepted 23 August 2010, Scheduled 25 August 2010
Corresponding author: W. Kuhirun (fengwrk@yahoo.com).



62 Kuhirun

developed in [4]. A fractal array is an antenna array which holds
a property called “self-similarity”. This means that parts of the
whole structure of the arrays are similar to the whole. However,
only the procedure for the triadic Cantor linear array and Sierpinski
carpet fractal array was investigated in depth. It is obvious that
the recursive procedure for fractal arrays with complicated structures
is extremely elaborate for implementation. The evidence is that
Kuhirun [5] attempted to develop a recursive procedure for evaluating
the impedance matrix of the Peano-Gosper fractal array but fail to
fully formulate a recursive relation. Therefore, Kuhirun [6] developed
a simple procedure for evaluating the impedance matrix of the Peano-
Gosper fractal array. Extended from [6], this paper presents a simple
procedure for evaluating the impedance matrix of fractal and fractile
arrays, a further development of the recursive procedure for the
impedance matrix investigated by Werner etal. [4] and Kuhirun [5].
The simple procedure enables us to evaluate the impedance matrix
without formulating an explicit recursive relation for the impedance
matrix of fractal and fractile arrays; fractile arrays are defined in [7] to
be any array which has a fractal boundary contour that tiles the plane
without gaps and overlaps. Tilings of the plane is extensively discussed
in [8]. Examples of fractal and fractile arrays used for demonstration
in this paper are the Peano-Gosper fractal array and the terdragon and
6-terdragon fractile arrays, respectively.

1.1. The Peano-Gosper Fractal Array

The Peano-Gosper fractal array is the first deterministic array which
has no grating lobes even when the minimum spacing between elements
is increased to at least a wavelength. It was first introduced in [1,9].
Its elements are distributed uniformly along a curve known as “Peano-
Gosper curve”.

The Peano-Gosper curve for the stage of growth P = 2 can be
generated from that for the stage of growth P = 1. The Peano-Gosper
curve for the stage of growth P = 2 consists of 7 copies of the Peano-
Gosper curve for the stage of growth P = 1. Figure 1 shows the
construction of the Peano-Gosper fractal array for the stage of growth
P =1 and 2. The first to the last elements are distributed uniformly
along the Peano-Gosper curve from the leftmost to the rightmost end,
respectively; each of which is represented by “x”. The dashed curve
represents the Peano-Gosper curve at the previous stage.

Moreover, the Peano-Gosper curve at stage P(P > 1) consists of
7 copies of the curve for the stage of growth P — 1. Hence, the Peano-
Gosper curve consists of 77 subsections. Figure 2 shows the stage 3
Peano-Gosper fractal array whose elements are distributed along the
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(a) P =1 (b) P =2

Figure 1. The Peano-Gosper fractal array for the first two stages of
growth the first to the last whose elements are distributed uniformly
along the Peano-Gosper curve (darkened curve) from the leftmost to
the rightmost ends, respectively; each of which is represented by “x”.
The dashed curve represents the Peano-Gosper curve represents the
Peano-Gosper curve at the previous stage (From [1,9]).

Figure 2. The Peano-Gosper fractal array for the stage of growth
P = 3 whose the first to the last elements are distributed uniformly
along the Peano-Gosper curve (darkened curve) from the leftmost to

the rightmost ends, respectively; each of which is represented by “x”.
Note that the numbering scheme is not shown (From [1,9]).
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Peano-Gosper curve. The first to the last elements are numbered from
the leftmost to the rightmost ends, respectively. It should be noted
that the numbering scheme is not shown in Figure 2.

1.2. The Terdragon Fractile Array

Similar to the Peano-Gosper fractal array, the terdragon fractile
array is a deterministic array which has no grating lobes even when
the minimum spacing between elements is increased to at least a
wavelength. It was first introduced in [1, 7]. Figure 3 shows numbering
scheme and the construction of the terdragon array whose elements are
distributed uniformly along a curve known as the terdragon curve for
the stages of growth P = 1,2 and 3. Elements are numbered from the
farthest left to the farthest right and from the top to bottom; each
of elements are represented by “x”. The dashed curve represents the
terdragon curve at the previous stage. Figure 4 shows that the stage 5
terdragon fractile array whose elements are distributed uniformly along
the terdragon curve [10]. It should be noted that the numbering scheme
is not shown in Figure 4.

Figure 3. The terdragon fractile array for the first three stages of
growth whose elements are distributed uniformly along the terdragon
curve (darkened curve); each of which is represented by “x”. Elements
are numbered from the farthest left to the farthest right and from the
top to bottom. The dashed curve represents the terdragon curve at
the previous stage (From [1,7]).
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Figure 4. The terdragon fractile
array for the stage of growth
P = 5 whose elements are
distributed uniformly along the
terdragon curve; each of which is
represented by “x e . Note that the
numbering scheme is not shown
(From [1,7]).

Figure 5. The 6-terdragon
fractile array for the stage of
growth P = 5 whose elements
are distributed uniformly along
the 6-terdragon; each of which is
represented by “x”. Note that the
numbering scherne is not shown
(From [1, 7]).

1.3. The 6-Terdragon Fractile Array

The 6-terdragon fractile array consists of 6 terdragon fractile arrays as
shown in Figure 5. Similar to the numbering scheme shown in Figure 3,
elements shown in Figure 5 are numbered from the farthest left to the
farthest right and from the top to bottom. Note that the numbering
scheme is not shown in Figure 5.

2. IMPEDANCE MATRIX AND SPACING MATRIX

For the stage of growth P, the impedance matrix [Z]F is an Np x Np

matrix where Np is the number of elements. Z ]j denotes the mutual
impedance between the ith element and jth element for ¢ # j and
denotes the self-impedance of the ith element for i = j.

In this paper, we consider only arrays consisting only of symmetric
antenna elements with identical orientation, for example, circular patch
antenna elements. More precisely, for the stage of growth P, mutual
impedance Z 5 where i # j depends only on the spacing between the ith
element and jth element; the spacing is denoted by Df-;- . Note that this

is also held true for self-impedance ZZ. As a result, if the associated
spacing matrix [D]” holds symmetry, self-similarity properties, the
impedance matrix [Z]F would hold the same properties. It should
be noted that the assumption that mutual impedance Zg where i # j
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depends only on the spacing between the ith element and jth element;
the spacing is denoted by DZI; might not held true. For example, in
the case of 3-D fractal arrays, if each individual element is an circular
aperture, the mutual effect between each two individual elements does
not depend only the interspacing between them but also depends on
the presence of element in between them.

Figure 6 illustrates spacing matrix of the stage 3 Peano-Gosper
fractal array. Each individual entry is represented by its associated
picture element. It is found that a simple procedure for evaluating
the impedance matrix is allowed by exploiting the symmetry and self-
similarity properties. We can determine which entries in the impedance
matrix [Z]F are required for evaluating and which entries are not by
using the fact that the impedance Zf; depends only on the spacing

Df; . It should be stated that this is not only applicable to the Peano-
Gosper fractal array but also to any other fractal and fractile arrays,
for example, the terdragon and 6-terdragon fractile arrays.

Figures 7 and 8 show the spacing matrix of the stage 5 terdragon
and 6-terdragon fractile arrays, respectively. FEach individual entry
is represented by its associated picture element. Similar to that in
Figure 6, the spacing matrices in Figures 7 and 8 are symmetric and
repeated in pattern. Consequently, we can also exploit symmetry
and self-similarity property in the same manner. The aforementioned
simple procedure is explained in the next section.

Figure 6. Spacing matrix Dp  Figure 7. Spacing matrix Dp
for the Peano-Gosper fractal ar-  for the terdragon fractile array in
ray in terms of minimum spac-  terms of minimum spacing dmin
ing dmin for the stage of growth  for the stage of growth P = 5.

P =3 (From [5]).
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Figure 8. Spacing matrix Dp for the 6-terdragon fractile array in
terms of minimum spacing dp,, for the stage of growth P = 5.

3. PROCEDURE FOR EVALUATING THE IMPEDANCE
MATRIX OF FRACTAL AND FRACTILE ARRAYS

First of all, determine which impedance matrix entries required for
evaluating and determine which entries are the corresponding filled-in
entries. This pre-procedure is shown below:

d(1)=0and n(l) =1
z(1,1) =1and y(1,1) =1
ng = 1 and check =0
n(ng) =1
for i =1 to Np do
for j =1 to Np do
evaluate D¥ (i, §)
if i 21 or j# 1 then
for k =1 to ng do
if d(k) = DP(i,7) and check = 0 then
n(k) = n(k) + 1, 2(n(k),k) = i, y(n(k),k) = j and
check =1
end if
end for
if check = 0 then
ng =ns+1,n(ns) =1, z(n(ng),ns) =i, y(n(ng),ng) = j
and d(ns) = D" (i, j)
end if
check =0
end if
end for
end for
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The pre-procedure shows how to determine the indices x(,j) and
y(i,7) of the filled-in impedance matrix entry ZF(z(i,; )7 (4,7))
corresponding to the evaluated impedance z(j) for j =1,2,...,ng.

A simple procedure is listed as follows:

(i) Determine the impedances required for evaluating z(1),z(2),
z(ng).
(i) Fill in ZP(x(i, ) i,7)) with the correspondlng evaluated
impedance z(j) for i = 1,2,...,n(j) and j =1,2,...,ng.

4. ANALYSIS OF SIMPLE PROCEDURE FOR
EVALUATING IMPEDANCE MATRIX

Assume that the time required for evaluating self impedance equals
that for evaluating mutual impedance. Let np be the number of times
required for evaluating impedance of fractal and fractile arrays for the
stage of growth P. np can be determined numerically. Hence, the time
required for evaluating impedance matrix is:

ts = npty (1)

where tg is the time required for evaluating each individual entry of
the impedance matrix. In comparison, the time required for evaluating
the impedance matrix directly ¢4 is:

tq = N3tg (2)
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Figure 9. Plot of Rp versus Figure 10. Plot of Rp versus

Stage of Growth P for the first
three stages in the Peano-Gosper
fractal array (from [5]).

Stage of Growth P for the first
five stages in the Terdragon frac-
tile array.
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Figure 11. Plot of Rp versus Stage of Growth P for the first five
stages in the 6-terdragon fractile array.

The ratio of the time for evaluating the impedance matrix directly and
that for evaluating the impedance matrix by a simple procedure Rp
is:

tqy Nz

Rp=2=22F (3)

ts np
The plots of Rp versus P for the various stages of growth for the Peano-
Gosper fractal array, the terdragon and 6-terdragon fractile arrays are
illustrated in Figures 9, 10 and 11, respectively.

5. CONCLUSION

This paper presents a simple procedure for evaluating the impedance
matrix of fractal and fractile arrays. The procedure can be
implemented primarily by exploiting the symmetry and self-similarity
property. The procedure can be achieved without explicitly
formulating the recursive relation. The most striking benefit is due to
the fact that fully formulating the recursive relation for complicated-
structured arrays is not easily obtainable. That is, the simple
procedure is better than the recursive procedure in the sense that the
simple procedure can fully exploit self-similarity property in an easy
manner whereas the recursive procedure can not do that easily. The
evidence is that, by comparing Figure 9 with Figure 4 in [5], the plot
of Rp versus stage of growth P of the simple procedure for the Peano-
Gosper Fractal Array is better to that of the recursive procedure shown
in Figure 4 in [5].
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