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Abstract—Low frequency imaging in radar domain can have
applications for stealthy or buried targets. The transient scattering
response from a ramp waveform is related to the profile function of
the target, namely its transverse cross-sectional area along the line-of-
sight, and thus provides information about the target size, orientation
and geometrical shape. Such ramp responses can be used to generate a
3-dimensional image of the global shape of the target. Former imaging
algorithm uses approximate limiting surfaces and is therefore limited
to single convex objects. Here is proposed a new algorithm able to
reconstruct non-convex as well as separated targets, from their ramp
response signatures.

1. INTRODUCTION

Among radar targets identification problems, the scattering character-
ization of stealthy targets is a relevant topic. The stealthiness is in-
tended to produce a very weak radar return and this can be obtained
by using composite materials, which absorb electromagnetic waves in
usual radar frequency bands. But, this can be countered by using
lower frequencies. Moreover, the use of low frequency bands is very
important in the case of Ground Penetrating Radar (GPR) applica-
tions for characterization of buried targets, since the wave attenuation
in most soil increases with the frequency. These lower frequency bands
correspond to the Rayleigh region and the resonance region for ob-
ject dimensions respectively small and of the same order, compared to
electromagnetic wavelengths. Contrary to high frequency imaging, low
frequency methods cannot provide high resolution but they still bring
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useful information on the overall dimension and approximate shape of
the target.

Three dimensional (3D) microwave imaging usually requires a
considerable number of directions of the incident wave for image
reconstruction by inverse scattering methods, such as inverse Born
approximation [1], diffraction tomography [2, 3], Bojarski method [4],
etc. On the contrary, a method proposed by Young [5], known as
the ramp response technique, needs no more than 3 viewing angles to
generate an image. As first suggested by Kennaugh and Moffatt for
radar identification [6], it uses transient scattering responses from a
target illuminated by a time domain ramp waveform. In such case, the
backscattered field is directly related to the transverse cross-sectional
area of the target as a function of the distance along the line-of-sight.
This interesting property is used for generating a 3D image of the
target shape: the original algorithm of Young [5] uses “approximate
limiting surfaces”, supposed to enclose the unknown target, and it gives
an estimate of the target shape by iteratively fitting some geometrical
parameters. This ramp response imaging algorithm has been applied
to electromagnetic scattering problems [5–15] as well as to acoustic
imaging of underwater objects [16, 17]. However, Young’s algorithm
can be used only for convex and single objects [5]. That is why
we propose a new algorithm permitting to reconstruct objects with
arbitrary shape, as well as separated objects.

We first present, in Section 2, the ramp response and the profile
function. Then, in Section 3, we describe our new algorithm for
reconstructing 3D target image from ramp profile functions. In
Section 4, we apply this new algorithm to realistic profile functions
obtained from simulated transient responses of various objects.

2. RAMP RESPONSE AND PROFILE FUNCTION OF A
TARGET

First of all, we introduce the ramp response and the profile function of
a target and we explain how they are related.

2.1. Ramp Response

The ramp response of a radar target is defined as the far zone scattered
wave resulting from illumination by a plane electromagnetic wave with
a time domain ramp waveshape. In time domain, the ramp response
of a target, hr(t), is merely the second integral of its impulse response,
hi(t). It can be expressed as the Inverse Fourier Transform (IFT) of
the scattered transfer function, H(jω), weighted by 1/(jω)2 (ω = 2πf
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being the angular frequency)

hr(t) = IFT [Hr(jω)] = IFT

[
H(jω)
(jω)2

]
(1)

Thus, the ramp response emphasizes the lower frequency
components of the target scattered response.

2.2. Profile Function

First, we define the “geometrical” profile function of an object, in the
x direction, as its transverse cross sectional area, Ag(x), along x

Ag(x) =
∫ +∞

−∞

∫ +∞

−∞
O(x, y, z)dydz (2)

with

O(x, y, z) =
{

1 if (x, y, z) inside object
0 if (x, y, z) outside object

where O(x, y, z) is a binary object function.
Figure 1 presents the exact, “geometrical”, profile function of a

target, Ag(x), calculated as the area of transverse slices of the target
at successive positions along x.

Figure 1. Illustration of the geometrical profile function of an object
along x direction, Ag(x). D is the characteristic dimension of the
object in x direction.



4 Chauveau and de Beaucoudrey

In monostatic configuration, the ramp response of a target
illuminated in x direction, hr(t), is approximately proportional to the
geometrical profile function, Ag(x), of the target [6]

hr(t) ≈ − 1
πc2

Ag(x) with x =
ct

2
(3)

where c is the speed of light in freespace, t the time variable, and x
the space variable.

Indeed, Kennaugh and Moffatt [6] have established this
relationship in the illuminated region of the target, using the physical
optics approximation. Later, Young [5] have empirically shown that it
is still valid in lower frequency bands and for the whole object, even
in the shadow region with a slight loss in accuracy.

From (3), we define now the “physical” ramp profile function
Ap(x) as

hr(t) = − 1
πc2

Ap(x) (4)

To ensure that Ap(x), given by (4), is a valid estimate of Ag(x),
given by (2), it is necessary to match the frequency band to scatterer
dimensions. From [5–8], it is required to choose the upper Rayleigh
region and the resonance region of the target, corresponding to
electromagnetic wavelengths included between D/2 and 200D, where
D is the characteristic dimension of the target in the incident direction.
Thus, the corresponding required frequency band is

f = [fmin; fmax] =
[

c

200D
;
2c

D

]
(5)

The frequency bandwidth, ∆f , determines the temporal resolution
of the ramp response δt = 1/(2∆f). As fmax À fmin, we get
∆f = fmax − fmin ≈ fmax. Finally, the spatial resolution of the
physical profile function is given by δx

δx =
cδt

2
=

c

4∆f
≈ c

4fmax
(6)

Thus, the high frequency limit, fmax, determines the spatial
resolution of the profile function. If we choose fmax given by (5), we
get

δx ≈ c

4fmax
=

D

8
(7)

Accordingly, to characterise complex shape objects, it is often
necessary to increase fmax in order to obtain a better spatial resolution
δx on the corresponding profile function.
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In [18], we study the effect of frequency parameters on profile
functions, namely the lower frequency limit fmin, the upper frequency
limit fmax and the frequency step δf , and we conclude that the
constraint on the lower limit of the frequency band, fmin, is the most
difficult to fulfill in experiments. That is why, we have proposed some
solutions to sort out this problem [19, 20].

2.3. Example of a PEC Sphere

To illustrate the process of getting the ramp profile function from the
backscattered field, we present now the example of a perfectly electric
conducting (PEC) sphere of diameter D = 10 cm in freespace (Fig. 2).
For such value of D, the frequency band of investigation given by (5) is

Figure 2. Configuration of study for a PEC sphere of diameter
D = 10 cm.
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Figure 3. Modulus of the transfer function H(f) (upper) and the
weighted transfer function Hr(f) (lower) for a PEC sphere of diameter
D = 10 cm, in the frequency band f = [15 MHz; 6 GHz] in monostatic
configuration.
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[15MHz; 6 GHz]. An electromagnetic simulation software based on the
Method of Moments [21] is used to calculate the transfer function H(f)
of this object in monostatic configuration and for an incident direction
x. Fig. 3 (upper) plots the modulus of this transfer function, H(f),
while Fig. 3 (lower) presents the modulus of the weighted transfer
function, Hr(f) = H(f)/(j2πf)2. The main contribution is located
in low frequencies on account of the weighting in 1/(j2πf)2. Next,
the ramp response, hr(t), is calculated by IFT of Hr(f) using (1),
and the physical profile function, Ap(x), is finally obtained from (4).
Fig. 4 presents the ramp response, hr(t), (upper) and the corresponding
physical profile function, Ap(x), (lower) of the PEC sphere.

After selecting the useful part of Ap(x), we compare, in Fig. 5,
this physical profile function (solid line) with the geometrical profile
function (dashed line), calculated analytically with (2): For the sphere,
we get Ag(x) = πx(D − x) for 0 ≤ x ≤ D and Ag(x) = 0 outside.
The curves are very similar in the lit region (x <= D/2 = 5 cm).
However, in the shadow region of the target (x > D/2), physical and
geometrical profile functions differ. Indeed, in the lit region, the main
contribution to the backscattered response at a given time t comes
from the direct reflection of the incident wave on the surface of the
PEC sphere at distance x = ct/2. On the contrary, in the shadow
region, the contribution to the backscattered response comes from
creeping waves traveling on the surface of the target, with a resulting
additional delay in the response. This additional delay involves a
spread of the physical profile function in the shadow region. In the
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Figure 4. Ramp response hr(t) (upper) and physical profile function
Ap(x) (lower) of the PEC sphere.
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Figure 5. Comparison between physical Ap(x) and geometrical Ag(x)
profile functions of the PEC sphere of diameter D = 10 cm.

case of the canonical PEC sphere, this spread, δA, is approximately
equal to the path difference between the travel on the surface of the
sphere (1/4 perimeter of the sphere) and the direct path (radius of
the sphere): δA ≈ D

2 (π
2 − 1) = 2.85 cm. This difference might give

inaccurate information on the target shape and must be compensated.
One possible solution is to get the response in the opposite direction.

3. IMAGE RECONSTRUCTION FROM PROFILE
FUNCTIONS

An analysis of profile functions of a target at several orientations can
give information on its size and its approximate shape. This can be
used directly as a signature for identification purposes. Furthermore,
combining such responses so as to create a 3D image is an efficient
means to represent the geometrical information on the target.

3.1. Young’s Algorithm: “Approximate Limiting Surfaces”

A 3D image can be reconstructed from such multi-frequency scattering
data at several look angles. Initially, Young [5] used ramp profile
functions at 3 mutually orthogonal look angles and proposed an
algorithm using a set of hyperbolic surfaces limiting the contour of
the object for each viewing angle. Iteratively fitting geometrical
parameters of these enclosing surfaces permits to obtain a final estimate
of the object shape as the common volume of the set of 3 such
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surfaces. This method has been later extended to non-orthogonal
viewing angles [7, 22].

Unfortunately, this algorithm is limited to convex and individual
objects [5]. That is why we propose a new image reconstruction
algorithm enabling to reconstruct objects with arbitrary shape, as well
as separated objects.

3.2. New Algorithm of Reconstruction

From profile functions obtained at 3 look angles, not necessarily
orthogonal, we want to reconstruct the 3D shape of any target.
To simplify the algorithm, we choose until now to use orthogonal

Figure 6. Configuration with 3 orthogonal directions for profile
functions. Example of a stepcylinder (dimensions in cm).
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orthogonal look angles (x, y, z) defined in Fig. 6.
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directions of observation (x, y, z). Without loss of generality, we
illustrate the description of this algorithm with the example of a PEC
stepcylinder (Fig. 6) and we use the geometrical profile functions of
this object, Ax(x), Ay(y) and Az(z) (Fig. 7). Note that we choose to
center the target and its resulting profile functions at the origin of the
Cartesian coordinate system (x, y, z).

The new proposed algorithm consists of the following steps.
- First, we calculate a contribution given by the product of these

3 profile functions in each point of coordinates (x, y, z)

A3D(x, y, z) = Ax(x)×Ay(y)×Az(z) (8)

(a)

(b) (c)

Figure 8. Representation of A3D(x, y, z) in various planes: (a) the xz
cut-plane at y = 0, (b) 3 yz cut-planes for different x (x1 = −10 cm,
x2 = 0 cm, x3 = 10 cm) and (c) 3 xy cut-planes for different z
(z1 = 0 cm, z2 = 4 cm, z3 = 6 cm).
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This 3D function A3D can be considered as a weighting function
accounting for the probability that a point (x, y, z) belongs to the initial
object. A3D is presented in Fig. 8: in (a) the cut-plane orthogonal to
the direction y at y = 0, in (b) 3 sample cut-planes orthogonal to
the direction x, at different positions x1 = −10 cm, x2 = 0 cm and
x3 = 10 cm, and in (c) 3 sample cut-planes orthogonal to the direction
z, at different positions z1 = 0 cm, z2 = 4 cm and z3 = 6 cm.

- Next, we choose a scan direction, x, y or z. This choice
is somewhat arbitrary, but best results are obtained with the most
varying profile function, which is Ax(x) in the case of the stepcylinder
(Fig. 7).

- Finally, we scan successive slices of the unknown object
perpendicularly to the chosen direction, x for this example. For each
cut-plane j, at position x = xj , we know that the area of the target
cross-section is equal to Ax(xj). Consequently, we select points (y, z) of
this cut-plane with highest values of A3D(xj , y, z), such as the resulting
area of the object in the cut-plane xj is equal to the value of the profile
function Ax(xj)

∑
y

∑
z

δyδz = Ax(xj) such as (y, z) ∈ object (9)

where δy and δz are sampling step respectively in y and z.
For an axisymetrical object as the stepcylinder of axis x, selected

points in the yz cut-plane x = xj are located inside the circle of area
equal to Ax(xj) (plotted in black in each cut-plane xj of Fig. 8(b)).
The reconstructed object is binary. Selected points belonging to the
object are therefore given the value ‘1’, while rejected points have the
value ‘0’.

Figure 10 presents the 3D image of the stepcylinder reconstructed
with this new algorithm, using geometrical profile functions of Fig. 7.
In this case of ideal profile functions and optimal scan direction x, the
original object is accurately reconstructed. In order to quantitatively
evaluate this new algorithm of reconstruction, we calculate the error
between the reconstructed object and the initial object. The example
of Fig. 9, for a particular cut-plane, shows that some pixels of the
reconstructed object belong to the initial object, the “true” pixels, Pt,
while the other ones do not belong to the initial object, the “false”
pixels, Pf . Pt +Pf is exactly the number of pixels of the reconstructed
object. Next, the “missing” pixels, Pm, are pixels belonging to
the initial object which are not selected in the reconstructed object.
Pt + Pm is exactly the number of pixels of the initial object. Finally,
the “outside” pixels, Po, correspond to pixels which belong neither to
the initial object nor to the reconstructed object.
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Figure 9. Example of the initial and reconstructed objects in a cut-
plane.

Figure 10. Reconstruction of the stepcylinder of Fig. 6 from the 3
geometrical profile functions of Fig. 7. Scan direction: x. Left: 3D
view; Right: (x-z) view (error 10%).

We choose to measure the error in each cut-plane j as the sum
of false, Pf (j), and missing, Pm(j), pixels. The total error is thus
calculated as the sum of errors for each cut-plane, normalized by the
total number of pixels belonging to the initial object, Ptot.

E(%) = 100×
∑

j(Pm(j) + Pf (j))
Ptot

= 100×
∑

j(Pm(j) + Pf (j))∑
j(Pm(j) + Pt(j))

(10)

Using Eq. (10), the error is 10% for the reconstructed image of
Fig. 10.

On the other hand, Fig. 11 presents the reconstructed image for
the non-optimal scan direction z. In this case, we can see that the
reconstructed stepcylinder is distorted, mainly the 1st and the 2nd
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Figure 11. Reconstruction of the stepcylinder of Fig. 6 from the 3
geometrical profile functions of Fig. 7. Scan direction: z. Left: 3D
view; Right: (x-z) view (error 30%).

cylinders: the error is 30%. From this result, we can conclude that the
scan direction is very important to accurately reconstruct the shape
of a target: Indeed, it is advised to choose the most varying profile
function and/or the one which mostly differs from others.

Indeed, this algorithm seems very simple but the combined use
of the 3 profile functions brings very strong information on the
unknown object. This permits to obtain an accurate estimation
of the target shape without any iteration, while Young’s algorithm,
considering independently limiting surfaces in each direction, needs
several iterations to get an equivalent result [5]. Moreover, Young’s
algorithm needs good fitting skills to perform well. Therefore, we invite
the reader to compare our results to the literature [5, 22], instead of
performing a sub-optimal reconstruction.

4. RESULTS OF IMAGING WITH RAMP PROFILE
FUNCTIONS

After presenting our new algorithm in the “ideal” case of geometrical
profile functions, we now consider the realistic case of physical profile
functions obtained from simulated transient responses of targets. As
explained in Section 2, the field backscattered by a target is calculated
for 3 incident directions using FEKO [21], in the required frequency
band given by (5), then ramp responses and physical profile functions
are calculated using (1) and (4).

We first consider the previous stepcylinder in the same
configuration with 3 directions of observation (x, y, z) (Fig. 6).
Physical profile functions, Ax(x), Ay(y) and Az(z) are compared to
geometrical ones in Fig. 12. Differences between geometrical and
physical profile functions are mainly due to the shadow region effect.



Progress In Electromagnetics Research M, Vol. 16, 2011 13

-20  -15  -10  -5 0 5 10 15 20
0

100

200

x (cm)

A
x
(x

) 
(c

m
2
)

 -20  -15  -10  -5 0 5 10 15 20
0

200

400

y (cm)

A
y
(y

) 
(c

m
2
)

 -20  -15  -10  -5 0 5 10 15 20
0

200

400

z (cm)

A
z
(z

) 
(c

m
2
)

A
x
(x) phy.

A
x
(x) geo.

A
y
(y) phy.

A
y
(y) geo.

A
z
(z) phy.

A
z
(z) geo.

Figure 12. Comparison of physical and geometrical profile functions
of the stepcylinder for the 3 orthogonal look angles (x, y, z) defined in
Fig. 6 (frequency band = [5MHz; 8GHz]).

Figure 13. Reconstruction of the stepcylinder of Fig. 6 from the 3
physical profile functions of Fig. 12. Scan direction: x. Left: 3D view;
Right: (x-z) view (error 34%).

We apply our new algorithm to reconstruct the 3D image, with the scan
direction x. The resulting image (Fig. 13) is distorted as compared to
the original object, with an error equal to 34%, yet this result is still
acceptable in the context of low frequency imaging where the goal is
not to reconstruct a high resolution image but to identify a target from
its approximate shape.

We now consider the example of an asymmetric object
(Fig. 14(a)). Fig. 14(b) compares geometrical and physical profile
functions in x, y and z directions. Once again, differences mainly
exist in the shadow region, with the spreading of physical profile
functions. Fig. 14(c) shows that geometrical profile functions permit
an accurate 3D reconstruction, using scan direction x (E = 1%). On
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(a)

(b)

(c)

(d)

Figure 14. Configuration of study for a non-symmetric object:
(a) object shape (dimensions in cm), (b) comparison of physical
and geometrical profile functions and 3D reconstructed images from
geometrical (c) (E = 1%) and physical (d) (E = 58%) profile functions
with scan direction x.

the contrary, physical profile functions result in a strongly distorted
image, Fig. 14(d), because of the shadow effect (E = 58%). However,
we recall that our goal is to identify the target and not to reconstruct
a high resolution image.

As we said before, Young’s algorithm can be used only for convex
and single object [5]. On the contrary, we further want to show
that this new algorithm can reconstruct non-convex objects and even
separated objects. We first consider the example of a continuous non-
convex PEC object, a cylinder with circular cross-sections of different
diameters. Fig. 15 presents respectively (a) the object geometry,
(b) physical profile functions for 3 orthogonal look angles and (c)



Progress In Electromagnetics Research M, Vol. 16, 2011 15

(a)

(b)

(c)

Figure 15. Configuration of
study for a non-convex stepcylin-
der: (a) object shape (dimensions
in cm), (b) physical profile func-
tions and (c) 3D reconstructed
image with scan direction x (er-
ror 37%).

(a)

(b)

(c)

Figure 16. Configuration of
study for 2 separated objects
(sphere + cone): (a) objects
shapes (dimensions in cm), (b)
physical profile functions and (c)
3D reconstructed image with scan
direction x (error 40%).

the 3D reconstructed image with scan direction x. The object is
reasonably reconstructed and easily identifiable, even if distorted in
shadow regions. The error is 37%.

Second, we consider two separated PEC objects, a cone and a
sphere. Fig. 16 presents respectively (a) the objects, (b) physical profile
functions for 3 orthogonal look angles and (c) the 3D reconstructed
image with scan direction x. Once again, both objects are reasonably
reconstructed and easily identifiable (E = 40%). In [23], we determine
the limit of separation provided by our new algorithm, using the
example of 2 PEC spheres.

Both examples allow us to confirm that this new algorithm of
reconstruction overcomes the inability of the “approximate limiting
surfaces” algorithm to deal with non-convex and/or separated objects.
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5. CONCLUSION AND PERSPECTIVES

We have presented a low frequency radar tri-dimensional imaging
method using ramp responses of targets. The ramp response technique
has several advantages. First, despite a poorer resolution than high
frequency imaging, this method can be useful for the characterization
of stealthy or buried targets. Second, contrary to other types of 3D
imaging techniques, which require target radar echo measurements at
multiple antenna positions to reconstruct an accurate target image,
the ramp response technique usually needs no more than 3 viewing
angles to generate an image. Third, this method is relatively insensitive
to noise [22]. Finally, its main advantage comes from its easiness:
indeed, from the transfer function of the target backscattering, a simple
division by the squared frequency and an inverse Fourier transform
permit to know the approximate profile of a radar target.

The previously Young’s algorithm of 3D reconstruction from ramp
responses uses a set of hyperbolic surfaces limiting the contour of the
object for each viewing angle independently. An iterative fitting of
geometrical parameters of these enclosing surfaces permits to obtain
an estimate of the final image as the volume common to the three
set of such surfaces. Consequently, this technique is limited to single
convex objects. On the contrary, the new algorithm introduced in
this paper manages to exploit the information more effectively, by
using simultaneously the 3 profile functions through a 3D “weighting”
function in order to select each pixel of the reconstructed object.
Consequently, this algorithm is able to reconstruct the global shape
of non-convex and/or separated objects, and to directly obtain a
satisfactory estimate of these objects. To overtake the inherent
limitation caused by shadowing effects in the ramp response, this
method can be improved by a further iterative process with a priori
information on the target and the addition of other view angles.
Moreover, the use of non-orthogonal observing directions results in
a distortion of the reconstruct target. In future works, this imaging
reconstruction method will be extended to arbitrary, non-orthogonal,
look angles.
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