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Abstract—In this paper, the stability condition of the Runge-
Kutta m-order multiresolution time-domain (RKm-MRTD) scheme
has been studied. By analyzing the amplification factors, we derive
the numerical dispersion relation of the RK-MRTD scheme. The
numerical dispersive and dissipative errors are investigated. Finally,
the theoretical predictions of the numerical errors are calculated
through the numerical simulations.

1. INTRODUCTION

The multiresolution time-domain (MRTD) method for the numerical
simulation of solutions to Maxwell’s electromagnetic equations was
initially introduced in 1996 [1], which had selected the popular and
classical finite difference time-domain (FDTD) approach as alternative.
It has been shown obviously that the MRTD scheme has advantages
in memory and CPU time compared with the FDTD method and has
been used to solve many electromagnetic problems [2–4]. The typical
MRTD scheme has been proven to have the potential of the high
order convergence in space. However, in these typical implementations,
the realization of this potential is hindered by a low-order (leap-frog)
time-stepping procedure. Using the SSP-RK method, which was first
introduced in [5] and extended in [6] and which achieves full high-order
convergence in time and space while keeping the time-step proportional
to the spatial mesh-size. Normally, the basis functions used in the
RK-MRTD method are the compactly supported N -order wavelets
(e.g., the Daubechies DN functions) and m chosen the same as N .
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Theoretically, the RK-MRTD method has the high order convergence
in both space and time [7].

In this paper, we dedicate to analyze the stability condition,
numerical dispersive and dissipative errors of the RK-MRTD method
in two-dimensional case.

The remainder of the paper is organized as follows. First, in
Section 2, we review the basic equations and concepts related to the
RK-MRTD scheme. Second, in Section 3, the numerical properties of
the method are represented including the stability condition, numerical
dispersive and dissipative errors characteristics. And then, in Section 4,
we provide the example and results of the numerical simulations.
Finally, the conclusions are summarized in Section 5.

2. RK-MRTD SCHEME

For the RKm-MRTD method, namely, the m-order RK-MRTD
method, completing the spatial discretization and using the Daubechies
function as the scaling function DN (N = m), the resulting
semidiscrete form of Maxwell’s equation can be symbolically written [7]
as

∂F
∂t

= LF + S(t), (1)

where F =
{

E
H

}
, the components E and H are expressed as

E =

{
Ex

Ey

Ez

}
, H =

{
Hx

Hy

Hz

}
, respectively, and the operator L is

defined as L =
[

0 LH

LE 0

]
and S(t) is a source connected with

time variable. Eq. (1) is discretized with an mth-order m stage strong
stability preserving Runge-Kutta (SSP-RK) method with low storage
requirements [5–7], and

F (0) = F (tn)

F (i) = F (i−1) + ∆tL · F (i−1) + ∆tSi, i = 1, 2, . . . , m

F (tn+1) =
m∑

l=0

αm,lF
(l)

, (2)
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where S(i) = (I + ∆t ∂
∂t)

i−1S(tn), i = 1, . . . , m, and the coefficients
αi,j [5–7] are

αm,m =
1
m!

, l = m

αm,l =
1
l
αm−1,l−1, l = 1, 2, . . . , m− 1, m ≥ 2

αm,0 = 1−
m∑

l=1

αm,l, l = 0

. (3)

3. NUMERICAL PROPERTIES FOR RK-MRTD
SCHEME

Now, we use the Fourier method [8] to analyze the stability, dispersive
and dissipative characteristics of the RK-MRTD method. As an
example, we consider a two-dimensional TMz wave in an isotropic
loss-free medium. The update equations for the TMz wave in the
RK-MRTD scheme is,

∂zEI,J(t)
∂t

=+
1
ε

∑
v

a(v)
[

yHI+ 1
2
+v,J(t)

1
∆x

−xHI,J+ 1
2
+v(t)

1
∆y

]

∂xHI,J+ 1
2
(t)

∂t
=− 1

µ∆y

∑
v

a(v)zEI,J+1+v(t)

∂yHI+ 1
2
,J(t)

∂t
=+

1
µ∆x

∑
v

a(v)zEI+1+v,J(t)

(4)

where I and J are the spatial indexes. ∆x and ∆y are the spatial
increments along the x- and y-directions, respectively. The α(υ) are
the expansion coefficients for the Daubechies scaling functions, and the
coefficient satisfies the symmetry condition α(υ) = −α(−υ − 1). The
values of α(υ) can be found in [7].

The trial solutions of the fields for the TMz wave are,

zEI,J(t) = Ez(t)ej(kxI∆x+kyJ∆y)

xHI,J+1/2(t) = Hx(t)ej[kxI∆x+ky(J+ 1
2
)∆y]

yHI+1/2,J(t) = Hy(t)ej[kx(I+ 1
2
)∆x+kyJ∆y]

, (5)

where kx and ky are, respectively, the computed numerical
wavenumbers in the x- and y-directions. The Fourier analysis can
be performed by substituting Eq. (5) into Eq. (4). We have obtained
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the following equation,

∂

∂t

[
Ez(t)
Hx(t)
Hy(t)

]
= L

[
Ez(t)
Hx(t)
Hy(t)

]
, (6)

where the term L, called the spatial amplification matrix, is defined as

L =

[ 0 L1 L2

L3 0 0
L4 0 0

]
, (7)

and

L1 = −
2j

N∑
v=0

a(v) sin
(
ky

(
1
2 + v

)
∆y

)

ε∆y
, (8a)

L2 =
2j

N∑
v=0

a(v) sin
(
kx

(
1
2 + v

)
∆x

)

ε∆x
, (8b)

L3 = −
2j

N∑
v=0

a(v) sin
(
ky

(
1
2 + v

)
∆y

)

µ∆y
, (8c)

L4 =
2j

N∑
v=0

a(v) sin
(
kx

(
1
2 + v

)
∆x

)

µ∆x
. (8d)

In order to obtain the solution of the matrix L, we use the following
eigen equation to find the eigen-values of L.

|λI − L| = λ3 − λ







2jc
N∑

v=0
a(v) sin

(
kx

(
1
2 + v

)
∆x

)

∆x




2

+




2jc
N∑

v=0
a(v) sin

(
ky

(
1
2 + v

)
∆y

)

∆y




2
 = 0 (9)

For the MRTD scheme (including the FDTD method), the eigen-values
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λ are pure imaginary or zero. The positive ones are

λ=j2c

√√√√√√√√




N∑
v=0

a(v) sin
[
kx

(
1
2 +v

)
∆x

]

∆x




2

+




N∑
v=0

a(v) sin
[
ky

(
1
2 +v

)
∆y

]

∆y




2

=jλi (10)

where c is the physical velocity, and λi is the imaginary part of λ.
Further, Eq. (2) can be rewritten as the following [5],

F (tn+1) =
m∑

l=0

1
l!

(∆tL)lF (tn) = GF (tn), (11)

where G is the total amplification matrix including the influence of the
time discretization. The eigen-values of G are the amplification factor
σ.

For the RKm time integrations, the factor σ is obtained

σRKm =
m∑

l=0

1
l!

(λ∆t)l. (12)

For leapfrog time integration [9], the factor σ is

σleapforg = 1 +
1
2
(λ∆t)2 ±

√[
1 +

1
2
(λ∆t)2

]2

− 1. (13)

Here, λ in Eqs. (12) and (13) are obtained by Eq. (7).
The modulus of σ determines the stability and dissipative error,

and the argument determines the combined dispersive error caused by
the spatial and time discretization [8].

3.1. Stability Condition of RK-MRTD

It is clear that if the numerical methods are stable, then it means
|σ| ≤ 1. It is easily shown that we can draw λi∆t ≤ Ct, and the
constant Ct is related to the time-stepping scheme. For example, if
m = 3, we have |σ| ≤ 1, then

∣∣∣∣∣
3∑

l=0

1
l!

(λ∆t)l

∣∣∣∣∣ =

∣∣∣∣∣
3∑

l=0

1
l!

(jλi∆t)l

∣∣∣∣∣

=
∣∣∣∣1 + (jλi∆t)− 1

2
(λi∆t)2 +

1
6

(λi∆t)3
∣∣∣∣ ≤ 1
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Table 1. Coefficient Ct for different time-stepping schemes.

leapfrog RK1 RK2 RK3 RK4
Ct 2 0 0

√
3 2

√
2

Table 2. The CFL number α for different time-stepping schemes.

FDTD MRTD (D2) RK3-MRTD RK4-MRTD
α (2D) 0.7071 0.5303 0.4191 0.6585
α (3D) 0.5774 0.4330 0.3422 0.5377

Further,
∣∣∣1 + (jλi∆t)− 1

2 (λi∆t)2 + 1
6 (λi∆t)3

∣∣∣ ≤ 1. Finally, we have

(λi∆t) ≤ √
3.

If one assumes a uniform grid spacing, ∆x = ∆y = ∆s, then we
can derive the stability condition the same as [10],

∆t ≤ Ct

√
d

N∑
v=−N−1

|a(v)|
∆s

c
= α

∆s

c
,

where α is the CFL number, and d = 1, 2, 3 is the dimensionality. Here
d is 2.

According to Table 1, RK1-MRTD and RK2-MRTD are
unconditionally unstable. However, if m ≥ 3, it is possible for the
RKm-MRTD schemes to be conditionally stable.

As can be seen from Table 2, the third-order RK-MRTD method
requires a harsher stability condition and a smaller time step than the
MRTD (D2) method, but the stability condition of the fourth-order
RK-MRTD method is looser than MRTD (D2).

3.2. Dispersive Characteristic

According to [11], by substituting Eq. (7) into the following equation,

ωt = Arg(σ), (14)

we can obtain the numerical dispersion relation of the RKm-MRTD
scheme, where ω is angular frequency.

Substitution of the following relations, ω = 2π
λc

c, kx = kp cos(θ) =
2π
λp

cos(θ), ky = kp sin(θ) = 2π
λp

sin(θ), Nc = λc
∆s , ∆t = α∆s/c into

Eq. (13). Finally, we have obtained a function of variables Nc, λc/λp,
θ and α, where Nc is the number of cells per wavelength; λc is the
theoretical wavelength in the continuous medium; λp is the numeric
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wavelength; and θ is the direction of wave propagation that is relative
to the x-axis.

The RKm-MRTD scheme exhibits a more highly linear numerical
dispersion performance than that of the standard MRTD method,
shown in Figs. 1 and 2. And the higher order of the scheme is, the
more highly linear numerical dispersion performance becomes. It is
consistent with the error analysis for the order in [7]. The angle θ = π/2
is the direction of the largest dispersive error, but the angle θ = π/4
is for the least one.

3.3. Dissipative Characteristic

When the stability condition is satisfied for the RK3-MRTD and RK4-
MRTD methods, |σ| is not always equal to 1, so they exist dissipatively.

It is known that λ is pure imaginary, then the dissipative error of
the high order method is caused by the time discretization. Because
of the anisotropy of the spatial discretization error and the isotropy
of the time discretization error, the overall dissipative error still has a
slight anisotropic characteristic. From Figs. 3 and 4, it is found that
the dissipative errors are very small and increase with the decrease
of Nc. And the dissipative error of the RK4-MRTD scheme is much
smaller than that of the one caused by the RK3-MRTD scheme.

4. NUMERICAL RESULTS

In order to compare with the results from the different order in the
RK-MRTD method, we study a 2D parallel plate resonator with total
size 1 m × 1m and ∆x = ∆y = ∆s = 0.1 m, and analyze the TMz
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Figure 1. Dispersion perfor-
mance for θ = π/2.
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Figure 3. The dissipative errors
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Figure 4. The dissipative errors
for θ = π/4.

Table 3. Resonant frequency in an empty cavity resolved by different
modes (Nc = cells/modal wavelength).

Mode
Analytic
(GHz)

FDTD MRTD RK3-MRTD RK4-MRTD

Values Error Values Error Values Error Values Error

(1,1)

(1,3)

(3,3)

(3,5)

0.2121

0.4743

0.6364

0.8746

0.2116

0.4604

0.6171

0.8113

−0.23%

−2.95%

−3.04%

−7.24%

0.2124

0.4778

0.6430

0.8955

0.13%

0.72%

1.04%

2.39%

0.2122

0.4752

0.6380

0.8887

0.06%

0.17%

0.25%

1.60%

0.2122

0.4745

0.6366

0.8810

0.06%

0.04%

0.03%

0.73%

Nc

14.1421

6.2346

4.7140

3.4300

polarization model. The CFL number α is chosen as 0.3, which means
the time increment ∆t = 1.0×10−10 s. Assume ε = ε0, µ = µ0, and the
unit impulse is excited at the grid point (5, 5). The total simulation
time is 215∆t, and the values of the electric field E have been recorded
as time series. The resonant frequencies have been shown in Fig. 5 for
the different modes. Fig. 6 shows the convergence of the 2D rectangular
cavity, and we test the frequency error in mode (1, 1).

From Table 3, it is found that the errors are increased with
increasing frequency and also rapidly decreased with the increments
of the order of the method we used. When Nc is changed from 4 to
3, the errors of the higher-order methods have a rapid change. And
all of these characteristics coincide with the dispersion curve. If the
error requirement is chosen 0.72%, then the RK4-MRTD mode takes
about 3 grids per wavelength, and the normal MRTD scheme needs
six grids, but the FDTD method requires about 10 grids. If the error
requirement is 0.03%, then the advantages of the higher-order methods
are more obvious in reducing memory requirement and computational
cost. As a dissipative result of the higher-order methods, it is found
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that the magnitude of the RK4-MRTD spectrum gradually decreases
with the increment of frequency shown in Fig. 5, which coincides with
the results shown in Figs. 3 and 4.

Now, we analyze memory requirement and computational cost.
For a certain problem with the same mesh, for the 2D case, the memory
requirements of the RKm-MRTD are 7/3 times of the requirements
of the MRTD/FDTD method, because the storage needed for E is
different from H. But for the 1D and 3D problems, the multiplier is 2.5.
However, for a given accuracy, the RKm-MRTD will cost less memory
than the conventional MRTD. Furthermore, because we have given
the stability conditions of the RK-MRTD method, the estimated time
consumption reported [7] requires a slight amendment. And Eq. (7)
in [7] needs to be amended as follows:

(n2)
1− 2

N > (Qd,N )
2
N d+1

√
α2

αm
· N

γ
· 4N − 1
4N − 2

, (15)

where n2 = 1/∆x2,N is the order of the RK-MRTD method that
we use. The dimensionality constant d = 1; 2; 3 for 1D, 2D and 3D,
respectively, and γ is a given constant. The significance of the symbolic
in Eq. (15) is the same as in [7]. And Qd,N can be calculated [7] by
the following Equation (16):

Qd,N =
∆x2

(∆xN )N/2
, (16)

where ∆xN is the grid spacing of the order N in the method, and ∆x2

denotes the grid spacing of the conventional MRTD method.
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According to Eq. (15), for a given CFL number α2, αm and γ,
when n2 is more than a certain numerical value, the computational
time of the RK-MRTD method will just be γ times of the MRTD
method. The constants Qd,N in (15) can be estimated by Eq. (16),
and for the above numerical simulation example we use the results
described in Fig. 6 to get the value Q2,3 = 0.9642.

5. CONCLUSION

In this paper, we have analyzed some numerical characteristics of
the 2D RK-MRTD scheme, which includes the stability property,
numerical dispersive and dissipative errors using the Fourier analysis
method. We have verified by the simulations and presented an
estimation method for the computational time and memory. It is found
that the RKm-MRTD modes have better dispersion characteristics,
in particular, and the RK4-MRTD mode has looser conditions of the
stability than those of the normal MRTD method. The RKm-MRTD
modes are dissipative, but also consume 2.5 times of the memory, and
more than m times of the computational time for the same grid. It is
obvious that when high precision is required, the RK-MRTD methods’
advantages can be clearly demonstrated. But in the application of the
RK-MRTD scheme, the theoretical model should be in high-precision
too. Therefore, the expansion in the scope of its application is still
facing many challenges.
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