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Abstract—We derive integral representations suitable for studying
the focusing of electromagnetic waves through a symmetrically
hyperbolic focusing lens into uniaxial crystal in the presence of
cylindrical and coma aberrations using Maslov’s method. The uniaxial
crystal used is the negative crystal LiNbO3. Numerical computations
are made to obtain the results for focused fields inside negative uniaxial
crystal with several different orientations of the optical axis in the
plane of incidence. The effects of aberrations inside uniaxial crystal
and isotropic medium are also noted. The results are compared with
those obtained by Kirchhoff-Huygens integral and Maslov’s method
which are in good agreement.

1. INTRODUCTION

Anisotropic uniaxial materials are used in many components such as
polarizers, birefringent filters and liquid crystal displays. These media
exhibit birefringence. One of the rays, called an ordinary ray, satisfies
Snell’s law of refraction, and calculations of its propagation are the
same as those for an isotropic medium. The second ray is called an
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extraordinary ray, and does not satisfy Snell’s law of refraction, and
calculations of its propagation are slightly more difficult. The problem
of ray tracing in uniaxial crystals has been solved in different forms by
several authors during the last decades [1–14].

The analysis of refraction of electromagnetic waves through
a symmetrically focusing system into two media becomes very
complicated when one or both of the media become uniaxially
anisotropic. The complication is called mode coupling. Mode coupling
occurs when an incident plane wave (either ordinary or extraordinary)
produces both ordinary and extraordinary reflected plane waves and/or
produces both ordinary and extraordinary transmitted waves. If we
choose special orientations of the optical axis with respect to the
interface normal and/or the direction of propagation of the incident
plane wave mode coupling can be avoided.

Various kinds of high frequency techniques are used to determine
focal or caustic region field under different conditions. Every technique
has its own merits and demerits. For example, Huygens Kirchhoff
integral and Deby approximation are two high frequency techniques.
Former technique is based on low Fresnel approximation whereas
later is based on high Fresnel approximation. When we apply
these techniques to axially symmetrical three dimensional problems,
we must perform a double integration because we cannot use the
Fresnel approximation for the kernel. Many investigations on the
fields in focal space of reflector and lens antennas into isotropic
and uniaxially anisotropic media have been carried out [15–17] using
Huygens Kirchhoff integral and Deby approximation.

Geometrical optics approximation for waveform modelling is an
attractive in electromagnetics because it provide insight into how a
wave front responds to a given structure. In this technique, user has
the luxury of being able to monitor a given phase as it steps through
the medium. GO is concerned only with the relatively high frequency
component of the waveform, provided the ray tube does not vanish.
However, there exist regions where ray tube shrinks to zero, called
caustics and GO fails there.

A systematic procedure which remedies these defects is Maslov’s
method. GO field can be formulated in spatial domain, in wave vector
domain, or in a combination of the both domains may be termed as
phase space. The formulation in wave vector domain is equivalent to
the ray description of the Fourier transform of the wave field. This
transformation eliminates the occurrences of the ray singularity [18–
27].

In present discussion, we have considered a focusing geometry
which contains a hyperbolic lens at a certain distance from plane
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uniaxial interface. For the special case in which the incident field is a
transverse magnetic (TM) plane wave polarized in the xz plane, which
is the plane of incidence, considerable simplifications occur, especially
if we also let the optical axis in the crystal to be in the plane of
incidence. In this case the refracted field is superposition of ordinary
and extraordinary waves behaves as TE and TM waves, respectively.

The paper is organized as follows. In Section 2, we start with a
brief review of existing GO representations for the transmitted fields
obtained when a plane wave is incident upon a hyperbolic lens and
refracted ray hits the uniaxial crystal with arbitrary orientation of
the optical axis. The GO field fails at focal or caustic point. In
Section 3, we applied the Maslov’s method to overcome drawback of
GO. In Section 4, we derived our expressions with Huygens Kirchhoff
integral. In Section 5, numerical results for the 2D electromagnetic
fields inside a uniaxial crystal with arbitrary orientation of the optical
axis in the plane of incidence is presented. we also discuss the effects of
aberrations due to an imperfect alignment of the lens and comparisons
between Maslov’s method and Huygens Kirchhoff integral. Finally
conclusion is given in Section 6.

2. DERIVATION OF THE GO FIELD

Consider the geometry as shown in Figure 1. It contains a hyperbolic
focusing lens placed apart from a uniaxial crystal interface. Front face
of hyperbolic lens is placed at z = −d while rear face is placed at
z = −ζ. Uniaxial crystal occupies half space z ≥ 0. Electromagnetic
plane wave polarized in x-direction and propagating in z-direction,

Figure 1. Geometry for focusing of lens into uniaxial crystal.
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is incident on a hyperbolic focusing lens. After passing through the
hyperbolic focusing lens, ray is refracted through plane interface of
uniaxial crystal. It is assumed that uniaxial crystal occupying the half
space z ≥ 0 has principle permittivities (εo, εe), permeability µ2. Half
space z < 0 has constitutive parameters (ε1, µ1). Geometry contains a
hyperbolic focusing lens and is described by the following equation

g(ξ) = ζ = a

[
ξ2

b2
+ 1

]1/2

(1)

where (ξ, ζ) are the Cartesian coordinates on the lens. A linearly
polarized plane wave is incident normally on the surface of the
hyperbolic lens. It is assumed that the polarization of the incident
wave is in x direction.

Incident plane wave is given by

Ei
x = exp(−jkz) (2)

The wave vector of the wave refracted by the cylindrical hyperbolic
focusing lens is given by [23]

P = K(α) sin αix + (n + K(α) cos α)iz = pxix + pziz
where

K(α) =
√

1− n2 sin2 α− n cosα (3)

Wave refracted by the hyperbolic lens hits uniaxial crystal interface.
The electromagnetic field that is incident on the plane interface is
TM field. The refracted field is expressed as a superposition of
monochromatic ordinary and extraordinary plane waves propagating
in various directions [3, 4]. Ordinary wave may be consider as TE and
extraordinary wave as TM. There is no coupling between TE and TM
waves. Wave vector of the refracted wave into uniaxial crystal may be
obtained as [4]

pet = pxix + pe
ziz (4)

where z component may be written as

pe
z = A +

√
B

A = −χpx sin θ cos θ

1 + χ cos2 θ

B =
(po)2(1 + χ)− (px)2

1 + χ cos2 θ
− A2

χ cos2 θ

where χ is measure of anisotropy in the uniaxial crystal and is given
by

χ =
(pe)2

(po)2
− 1
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pe =
ω

c

√
εeµ2

po =
ω

c

√
εoµ2

In Equation (3), superscript et means extra-ordinary transmitted.
Angle θ is the angle of optical axis with the z-axis.

The Cartesian coordinates of the ray at front surface of the
uniaxial crystal are given by

ξ1 = ξ + pxτ1, ζ1 = ζ + pzτ1 (5)

where τ1 = ζ1−ζ
pz

is distance between the point P (ξ, ζ) on the rear face of
hyperbolic lens and the point Q(ξ1, ζ1) on front face of uniaxial crystal.
The Cartesian coordinates of the ray refracted into the uniaxial crystal
are given by

x = ξ1 + pxτ = ξ + pxτ1 + pxτ

z = ζ1 + pe
zτ = ζ + pzτ1 + pe

zτ
(6)

where τ signifies the arc length of the ray after refraction through the
uniaxial crystal. The GO solution is given by and the geometrical
optics expression of field associated with the ray is given by

E(r) = A0(ξ)
[
D(τ)
D(0)

]− 1
2

exp
{
−jk

[
nS0 + τ1 + τ + φ0

]}
(7)

where A0(ξ) is the amplitude of the wave at the refracted point (ξ, ζ).
The value S0 represents the initial value of the phase function and φ0 is
a real aberration function representing possible aberrations introduced
by the cylindrical lens. J(τ) is the Jacobian of the transformation from
the Cartesian to the ray coordinates, and it is given by

J(τ) =
D(τ)
D(0)

=
∂x

∂ξ

∂z

∂τ
− ∂z

∂ξ

∂x

∂τ
= Ξ +

(
∂px

∂ξ
pe

z −
∂pe

z

∂ξ
px

)
τ (8)

where

Ξ = pe
z − px tanα +

(
∂px

∂ξ
pe

z −
∂pe

z

∂ξ
px

)
τ1

∂px

∂ξ
=

∂px

∂α

∂α

∂ξ
= DP

D =
(1− 2n2 sin2 α) cos α√

1− n2 sin2 α
− n cos 2α

P =
(a2 cos2 α− b2 sin2 α)

3
2

ab cosα
It is seen that the refracted GO field fails at the singular point
D(τ) = 0. At the point satisfying (7), the ray becomes infinity.
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3. MASLOV’S METHOD

According to the Maslov’s method, the ray expression covering the
caustics can be derived from the formula

E(r) =

√
k

j2π

∫ ∞

−∞
A0(ξ)

[
D(τ)
D(0)

∂px

∂x

]− 1
2

exp
{
−jk

[
nS0 + φ0 + τ1 + τ − pxx(px, z) + pxx

]}
dpx (9)

In above Equation (8), x(px, z) means that the coordinate x should
be expressed in terms of mixed coordinates (px, z) by using the solution.

The same is true for τ and it is given by τ =
z − ζ

pz
. In the above

equation A0(ξ) is an initial value of the excitation at the surface. The
integrand and the phase factor are evaluated as follow

J(τ)
∂px

∂x
=

1
D(0)

∂(px, z)
∂(ξ, τ)

=
1

D(0)
∂px

∂ξ

∂z

∂τ
(10)

and
φ(px, z)=nS0+φ0+τ1 + τ − pxx(px, z) + pxx

=nS0+φ0+τ1 + τ − px(ξ1 + pxτ) + pxx

=nS0+φ0+τ1 + τ − px(ξ + pxτ1 + pxτ) + pxx

=nS0+φ0+τ1 + (pe
z)

2τ − pxξ1 − p2
xτ1 + pxx

=nS0+φ0+τ1p
2
z + px(x− ξ) + pe

z(z − ζ1)
=nS0+φ0+(ζ1 − ζ)pz+K(α) sin α(ρ sinφ−ξ)+pe

z(z−ζ1)(11)
Introducing the polar coordinates

x = ρ sin θ

z = ρ cos θ

ξ =
b2 sinα√

a2 cos2 α− b2 sin2 α

ζ =
a2 cosα√

a2 cos2 α− b2 sin2 α
dpx is given by

dpx = Ddα (12)
The initial value for each component of the incident plane wave

at the rear face of the lens is given by [24] as

ET =
(
n sin2 α +

√
1− n2 sin2 α

)
T ix

+
(
n cosα−

√
1− n2 sin2 α

)
T sinαiz. (13)
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where
T =

2n cosα

cosα + n
√

1− n2 sin2 α

The transmission coefficients at interface of uniaxial crystal may be
obtained [3] by

T ee
α =

2µp2pxpz

µ1(po)2pzAet − µp2Bet
(14)

where

Aet = cos θpx − sin θpe
z

Bet = sin θ(po)2 − px(sin θpx + pe
z cos θ)

Substituting (9) to (13) into (8), following results in components form
is obtained as

Ex =

√
k

j2π

∫ T
2

−T
2

Ex0T
ee
α

[
ΞD

Ppe
z

] 1
2

exp {−jk [nS0 + φ0 + (ζ1 − ζ)pz

+ K(α) sin α(ρ sinφ− ξ) + pe
z(z − ζ1)]} dα (15)

Ez =

√
k

j2π

∫ T
2

−T
2

Ez0T
ee
α

[
ΞD

Ppe
z

] 1
2

exp {−jk [nS0 + φ0 + (ζ1 − ζ)pz

+ K(α) sin α(ρ sinφ− ξ) + pe
z(z − ζ1)]} dα (16)

The subtention angle T of lens is given by

T = arctan
( −ad

b
√

b2 + d2

)

where d is height of hyperbolic lens.

4. COMPARISON TO THE HUYGENS-KIRCHHOFF’S
PRINCIPAL

To verify the validity of the uniform expression which is also valid near
the caustic, we compare the numerical results with those computed
from the Kirchhoff’s approximation. The expression based on the
Huygens-Kirchhoff principle is obtained by using Green’s theorem, we
can show that the refracted wave by a hyperbolic lens may be derived
as

Er(r) =
1
j4

∫

C
A0(ξ)

∂E

∂n
H

(2)
0 (kτ)dl (17)
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where τ =
√

(x− ξ1)2 + (z − ζ1)2 = τ1p
2
z + px(x− ξ1) + pe

z(z− ζ1) and
∂E
∂n can be calculated as

∂E

∂n
=

∂E

∂x
nx +

∂E

∂z
nz = −jωµ(N×H)y = −jωµJy

Jy =(2N×Hi)y = −j2ωµ cosα exp
[
−jk

(
nS0

)] (18)

C is the contour of the lens. Using the following fact

dl =
√

dξ2 + dζ2 = −sec α

P
dα (19)

and the asymptotic expression for Hankel function

H
(2)
0 (kτ) '

√
2

πkt
exp [−jkt + jπ/4)] (20)

finally the expression which is valid around the caustic is

Ex = −
√

2
πk

∫ T
2

−T
2

T ee
α T‖

P
√

τ
exp [−jk (nS0 + τ + φ0 + jπ/4)] dα (21)

Ez = −
√

2
πk

∫ T
2

−T
2

T ee
α T‖

P
√

τ
exp [−jk (nS0 + τ + φ0 + jπ/4)] dα (22)

5. NUMERICAL RESULT AND DISCUSSION

Field pattern around the caustic region of a hyperbolic focusing lens
are obtained by performing the integration, in equations

Ex =

√
k

j2π

∫ T
2

−T
2

Ex0T
ee
α

[
ΞD

Ppe
z

] 1
2

exp{−jk [nS0+φ0+(ζ1−ζ)pz+K(α) sin α(ρ sinφ−ξ)+pe
z(z−ζ1)]} dα

and

Ex = −
√

2
πk

∫ T
2

−T
2

T ee
α T‖

P
√

τ
exp [−jk (nS0 + τ + φ0 + jπ/4)] dα

numerically by using Mathcad software. Throughout the discussion,we
have used refractive index of hyperbolic lens n = 2.8. Figure 2 provides
comparison between Maslov’s method and Kirchhoff’s approximation.
The solid line shows the results obtained using Maslov’s method while
dashed line is for result obtained using Huygens-Kirchhoff’s Principal
which are in good agreement. Both the curves behaves similarly ; for
example, we have the same number of peaks for each curve, situated at
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Figure 2. Comparison of normalized intensity at caustic point using
Maslovs method (dotted line) and K-H integral (solid line) at θ0 = 0.

about the same position. Maslov’s method takes advantage of the fact
that the occurrence of caustics is formulation dependent and corrects
all types of caustics by combining the simplicity of ray theory and
generality of the transform method. It is actually easy to implement
and is faster to compute the data than other methods.

Figure 3 to Figure 7 show comparison of field distribution at
different orientation of optical axis that is at θ = 0◦, θ = 30◦,
θ = 45◦,θ = 60◦, θ = 75◦ and θ = 90◦. Figure 8 to Figure 10 show
contour plots of field distribution at different orientation of optical
axis that is at θ = 0◦, θ = 45◦ and θ = 90◦. It is observed that the
focal region for a negative uniaxial crystal is displaced in the x and z
directions as the angle θ is increased from θ = 0◦. If we continue to
increase the angle θ, we will obtain a maximum displacement of the
focal area when θ = 45◦. If the angle θ is increased above θ = 45◦, then
the displacement of the focal area will be reduced until θ approaches
θ = 90◦. The results displayed in Figure 6 show that the maximum
intensities are indeed the same, as expected, but the focus in the crystal
is shifted towards the interface compared to the focus in the isotropic
medium. The crystal can be replaced by an isotropic medium by
putting ne = no = 2. Throughout the discussion, for uniaxial crystal
case, we have used LiNbO3, which has ordinary refractive index of
no = 2.3 and an extraordinary refractive index of ne = 2.208. It is
assumed that ka = 14, kb = 13, kd = 14. The distance between the
rear face of the lens and front face of uniaxial crystal kd1 = 5. The
realization of parameter of scheme may be observed from Figure 7 as
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maximum field intensity is at kc = 19.1 by using c =
√

a2 + b2. All
these parameter are normalized by wavelength λ.

It is difficult to construct an aberration free system, so it is
important for us to include effect of possible aberration for any

Figure 3. Normalized field Intensity distribution around caustic point
along z-axis at θ = 0◦ (solid line), θ = 30◦ (dotted line) and θ = 45◦
(dashed line) at ka = 14, kb = 13 and kd = 14.

Figure 4. Normalized field Intensity distribution around caustic point
along z-axis at θ = 0◦ (solid line), θ = 45◦ (dotted line) and θ = 60◦
(dashed line) ka = 14, kb = 13 and kd = 14.
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Figure 5. Normalized field Intensity distribution around caustic point
along z-axis at θ = 0◦ (solid line), θ = 45◦ (dashed line) and θ = 90◦
(dotted line) at ka = 14, kb = 13 and kd = 14.

Figure 6. Comparison of normalized field intensity distribution
around the caustic region with optical axis in pointing in x direction
at θ = 90◦ (dotted line) and z direction at θ = 0◦ (solid line).

focussing antenna. In presence of aberration there is no astigmatism,
and the field curvature is quadratic in ξ1 and can cause focal shift.
In this case aberrations are of two types will be of our interest when
studying the distribution of the intensity in the caustic region. These
aberrations are known as cylindrical aberration and coma aberration.
The aberration symbol φ0 in above Equation (6) can be represented [5]
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Figure 7. Contour plot of fo-
cused field intensity distribution
around the caustic region at θ =
0◦, ka = 14, kb = 13 and kd =
14.

Figure 8. Contour plot of nor-
malized field intensity distribu-
tion around the caustic region at
θ = 45◦, ka = 10, kb = 14 and
kd = 15.

Figure 9. Contour plot of field intensity distribution around the
caustic region at θ = 90◦, ka = 14, kb = 13 and kd = 14.

by

φ0 = −δ1λ1

(
ξ1

l

)4

+ δ2λ1

(
ξ1

l

)3

where l is the half width of the slit aperture of crystal. The first
term in above equation represents the cylindrical aberration and the
second one the coma aberration. The symbol δ1 and δ2 are the wave-
front deformations at the edge of the slit aperture measured in units
of the wavelength in the isotropic medium. The effects of cylindrical
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aberration and coma were discussed in [6, 7]. According to the results
a first-order cylindrical aberration causes a focal shift towards or
away from the aperture plane depending on whether the aberration
is positive (δ1 > 0) or negative (δ1 < 0). Such a phenomenon is
also discussed in [7] as an aberration introduced when focusing from
an optically denser medium into an optically rarer medium (δ1 > 0),
or from an optically rarer medium into an optically denser medium
(δ1 < 0).

When we consider the effect of a first order cylindrical aberration
for the case in which the second medium is a negative uniaxial crystal
LiNbO3, and we examine whether the effect is different from that
obtained when the second medium is isotropic. In all cases considered
in this paper the refractive index of the first medium was n1 = 1.
Figure 10 shows a comparison between the field intensities distribution
obtained when the second medium is either uniaxial or isotropic for
the case in which the incident wave front has no aberrations. When
the second medium was considered as isotropic the refractive index
was n2 = 2.00. When the second medium was considered as uniaxial
crystal, we used LiNbO3, which has an ordinary refractive index of
no = 2.300 and an extraordinary refractive index of ne = 2.208. The
interface of the second medium was placed at a distance of kd1 = 5
from the aperture plane, and the optical axis of the crystal was assumed
to be in the xz plane.

Figure 10. Comparsion between focused fields in an isotropic medium
(solid line) and a uniaxial crystal (dashed line) in the absence of
aberrations at θ = 0◦, ka = 14, kb = 13 and kd = 14.
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Figure 11 shows a comparison of two focussed field intensities
obtained for the case in which the second medium is isotropic. One
of the line plot corresponds to the aberration-free case, while the
other line plot corresponds to the case in which the incident wave

Figure 11. Variation of intensity in an isotropic medium without
aberration (dashed line) and with aberration (solid line) of δ1 = 0.2 at
θ0 = 0.

Figure 12. Variation of intensity in a uniaxial crystal without
aberration (solid line) and with aberration (dashed line) of δ1 = 0.2 at
θ0 = 0.



Progress In Electromagnetics Research, Vol. 107, 2010 393

front has a positive first-order cylindrical aberration of 0.2 wavelengths
δ1 = 0.2. Figure 12 shows a comparison of two field intensities obtained
for the case in which the second medium is a uniaxial crystal, and
one of the curves corresponds to aberration-free case, while the other
curve corresponds to the case in which a positive first-order cylindrical
aberration of 0.2 wavelengths δ1 = 0.2was added to the incident wave
front. Figure 13 shows a comparison of two field intensities obtained
when the second medium is either isotropic or uniaxial for the case
in which the incident wave front has a positive first- order cylindrical
aberration of 0.2 wavelengths δ1 = 0.2.

Figure 14 shows a comparison of two field intensities obtained for
the case in which the second medium is a uniaxial crystal, and one of
the curves corresponds to aberration-free case, while the other curve
corresponds to the case in which a positive coma aberration of 0.05
wavelengths (δ2 = 0.052) was added to the incident wave front.

From Figure 10 to Figure 14, we conclude that in the presence of
aberrations the focal shift has the same behavior in the uniaxial case as
in the isotropic case. Although the position of the focus is different in
the two cases, the shape of the axial intensities is similar in both cases.
Secondly we see from that the maximum axial intensity is increased
when a positive first-order aberration is added to the incident wave
front.

Figure 13. Variation of intensity in an isotropic medium (solid line)
and uniaxial crystal (dashed line) with aberration of δ1 = 0.2 at θ0 = 0.
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Figure 14. Variation of intensity in a uniaxial crystal without
aberration(solid line) and in presence of coma aberration of δ2 = 0.2
at θ0 = 0.

6. CONCLUSIONS

Our comparisons between Maslov’s method and Huygens-Kirchhoff’s
integral results for 2D electromagnetic waves focused from hyperbolic
lens into uniaxial crystals are in good agreement. We have observed
that the caustic point in a negative uniaxial crystal is toward aperture
slit as compared to the caustic point obtained in the corresponding
isotropic medium. When the optical axis is transverse to the interface
normal that is pointing towards x direction, the caustic point is farther
away from the interface than the caustic point when the optical axis
is parallel to the interface normal.

We have also found that the aberration can give a focal shift
towards or away from the aperture plane depending on whether the
aberration is positive or negative. If a small aberration is added onto
the incident wave front, the maximum axial intensity may increase,
because the aberration leads to a focal shift towards the aperture plane,
and because the secondary wavelets are stronger in front of the focus
than behind the focus.
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