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Abstract—We investigated the properties of pulse propagation
on coupled nonlinear transmission lines to develop a method for
doubling repetition rate of incident pulse streams. Coupled nonlinear
transmission lines are two transmission lines with regularly spaced
Schottky varactors coupled with each other. It is found that both of
the modes developed in a coupled line can support soliton-like pulses
because of Schottky varactors. We discuss the fundamental properties
of each soliton-like pulse, including the width and velocity, and propose
a method of doubling repetition rate of incident pulse streams by
managing these soliton-like pulses.

1. INTRODUCTION

A nonlinear transmission line (NLTL) is defined as a lumped
transmission line containing a series inductor and a shunt Schottky
varactor in each section. NLTLs are used for the development of
solitons [1]. The operation bandwidth of carefully designed Schottky
varactors goes beyond 100GHz; therefore, they are employed in
ultrafast electronic circuits including the subpicosecond electrical shock
generator [2]. Recently, Kintis et al. [3] proposed a NLTL pulse
generator using two NLTLs. They arranged the diodes in these two
NLTLs having opposite polarities in order to sharpen the two signals’
rising and falling edges separately, and obtained a short pulse with
30 ps duration. Moreover, Yildirim et al. [4] proposed a method of
generating a periodic short pulse train using an NLTL connected with
an amplifier. They generated a stable periodic pulse train with the
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repetition rate of 100 MHz. To extend the potential of NLTLs in
ultrafast electronics, we consider two coupled NLTLs and find that
both modes developed in a coupled NLTL preserved the original shape
by compensation of dispersive distortions using nonlinearity. A coupled
NLTL with strong dispersion has been investigated based on the
nonlinear Schrödinger equation [5, 6]. In this article, we consider the
weakly dispersive coupled NLTLs in order to develop baseband pulses
governed by the Korteweg de-Vries (KdV) equation and propose a
method of doubling repetition rate of pulse stream input to the line.

First, we discuss the fundamental properties of the nonlinear
pulses in a coupled NLTL. We quantify how the velocity and width
of the nonlinear pulse on a coupled NLTL depend on the amplitude
for the first time. We then describe how to double repetition rate of
pulse streams, including the analytically-obtained design criteria and
also includes several results of numerical evaluations that validate this
method.

2. COUPLED NLTLS

Figure 1 shows the diagram of a coupled NLTL. Two NLTLs, denoted
by line 1 and line 2, are coupled via Cm. For the line i (i = 1, 2), Li

and Ci represent the series inductor and shunt Schottky varactor of the
unit cell, respectively. Vn(Wn) and In(Jn) show the line voltage and
current, respectively, at the nth cell of line 1 (line 2). The capacitance–
voltage relationship of a Schottky varactor is generally given by

C(x) =
C0(

1− x
VJ

)m , (1)

Figure 1. Two unit cells of coupled NLTLs.
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where x is the voltage between the terminals. C0, VJ , and m are the
optimizing parameters. Note that x < 0 for reverse bias.

The transmission equations of a coupled NLTL are given by

L1
dIn

dt
= Vn−1 − Vn, (2)

L2
dJn

dt
= Wn−1 −Wn, (3)

C1(Vn)
dVn

dt
+ Cm

d

dt
(Vn −Wn) = In − In+1, (4)

C2(Wn)
dWn

dt
+ Cm

d

dt
(Wn − Vn) = Jn − Jn+1. (5)

When the pulse spreads over many cells, the discrete spatial coordinate
n can be replaced by a continuous one x, series-expanding Vn±1, and
Wn±1 up to the fourth order of the cell length δ, we then obtain the
evolution equation of the line voltage:

l2
dc2(W )

dW

(
∂W

∂t

)2

+ l2 [c2(W ) + cm]
∂2W

∂t2
− l2cm

∂2V

∂t2

=
∂2W

∂x2
+

δ2

12
∂4W

∂x4 , (6)

l1
dc1(V )

dV

(
∂V

∂t

)2

+ l1 [c1(V ) + cm]
∂2V

∂t2
− l1cm

∂2W

∂t2

=
∂2V

∂x2
+

δ2

12
∂4V

∂x4 , (7)

where V = V (x, t) and W = W (x, t) are the continuous counterparts
of Vn and Wn. Moreover, l1,2 and c1,2,m are the line inductance
and capacitance per unit length defined as l = L/δ and c = C/δ,
respectively.

The c mode and π mode are two different propagation modes on
a linear coupled line [7]. It is the same for a coupled NLTL when the
voltage amplitude is sufficiently small. Each mode has its own velocity
and voltage fraction between the lines (= line 2 voltage/line 1 voltage).
The quantities uc, uπ, Rc and Rπ designate, respectively, the velocity
of c mode, the velocity of π mode, the voltage fraction of c mode and
the voltage fraction of π mode at long wavelengths. These quantities
are explicitly written as:

uc,π =

√
x1 + x2 ±

√
(x1 + x2)2 − 2x3

x3
, (8)

Rc,π =
x1 − x2 ±

√
(x1 + x2)2 − 2x3

2cml1
, (9)
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where the upper (lower) signs are for c (π) mode. For concise notations,
we define x1,2,3 as

x1 = (c1(V0) + cm)l1, (10)
x2 = (c2(W0) + cm)l2, (11)
x3 = 2 [c1(V0)c2(W0) + (c1(V0) + c2(W0))cm] l1l2, (12)

for the case when lines 1 and 2 are biased at V0 and W0, respectively.
In a linear line, the short-wavelength waves travel slower than the long-
wavelength waves due to dispersion; this results in the distortions of the
baseband pulses having short temporal durations. In a coupled NLTL,
this distortion can be compensated by the nonlinearity introduced
using Schottky varactors, regardless of the propagation mode. To
quantify the compensation of dispersion by nonlinearity, we apply the
reductive perturbation [8] to the transmission equation of a coupled
NLTL.

We first series-expand the voltage variables as

V (x, t) = V0 +
∞∑

i=1

εiV (i)(x, t), (13)

W (x, t) = W0 +
∞∑

i=1

εiW (i)(x, t), (14)

for ε ¿ 1. Moreover, the transformations: ξ = ε1/2 (x− ut) and
τ = ε3/2t are applied, where u is a parameter determined in the
following. By evaluating Eqs. (6) and (7) for each order of ε, we can
extract the equation that describes the developing soliton-like pulses.
It has been shown that O(ε) terms give trivial identities, and O(ε2)
terms determine the allowed values of u: u has to be equal to either
uc or uπ. Moreover, W (1) becomes equal to Rc,πV (1) for u = uc,π.
Finally, we obtain the KdV equations for W (1) from O(ε3) terms for
both modes. They are given by

∂W (1)

∂τ
+ pc,πW (1) ∂W (1)

∂ξ
+ qc,π

∂3W (1)

∂ξ3
= 0, (15)

pc,π = ∓
√

2cm√
(x1 + x2)2 − 2x3

[
x1 + x2 ∓

√
(x1 + x2)2 − 2x3

]−3/2

×
[

c1(V0)l21m1

V0 − VJ1

x1 − x2 ∓
√

(x1 + x2)2 − 2x3

x1 − x2 ±
√

(x1 + x2)2 − 2x3

+
c2(W0)l22m2

W0 − VJ2

x1 − x2 ±
√

(x1 + x2)2 − 2x3

x1 − x2 ∓
√

(x1 + x2)2 − 2x3

]
, (16)
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qc,π =
δ2

24

√
x1 + x2 ±

√
(x1 + x2)2 − 2x3

x3
, (17)

where the upper (lower) signs are for c (π) mode and mi and VJi are
the varactor model parameters for the line i (i = 1, 2).

As a result, we obtain the following one-soliton solutions specified
by A0:

V (x, t) = V0 + A0 sech2

[√
pA0

12q

[
x−

(
u +

pA0

3

)
t

]]
, (18)

W (x, t) = W0 + RA0 sech2

[√
pA0

12q

[
x−

(
u +

pA0

3

)
t

]]
, (19)

where (p, q, u, R) is set to (pc(π), qc(π), uc(π), Rc(π)) for the c(π)-mode
soliton. Note that A0 is set positive (negative) for p > (<)0.

(a) (b)

(c) (d)

Figure 2. Soliton-like pulses on coupled NLTLs.
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We numerically solve Eqs. (2)–(5) using a standard finite-
difference time-domain method for a coupled NLTL with Schottky
varactors having C0 = 60.0 pF, VJ = 3.0V, and m = 2.0. We set
L1, L2, Cm, V0, and W0 to 4.0µH, 2.0µH, 60.0 pF, −3 V, and −2V,
respectively. For these line parameters, the values of Rc, Rπ, uc, and
uπ are calculated to be 1.0, −0.5, 1.5× 108 cell/s, and 5.0× 107 cell/s,
respectively. The c-mode pulse travels three times faster than the
π-mode pulse. At |A0| = 0.8V, the temporal width of the c mode
nonlinear pulse is estimated to be 11.7 ns, while that of the π mode
pulse is 143.3 ns. The former becomes much shorter than the latter.
The numerically obtained waveforms are shown in Fig. 2. The input
pulses have the one-soliton waveforms given by Eqs. (18) and (19).
The bold and solid waveforms show the pulses on lines 1 and 2,
respectively. Moreover, the solid and dotted waveforms show nonlinear
and linear pulses. To obtain linear pulses, we set the values of C1(V )
and C2(W ) to constants C1(V0) and C2(W0), respectively. Figs. 2(a)
and (b) show the π-mode pulses monitored at n = 250 and 2500,
respectively, while Figs. 2(c) and (d) show the c-mode pulses monitored
at n = 250 and 500, respectively. We can see that linear pulses
are greatly distorted by the influence of dispersion. On the other
hand, nonlinear pulses preserve their original shapes, as shown in
Figs. 2(b) and (d). Fig. 3 shows the numerically obtain waveforms
with analytically obtained ones. Figs. 3(a) and (b) correspond to
the π- and c-mode pulses, respectively. The solid curves show the
numerically obtained waveforms monitored at n = 2500 with the same

(a) (b)

Figure 3. The comparison of numerically obtained waveforms with
analytic predictions. (a) The π-mode pulses and (b) c-mode pulses.
The solid and dotted curves show the numerical and analytical
waveforms.
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line parameters used to obtain Fig. 2. The dotted curves show the
waveforms obtained analytically by using Eqs. (18) and (19). The
parameter A0 was set to 0.73 and 0.8 V for the π- and c-mode pulses,
respectively. The similarity between the solid and dotted waveforms
is sufficiently good to mention that the properties of nonlinear pulses
are well characterized by Eqs. (18) and (19). The compensation of
dispersive distortions by nonlinearity is successfully observed for both
the c- and the π-mode pulses.

3. THE METHOD TO DOUBLE REPETITION RATE OF
INCIDENT PULSE STREAMS

To operate a coupled NLTL to double repetition rate of pulse stream,
one end of each line is terminated with the load resistances matched to
the c-mode characteristic impedances, while the other end is matched
to the π-mode impedances, as shown in Fig. 4(a). By this arrangement,
the multiple reflections of the waves carried by both the c and the
π modes are suppressed; therefore, the outputs are free from the
distortions caused by the reflections. We consider the case where a T -
periodic pulse stream is input to Vin as shown in Fig. 4(b). Each pulse
is split to the c- and π-mode soliton-like pulses. Because the c-mode
soliton-like pulse is generally faster than the π-mode pulse. Thus, the
temporal separation between the c-mode and π-mode pulses becomes
equal to T/2 by setting the length of a coupled NLTL properly. As a
result, we succeed in doubling the repetion rate of a pulse stream at
Vout, although the amplitude has to be halved at the outputs.

(a) (b)

Figure 4. Doubling repetition rate of incident pulse streams. (a) The
conguration and (b) the operating principle.
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(a)

(b)

(c)

Figure 5. Numerical demonstration of doubling repetition rate of
incident pulse streams. (a) The dependence of the pulse widths and
voltage fractions on W0 and the output pulse streams of (b) the linear
coupled line and (c) the coupled NLTL.
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To demonstrate the doubling method, another calculation is
performed by setting T , L1, L2, Cm, and V0 to 500 ps, 0.10 nH, 0.12 nH,
0.02 pF, and −0.3V, respectively. For Schottky varactors, C0, VJ , and
m are set to 0.1 pF, 1.0 V, and 0.5, respectively. Moreover, the total
cell size is set to 300. Fig. 5(a) shows the dependence of the widths
of c mode and π mode single solitons (left-vertical) and the voltage
fractions Rc,π (right-vertical) on W0 is shown, while V0 is fixed at
−0.3V. In order to obtain nearly coincident pulse amplitude for both
modes, we have to set W0 to satisfy the condition |Rc| ∼ |Rπ|. On the
other hand, W0 should be set to the values corresponding to the cross
points of two bold curves in order to make the widths of c and π mode
pulses coincident. Unfortunately, it is impossible to find the optimal
value of W0 that simultaneously gives nearly coincident widths and
amplitudes for c and π pulses, when a pulse stream is injected into the
input of one of lines 1 and 2. It is thus required that the amplitude of
π-mode pulse has to be greater than that of c-mode pulse at the output
in order to make the width of each pulse coincident or the width of π-
mode pulse has to be wider than that of c-mode pulse for the coincident
amplitudes. Presently, we set W0 to −3.0V for matching amplitude,
although the widths of c pulse has to be half as long as that of π pulse.

Figures 5(b) and (c) show the calculated waveforms for the linear
and nonlinear coupled lines, respectively. The bold and solid curves
show the output waveforms of lines 1 and 2, respectively. To obtain
linear pulses, we set the values of C1(V ) and C2(W ) to constants
C1(V0) and C2(W0), respectively. Pulses having sech2 form with 5.6-
ps duration were periodically injected into the input of line 1. The
dispersion of the linear line greatly distorts both the c and π pulses
in Fig. 5(b) because of the wide bandwidth of input pulses. On
the other hand, the distortions due to dispersion are well suppressed
for both c and π pulses in Fig. 5(c), so that the repetition rate is
successfully doubled, although the width differs between the c and
π pulses. Moreover, our termination scheme successfully suppresses
multiple reflections.

4. CONCLUSION

We describe the method of doubling repetition rate of a pulse stream by
using coupled NLTLs. The dispersive distortions are well compensated
for by nonlinearity for both c- and π-mode pulses. The properties of
nonlinear pulses carried by the c and π modes are quantified based
on the reductive perturbation method. The doubled repetition rate
is successfully confirmed by the numerical evaluations. Presently,
our method has two major drawbacks. One is the halved output
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amplitude and the other is the amplitude inbalance between the c-
and π-mode pulses having the coincident widths. In order to cope with
these difficulties, we require some post-processing broadband waveform
equalizer such as a traveling-wave field effect transistor [9].

Pulses on nonlinear n-conductor coupled lines can be carried by
n different modes. Each has its own velocity; therefore, the repetition
rate can be potentially increased by the factor of n at the output of an
n-conductor coupled line. However, it becomes difficult to terminate
an n-conductor coupled line so as to suppress multiple reflections,
because the impedances cannot be generally coincident for two different
modes. For increasing the repetition rate by the factor greater than 2,
cascading several two-conductor coupled NLTLs is the best way, when
the output waveforms of each coupled NLTL are properly equalized.
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