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Abstract—The scattering of an oblique electromagnetic wave incident
on a sub-wavelength circular pore with a finite depth on the surface of
a semi-infinite perfect conductor is investigated analytically. We use
the method of matched asymptotic expansion to find the multipole
structure. The expansion is based on the duality property of the
source-free Maxwell equations, and the resultant scattering fields
are fully expressed in terms of the scalar and the conjugate vector
potentials. There are two regions defined by the analytical method:
the electro/magneto-static inner region and the radiation outer wave
region. For both TM and TE incidences, the scattering waves are
lead by leading dipoles. In the next order of the scattering waves, a
mixture of the dipole, the quadrupole and the octupole is found. This
is a striking finding, that the multipoles are not organized in a strictly
ascending manner when the size of the pore is considered. In addition,
the sophisticated three-dimensional interplay of the multipoles, the
pore depth, and the incident angle is revealed. The magnitudes of the
scattering dipoles are confirmed convergent smoothly to those of the
back-scattering dipoles of electromagnetic waves transmitted through
a hole in a perfect conducting plate with a finite thickness when the
pore depth is larger than about 1, normalize to the pore radius.
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1. INTRODUCTION

The aim of this paper is to investigate analytically the scattering
of electromagnetic waves incident on a small circular pore with a
finite depth in a semi-infinite perfect conducting surface. The radius
and the pore depth are both assumed to be much smaller than
the wavelength of the incident waves. Under such circumstances,
a multipole expansion is appropriate for understanding both the
electromagnetic fields in the near field around the pore and their
incurred radiation in the outer region. The method of matched
asymptotic expansion is often used for this purpose. In the method, the
entire wave propagation domain is divided into two regions according
to their characteristic length scales: the inner electro/magnetic-static
region, for the area near/in the pore; and the outer region, for the wave
radiation.

Our motivation began with the renewed interests in electromag-
netic waves incident on flat surfaces with designed structures of small
pores. For example, Pendry et al. [1] demonstrated that a perfect con-
ducting surface with a periodic groove structure mimics the surface
plasmon effects. Subsequently, Garcia de Abajo and Saenz [2] calcu-
lated the effective permittivity of a flat perfect conductor with such a
pore structure to model surface plasmon on metal surfaces and pointed
out that the TM waveguide modes in the pore are substantial.

The surface wave of the structured surface can be formulated
by the interaction of the scattering waves between pores [3], i.e., the
multiple scattering theory. This method eliminates the difficulties of
numerical field solvers with slow convergence of the radiation waves at
infinity. The milestone for this approach is the thorough understanding
of the wave scattering mechanism of an individual aperture (pore).
The leading scattering term of a single pore is undoubtedly a dipole.
Garcia de Abajo [4] found the leading dipole strength elegantly on
the energy flux conservation, and Garcia-Vidal et al. [5] further
investigated the transmission of the wave through a single rectangular
hole in a perfect conductor plate using the finite-difference time-domain
(FDTD) numerical scheme.

Along the line of development for the multiple scattering theory
of tailored surfaces, we need an expansion that is able to incorporate
the mutual interactions among pores. These additional modifications
are expected with the influences of the higher order multipoles. This
intrigues us to derive analytically a multipole expansion with the
oblique incident effect to complement the understanding of the single
pore scattering.

It is well known that when scattering obstacles are small compared
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to the wavelengths of the incident waves, the leading order of
the near field exhibits electro/magneto-static behavior, [5–7]. For
convenience, the static fields are solved with the help of scalar
Laplacian potentials [8, 9]. However, due to the coupling between the
electric and magnetic fields, far fewer investigations are carried further
to the radiation of the electromagnetic fields. Hansen and Yaghjian [10]
calculated the leading radiation from small two-dimensional scatterers
of arbitrary shapes, either a bump or a dent in/on a ground perfect
conducting plane. The effect of the scatterers were formulated into
integral equations of the surface current. Then the leading scattering
terms were related to the integration of the surface current expansion.
Scharstein and Davis [11] further carried out the electromagnetic wave
scattering of a two-dimensional sub-wavelength semi-circular trough
in a ground plane. The method of matched asymptotic expansion
was applied to solve the multipole structure of the scattering wave
to the fourth order. Although a multipole expansion is derived, the
two-dimensional wave is different from the current interest of the
three-dimensional problem. The main difference is that the former
is of the cylindrical wave type, but the latter is of the spherical one.
In addition, the scattering waves have dependencies on both of the
spherical azimuthal and colatitude angles, which are associated with
the spherical harmonics. A rich multipole structure, hence, can be
generated when the incident wave sheds obliquely on the pore.

Extensive theoretical work for the electromagnetic wave scattering
by various aperture structures in conducting screens was done in the
70s to 80s, see [12–14] and references therein. Most of the theories
were developed by matching the tangential components of the physical
fields (electric or magnetic) at the joint plane of the aperture and the
radiation domain. Closely related to the current work, Roberts [14, 15]
developed a rigorous method for the scattering from a circular aperture
in a perfect conducting plate with a finite thickness. Thorough
calculations were performed for wide ranges of incident angles and
incident wavenumbers. Physical fields of the near-field region were also
demonstrated, and rich patterns of scattering directivities were found
for large wavenumber incidence. On the other hand, explicit forms
for the scattering can be made with classical multipole expansions for
small scatterers or pores. High order accuracy of the scattering wave
can be obtained by expansions involving polynomial series of the wave
number: Rayleigh series. Various procedures have been developed.
For example, Stenvenson [6] formulated a set of integro-differential
equations for magnetic currents in the series and solved for scattering
due to apertures of elliptic/circular shapes in infinitely thin plates.

In principle, the general purpose theories are applicable to our
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present problem, with additional accounting for a waveguide section
connecting to the pore. One way to incorporate the long wavelength
assumption with the aforementioned wave scattering theory is to
find the asymptotic expansion by directly manipulating the spherical
harmonic functions. However, for providing an alternative physical
intuition, we formulate the potentials using the duality property of
the source-free Maxwell equations — a scalar electric potential and its
associated magnetic vector potential and vice versa. The Lorentz gauge
condition is used to solve the potentials. Use of this gauge condition
also avoids the ambiguity of the Coulomb gauge, whose potential is
instantly seen in the propagation field without the retarded time of
wave propagation [16].

For the same geometric configuration, Kuo et al. [17] use the
method of matched asymptotic expansion to solve the acoustic
scattering problem. Scalar variables, the pressure perturbations in
different orders of magnitude, are the primary physical variables.
Both rigid and pressure-release boundary conditions are solved. In
this paper, we will show that the scalar variables are related to the
scalar potentials in the electromagnetic waves. Hence, their method of
solution can be extensively applied herein, and analogous comparison
between the two systems is made.

In what follows, we describe the geometry of the problem and the
duality formulation of the source-free Maxwell equations in Section 2.
The scattering of the TM incidence and the TE incidence are solved
in Sections 3 and 4, respectively. The main results, the radiation
multipole structure of the potentials are tabulated in Tables 1, 2, and 3.

2. GEOMETRY AND GOVERNING EQUATIONS

The problem of interest is sketched in Fig. 1. There is a circular
pore with a finite depth drilled in a semi-infinite perfect conducting
bulk domain. The pore has a radius a∗ and a finite depth `∗. We
assume that `∗ and a∗ are comparable in the present paper; i.e., both
are much smaller than the wavelength of the incident wave. Without
loss of generality, we choose the x-axis of the Cartesian coordinate in
alignment with the horizontal projection of the propagation vector k∗;
that is, its y-component, k∗y, is zero and the incident electromagnetic
plane wave is directed to the pore with an incident angle α.

The source-free Maxwell equations with a time harmonic
proportional to exp(−iω∗t∗) are

∇∗ ·E∗ = 0, ∇∗ ×E∗ = iω∗B∗,

∇∗ ·B∗ = 0, ∇∗ ×B∗ = − iω∗

c∗2
E∗,

(1)
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Figure 1. (a) The coordinate system and the incident wave and (b)
the polarization definition of the incident wave.

where E∗ and B∗ are the electric and magnetic fields and c∗ is the light
speed in vacuum. Variables with an asterisk superscript ∗ denote the
dimensional physical quantities.

The electric and magnetic fields are mutually coupled in these
equations. However, the solution process for analytical solutions
is made possible by introducing auxiliary potentials. Defining the
magnetic vector potential

B∗ = ∇∗ ×A∗
M , (2)

and substituting into (1)2, we obtain an accompanying scalar potential
Ψ∗

E , such that
E∗ = iω∗A∗

M +∇∗Ψ∗
E . (3)

Choosing the Lorentz gauge condition,

∇∗ ·A∗
M +

iω∗

c∗2
Ψ∗

E = 0, (4)

both of the potentials satisfy the wave equations

∇∗2Ψ∗
E + k∗2Ψ∗

E = 0, and ∇∗2A∗
M + k∗2A∗

M = 0. (5)

On the other hand, because of the symmetric form of the Maxwell
equations, we can define a set of dual potentials A∗

E and Ψ∗
M , such

that
E∗ = −∇∗ ×A∗

E , and B∗ =
iω∗

c∗2
A∗

E +∇∗Ψ∗
M . (6)
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Similarly, the potentials satisfy the wave equations

∇∗2Ψ∗
M + k∗2Ψ∗

M = 0, and ∇∗2A∗
E + k∗2A∗

E = 0, (7)

under the gauge condition

∇∗ ·A∗
E + iω∗Ψ∗

M = 0. (8)

Equations (4), (5), (7) and (8) are now our system of governing
equations, and the physical fields are calculated with (2), (3) and (6).

The scattering potential is induced by the geometrical non-
uniformity of the pore. Since its length scale is the pore radius, the
potentials are nondimensionalized as

AM =
c∗

2|E∗
inc|a∗

A∗
M , ΨM =

c∗

2|E∗
inc|a∗

Ψ∗
M ,

and
AE =

1
2|E∗

inc|a∗
A∗

E , ΨE =
1

2|E∗
inc|a∗

Ψ∗
E ,

where 2|E∗
inc| is twice the electric amplitude of the incident wave.

In application of the method of matched asymptotic expansion,
the domain of interest is conceptually divided into the inner and outer
regions, which correspond to the near and far fields with respect to
the hole position, see Fig. 2. The inner and outer coordinates are
characterized by the hole radius a∗ and the wavelength λ∗ = 2π/k∗,
respectively. The condition that the hole size is much smaller than the
wavelength gives rise to a small parameter ε ≡ k∗a∗ ¿ 1, defined as the
product of wave number and hole radius. By use of the perturbation
technique, the physical quantity is expanded as series of ε, and the
equations are derived by collecting the series terms for each order of ε.

α 

k  = (k  
x

,0 k  
z

)

a 
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Figure 2. The concept of the matched asymptotic expansion.
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In the inner region, the governing equations are shown to be the
Laplace equation for the leading-order and the Poisson equation for
the second-order, c.f. (11)1,2. This is to say that both electric and
magnetic fields are quasistatic in the inner region. Inside the hole, the
solutions are expressed as a sum of waveguide modes. The Fabrikant
theory [18] is used to recast the integral representation for the scattered
fields into analytical functions. Continuity of the electric and magnetic
fields at the hole exits gives the boundary conditions for solving the
weighted coefficients of the waveguide modes and, thus, the near-field
solutions are determined accordingly. On the other hand, the fields
in the outer region are radiative and are described by the Helmholtz
equation, c.f. (9)1,2. The far-field solutions are expanded into series
of spherical harmonics. The principle of asymptotic matching ensures
that there exists an overlap region between the inner and outer fields
where the asymptotic representation of the inner solution (at the far-
field limit) be identical to that of the outer solution (at the near-field
limit) [17, 19]. By matching this condition, the weighted coefficients
of spherical harmonics and the far-field solutions are obtained and the
inner, outer, and hole solutions are combined together to give the whole
solutions of the underlying problem.

On the previous outline of the matched asymptotic expansion,
we normalize (1) and (5) with respect to the wave length to find the
equations for the outer radiative region:(∇2

o + 1
)
AM,E = 0,

(∇2
o + 1

)
ΨM,E = 0, ∇o ·AM,E = −iΨE,M , (9)

where subscript o stands for the outer region. The physical
electro/magnetic fields, (3) and (6), in the region are, thus

B = iεAE + ε∇oΨM , E = iεAM + ε∇oΨE . (10)
On the other hand, normalization against the pore radius leads to the
equations for the inner region:(∇2

i +ε2
)
AM,E = 0,

(∇2
i +ε2

)
ΨM,E = 0, ∇i ·AM,E =−iεΨE,M , (11)

where ε is the product of k∗ and a∗, the small parameter. The subscript
i stands for the inner region. The physical fields in the inner region
are, consequently,

B = iεAE +∇iΨM , E = iεAM +∇iΨE . (12)
To construct the solutions, we expand the potentials by AM,E =
A(0)

M,E + εA(1)
M,E + ε2A(2)

M,E + O(ε3) and ΨM,E = Ψ(0)
M,E + εΨ(1)

M,E +

ε2Ψ(2)
M,E +O(ε3) into (11), with the bracketed superscript indicating the

magnitude order of the solution terms. The scattering field is induced
in respond to the incident wave and, therefore, we need to determine
the expansion series and define the polarization of the incident wave
to start the matching procedures.



186 Kuo, Chern, and Chang

3. TRANSVERSE MAGNETIC POLARIZED INCIDENCE

3.1. External Wave Field

The coordinate system is sketched in Fig. 1. Furthermore, we adopt
the polarization definition as in the waveguide theory, i.e., Bz = 0
for TM mode in the pore. Under this coordinate system and the
polarization definition, the only non-vanishing magnetic component
of the TM incident wave is B∗

y . The solution to this polarized incident
wave will be presented in this section. On the other hand, there exist
two non-zero magnetic components, B∗

x and B∗
z , in the TE polarized

incident configuration, and its incurred scattering field will be shown
in Section 4.

Now, we have the TM polarized external wave field, the sum of the
incident wave with its total reflective wave by the flat infinite perfect
conducting surface

B∗
ext = 2

|E∗
inc|
c∗

( 0
1
0

)
exp(ik∗xx∗) cos(k∗zz

∗),

and

E∗ext = 2i|E∗
inc|

(
k∗z sin(k∗zz∗)

0
ik∗x cos(k∗zz∗)

)
exp(ik∗xx∗),

where the suffix ext represents the external field. We use the bracket
vector forms for the Cartesian component unless otherwise stated.

Near the pore exit, we nondimensionalize the external wave field
and express it in an asymptotic series with the inner spatial coordinate

Bext =

( 0
1
0

)
(1 + iεkxx) + O(ε2), (13)

and

Eext = −kx

( 0
0
1

)
+ iε




k2
zz
0

−k2
xx


 + O(ε2), (14)

where kx = sinα and kz = cosα.
To match the field in the pore, it is convenient to recast (13) and

(14) into the dual potentials. They are

Bext = ∇i(ρ sinφ) + iεkx∇i ×
(
eρ

ρz

2

)
+

iεkx

4
∇i

(
ρ2 sin(2φ)

)
+ O(ε2)

= ∇iΨ
(0)
M,ext +∇i ×A(1)

M,ext +∇iΨ
(1)
M,ext + O(ε2), (15)
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and

Eext = −kx∇iz + iε∇i × (ezρz sinφ)− iεk2
x∇i(ρz cosφ) + O(ε2)

= ∇iΨ
(0)
E,ext +∇i ×A(1)

E,ext +∇iΨ
(1)
E,ext + O(ε2), (16)

where eρ and ez are the unit vectors in the ρ and z axes of the
cylindrical coordinates, (ρ, φ, z). The subscript ext denotes the external
incident field. One can easily check that the potentials satisfy the
gauge condition, (11)3 in the inner region. These external fields provide
the forcing fields to produce the scattering wave when a small pore is
present at the origin.

3.2. Scalar Potentials and Their Radiation

The scalar potentials in the external field, in the first and the third
terms of (15), and (16), suggest that the contribution of the inner
potentials reads

B(0,1) = ∇iΨ
(0,1)
M , E(0,1) = ∇iΨ

(0,1)
E ,

where the bracketed superscripts, (0,1) indicate the first two orders
of the magnitude in ε of their physical variables. For the perfect
conducting surface, we have Ψ(0,1)

E = 0, the Dirichlet condition,
and ∂Ψ(0,1)

M /∂n = 0, the Neumann condition, on the boundaries for
the vanishing surface electric components and the vanishing normal
magnetic component, respectively. Both the electric and magnetic
scalar potentials satisfy the Laplace equation. In this section, we will
solve accordingly the magnetic and electric scalar potentials.

We start from the magnetic potential. Because this potential
satisfies the Neumann boundary condition on the perfect conducting
surface, the equation for the potential is similar to the acoustic
scattering with the rigid condition. We have the integral equation
to relate the scattering magnetic scalar potentials Ψ(0,1)

M,sc, the external

forcing potential Ψ(0,1)
M,ext, and the potential in the pore Ψ(0,1)

M,pore at the
pore exit plane, 0 ≤ ρ < 1, z = 0,

Ψ(0,1)
M,pore|<

=Ψ(0,1)
M,ext|< −

1
2π

∫ 2π

0

∫ 1

0

∂Ψ(0,1)
M,sc

∂z0

∣∣∣
< ρ0dρ0dφ0√

ρ2+ρ2
0−2ρρ0 cos(φ−φ0)

. (17)

The external potentials are Ψ(0)
M,ext = ρ sinφ and Ψ(1)

M,ext =
ikxρ2 sin(2φ)/4, defined in the first and third terms of (15). The
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subscripts, sc and pore, refer to the scattering and the total potential
in the pore. The evaluation symbol, |<, stands for the fact that its
operand is evaluated on the area ρ ≤ 1 at z = 0.

This integral equation, (17), is a Fredholm integral equations of
the first kind. By satisfying this equation, the resultant potential field
in the semi-infinute domain z ≥ 0 is

Ψ(0,1)
M = Ψ(0,1)

M,ext + Ψ(0,1)
M,sc, (18)

and the potential in the pore z < 0 is

Ψ(0,1)
M = Ψ(0,1)

M,pore, (19)

and the potential is smoothly continuous across the pore exit. In the
following, we will describe the essential details related to the present
electromagnetic wave scattering but defer the derivation and inversion
procedures to Fabrikant [18] and Kuo et al. [17].

The magnetic potentials for O(ε0) and O(ε) in the pore can be
expanded by the infinute sum of the eigen-solutions

Ψ(0)
M,pore(ρ, φ, z) = Ā

(0)
M,1nJ1(j′1nρ) sin φ

cosh(j′1n(z + `))
cosh(j′1n`)

,

Ψ(1)
M,pore(ρ, φ, z) = ikxĀ

(1)
M,2nJ2(j′2nρ) sin(2φ)

cosh(j′2n(z + `))
cosh(j′2n`)

,

(20)

where j′mn is given by J ′m(j′mn) = 0. The summation symbol that
represents summing over from n = 1 to ∞ is omitted. The system
equations are similar to the first- and the second-order equations of
the acoustic equations for the rigid condition, (6) and (19), with only
m = 2, of [17], except that the acoustic incident wave ikx, −k2

x is
replaced by 1 and ikx and the cosine function is replaced by the sine.
The inverted algebraic system of equations for the unknown coefficients
in (20) are recapitulated in Appendix A.

Choosing the Green function satisfying the Neumann condition on
z = 0, the scattering potentials in the semi-infinite domain, z ≥ 0, can
be expressed as

Ψ(0,1)
M,sc(s, φ, θ)

=− 1
2π

∫ 2π

0

∫ 1

0

∂Ψ(0,1)
M,sc

∂z

∣∣∣
< ρ0 dρ0dθ0√

s2 + ρ2
0 − 2ρ0s sin θ cos(φ− φ0)

, (21)

where (s, φ, θ) is the spherical position coordinates, defined in Fig. 1.
The integral will be integrated numerically for the demonstration
purpose, c.f. Fig. 3. While moving away from the pore, s → ∞,
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Figure 3. Magnetic scalar potentials of the inner field for ` = 1.5 for
(a) O(1), on φ = π/2 plane and (b) O(ε), on φ = π/4 plane. The left
column is the total field. The right column is the scattering multipoles,
Ψ(0,1)

M,sc, after substracting the external and the pore fields. They are
(a) the dipole (1,1), and (b) the quadrupole (2, 2). The fields are
normalized by the incidence factors, which are 1 and ikx, respectively.

the scattering potentials transit to the outer wave propagation region,
with the characteristic length scale becoming the wavelength.

In order to match with the outer wave propagation field, we
need to find the far field behaviors of (21). This is done by letting
s2 = ρ2 + z2 → ∞ and expanding the denominator in the integrand
by Taylor series with the small parameter ρ0/s. After this expansion,
the integrals can be integrated, for similar details see from (25) to (30)
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in [17], and the approximations are found:

Ψ(0)
M,sc(s, φ, θ) ≈ − 1

2s2
Ā

(0)
M,1n tanh(j′1n`)J2(j′1n) sin θ sinφ

+
3

16s4
Ā

(0)
M,1n tanh(j′1n`)

(
J2(j′1n)− 2

j′1n

J3(j′1n)
)(

5 cos2 θ−1
)
sin θ sinφ,(22)

and

Ψ(1)
M,sc(s, φ, θ) ≈ −3ikx

8s3
Ā

(1)
M,2n tanh(j′2n`)J3(j′2n) sin2 θ sin(2φ), (23)

with an accuracy up to O(s−4). The spatial dependence indicates that
there are two near field singularities, s−2 and s−4, of the scattering
wave, and they become the wave radiation in the outer radiation field,
which is described by the outgoing spherical Hankel function, h

(1)
1 (S)

and h
(1)
3 (S), because of the matching singularity as S → 0. Replacing

the inner spatial variable s with the outer spatial variable S = εs
and substituting the spherical Hankel wave functions, the multipole
radiation is obtained in the form of

ΨM,sc(S, φ, θ) = ε2Ψ(2)
M11,sc

+ ε4
(
Ψ(4)

M31,sc
+ Ψ(4)

M22,sc

)
+ε4Ψ̃(4)

M,sc (24)

where the subscripts, M11 , M31 and M22 are associated with the
magnetic scalar potential and denote the scattering multipole modes.
The multipoles of (24) are explicitly

Ψ(2)
M11,sc

=− i

2
Ā

(0)
M,1n tanh(j′1n`)J2(j′1n)h(1)

1 (S) sin θ sinφ,

Ψ(4)
M31,sc

=
i

80
Ā

(0)
M,1n tanh(j′1n`)

(
J2(j′1n)− 2

j′1n

J3(j′1n)
)

h
(1)
3 (S) sin θ(5 cos2 θ − 1) sinφ

Ψ(4)
M22,sc

=
kx

8
Ā

(1)
M,2n tanh(j′2n`)J3(j′2n)h(1)

2 (S) sin2 θ sin(2φ).

(25)

These modes are numbered on a similar scheme as in the quantum
mechanics.There is an additional correction term arising from the
higher order inner region to satisfy the gauge condition. The correction
term, Ψ̃(4)

M,sc, is of O(ε4), c.f. (41). This structure of the higher order
correction is also found in [11], except that we find it using the gauge
condition. In our present notation, we keep the directivity patterns
in the primitive triangular function forms instead of the spherical
harmonics for convenience of calculation.

Having solved the magnetic potentials, we now work on the electric
potentials, Ψ(0,1)

E . The perfect conducting boundary condition that
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these electric potentials satisfy is the Dirichlet condition Ψ(0,1)
E = 0.

This corresponds to the acoustic scattering with a pressure-release
(soft) condition so that we can derive the integral equations for the
scattering components Ψ(0,1)

E,sc , see Section 4 in [17],

∫ 2π

0

∫ 1

0

∂Ψ(0,1)
E,sc

∂z0

∣∣∣
< ρ0dρ0dφ0√

ρ2 + ρ2
0 − 2ρ0ρ cos(φ− φ0)

= −
∫ 2π

0

∫ ∞

1

∂Ψ(0,1)
E,sc

∂z0

∣∣∣
> ρ0dρ0dφ0√

ρ2 + ρ2
0 − 2ρ0ρ cos(φ− φ0)

, (26)

where the evaluation symbol, |>, represents that its operand is
evaluated on the areas ρ ≥ 1, z = 0. Similar to the magnetic
counterpart, the electric potentials satisfying (26), the resultant
potentials in the semi-infinite domain z ≥ 0 and in the pore 0 ≤
ρ1, z < 0 are, respectively,

Ψ(0,1)
E = Ψ(0,1)

E,ext + Ψ(0,1)
E,sc , Ψ(0,1)

E = Ψ(0,1)
E,pore, (27)

and they are smoothly continuous across the pore exit plane. The
external forcing electric potentials, defined in the first and third terms
in (16), are Ψ(0)

E,ext = −kxz and Ψ(1)
E,ext = −ik2

xρz cosφ, (16) and the
potentials in the pore can be expanded by the eigen-solutions

Ψ(0)
E,pore(ρ, φ, z) = −kx

Ā
(0)
E,0n

j0n
J0(j0nρ)

sinh(j0n(z + `))
cosh(j0n`)

,

Ψ(1)
E,pore(ρ, φ, z) = −ik2

x

Ā
(1)
E,1n

j1n
J1(j1nρ) cos φ

sinh(j1n(z + `))
cosh(j1n`)

,

(28)

where jmn satisfies Jm(jmn) = 0. The coefficients in (28) with (26) can
be analytically inverted and the results are relegated to Appendix A.
The equations and their solutions are analogous to those of the acoustic
scattering with the pressure-release boundaries, see (42) in [17],
provided that the acoustic incident wave ikz and kxkz are replaced
by kx and −ik2

x.
The scattering field in z ≥ 0 can be found with the help of the

Green function that vanishes on z = 0
Ψ(0,1)

E,sc (s, φ, θ)

=
1
2π

∫ 2π

0

∫ 1

0
Ψ(0,1)

E,sc |<
s cos θ

(s2+ρ2
0−2ρ0s sin θ cos(φ−φ0))3/2

ρ0dρ0dφ0,(29)

where we use the spherical coordinates for the semi-infinite domain.
Numerical example of the above expression will be given in c.f. Fig. 5.



192 Kuo, Chern, and Chang

To resolve into the wave radiation multipoles, we first approximate the
far-field of the above scatter field by letting s2 = ρ2 + z2 →∞. After
Taylor expansion against ρ0/s, substitution of (28) and integration,
the only non-vanishing terms of the integrals are

Ψ(0)
E,sc(s, φ, θ) ≈ −kx

s2

Ā
(0)
E,0n

j2
0n

tanh(j0n`)J1(j0n) cos θ

+
3kx

2s4

Ā
(0)
E,0n

j2
0n

tanh(j0n`)
(
J1(j0n)− 2

j0n
J2(j0n)

)(
5
2

cos2 θ− 3
2

)
cos θ,(30)

and

Ψ(1)
E,sc(s, φ, θ) ≈ −3ik2

x

2s3

Ā
(1)
E,1n

j2
1n

tanh(j1n`)J2(j1n) sin θ cos θ cosφ, (31)

with the same accuracy O(s−4) as for the magnetic scalar potentials.
Recasting the inner spatial radial coordinate s with the outer S = εs
and with the spatial singularities and the directivity patterns, we
match the radiation multipoles to be

ΨE,sc(S, φ, θ) = ε2Ψ(2)
E10,sc

+ ε4
(
Ψ(4)

E30,sc
+ Ψ(4)

E21,sc

)
+ε4Ψ̃(4)

E,sc (32)

whereas

Ψ(2)
E10,sc

=− ikxĀ
(0)
E,0n

j2
0n

tanh(j0n`)J1(j0n)h(1)
1 (S) cos θ,

Ψ(4)
E30,sc

=
ikx

20

Ā
(0)
E,0n

j2
0n

tanh(j0n`)
(

J1(j0n)− 2
j0n

J2(j0n)
)

h
(1)
3 (S) cos θ(5 cos2 θ − 3)

Ψ(4)
E21,sc

=
k2

x

2

Ā
(1)
E,1n

j2
1n

tanh(j1n`)J2(j1n)h(1)
2 (S) sin θ cos θ cosφ.

(33)

Similar to the magnetic potential (24), the radiation (32) is completed
by including a correction term, Ψ̃(4)

E,sc, from the higher order inner field,
c.f. (44), to satisfy the gauge condition.

Equations (25) and (33) are the radiation fields induced by
the leading orders, O(ε0) and O(ε), of the electric and magnetic
inner potentials. The characteristics of the inner static potentials
are reported in Garcia de Abajo and Saenz [2], using numerical
investigations into the near field of the electromagnetic waves near
rectangular pores. These radiation potentials, however, are not
able to completely describe the outer radiation electro/magneto-fields
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because the conjugate vector potentials have to be taken into account.
Although these conjugate potentials are induced by the scalar ones and
appear in the higher order of the inner region, they can radiate lower
orders of multipoles which balance with the scalar potentials, c.f. the
first terms of (36) and (43), according to (10). They will be described
in the following two sections.

3.3. Electric Vector Potential and Associated Higher Order
Corrections

With the solved magnetic scalar potentials Ψ(0,1)
M , we now use the

gauge condition (11)3 to solve for the their conjugate electric vector
potentials in the inner region. These vector potentials in general have
the cylindrical coordinate components

A(1,2)
E (ρ, φ, z) = eρA

(1,2)
Eρ

+ eφA(1,2)
Eφ

+ ezA
(1,2)
Ez

. (34)

The complexity of the solving procedures is greatly simplified if we first
inspect the potential in the pore region. With the magnetic potentials
in the pore (20), we can express the components of the vector potentials
of the two orders, respectively, in the form of

A(1)
Eρ,pore =D(1)

n J0(j′1nρ) sin φ
cosh(j′1n(z + `))

cosh(j′1n`)

+ F (1)
n J2(j′1nρ) sinφ

cosh(j′1n(z + `))
cosh(j′1n`)

,

A(1)
Eφ,pore =D(1)

n J0(j′1nρ) cos φ
cosh(j′1n(z + `))

cosh(j′1n`)

− F (1)
n J2(j′1nρ) cos φ

cosh(j′1n(z + `))
cosh(j′1n`)

,

A(1)
Ez ,pore =E(1)

n J1(j′1nρ) sin φ
sinh(j′1n(z + `))

cosh(j′1n`)
,

(35)

and

A(2)
Eρ,pore = D(2)

n J1(j′2nρ) sin(2φ)
cosh(j′2n(z + `))

cosh(j′2n`)

+F (2)
n J3(j′2nρ) sin(2φ)

cosh(j′2n(z + `))
cosh(j′2n`)

,

A(2)
Eφ,pore = D(2)

n J1(j′2nρ) cos(2φ)
cosh(j′2n(z + `))

cosh(j′2n`)

−F (2)
n J3(j′2nρ) cos(2φ)

cosh(j′2n(z + `))
cosh(j′2n`)

,
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A(2)
Ez ,pore = E(2)

n J2(j′2nρ) sin(2φ)
sinh(j′2n(z + `))

cosh(j′2n`)
.

Substituting into (11)3, we have the equations for the unknown
coefficients

D(1)
n − E(1)

n − F (1)
n =

iĀ
(0)
M,1n

j′1n

, D(2)
n − E(2)

n − F (2)
n = −kxĀ

(1)
M,2n

j′2n

,

These particular azimuthal dependencies of the vector potentials are
directly associated with the inducing scalar potentials. For general
azimuthal modes, one can apply the method described in [20].

Without needing to go into the rigorous procedures as in [20],
the above vector potentials can be illustrated to satisfy the Laplace
equation in the inner regions by recasting them into the Cartesian
component form. Taking (35) as the example; its Cartesian
components read

A(1)
E,pore = D(1)

n

( 0
1
0

)
J0(j′1nρ)

cosh(j′1n(z + `))
cosh(j′1n`)

+F (1)
n

( sin(2φ)
− cos(2φ)

0

)
J2(j′1nρ)

cosh(j′1n(z + `))
cosh(j′1n`)

+E(1)
n

( 0
0

sinφ

)
J1(j′1nρ)

sinh(j′1n(z + `))
cosh(j′1n`)

.

They obviously satisfy the Laplace equation component-wisely. From
the perfect conducting boundary condition of the electric field, we have
that the x- and y-components are of the Neumann type and the z-
component is of the Dirichlet type on the flanged and the bottom
surfaces of the pore. The scattering field in the semi-infinite domain,
z ≥ 0, therefore, can be found using the correspondent integral
representations, e.g., similar to (21) and (29), for the two boundary
types, respectively. After matching to the outer region by following the
similar process for the scalar potential radiation, we find the leading
two orders, O(ε2) and O(ε4), of the radiation vector potential fields

ÂE,sc = −iε2D(1)
n tanh(j′1n`)J1(j′1n)

( 0
1
0

)
h

(1)
0 (S)

+ε4
iE

(1)
n

2j′1n

J2(j′1n) tanh(j′1n`)

( 0
0

sinφ

)
h

(1)
2 (S) sin θ cos θ
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−ε4
i

12
D(1)

n tanh(j′1n`)
(
J1(j′1n)− 2

j′1n

J2(j′1n)
)( 0

1
0

)
h

(1)
2 (S)

(
1−3 cos2 θ

)

−ε4
i

8
F (1)

n J3

(
j′1n

)
tanh(j′1n`)

( sin(2φ)
− cos(2φ)

0

)
h

(1)
2 (S) sin2 θ. (36)

Similarly, the radiation to O(ε4) from the second order inner vector
potential field, A(2)

E , is

ÃE,sc = −ε4
iD

(2)
n

2
J2(j′2n) tanh(j′2n`)

( sinφ
cosφ

0

)
h

(1)
1 (S) sin θ. (37)

Sorting these radiation terms, we obtain the resultant radiation field
to be

AE,sc=ÂE,sc + ÃE,sc

=ε2




0
A(2)

E00
y ,sc

0


 + ε4




A(4)
E22

x ,sc
+ A(4)

E11
x ,sc

A(4)
E20

y ,sc
+ A(4)

E22
y ,sc

+ A(4)
E11

y ,sc

A(4)
E21

y ,sc


 , (38)

to the accuracy of O(ε4) in the outer region. The suffices like E00
y ,

E22
x , etc., are collected according to the multipole directivity of the

potential components.
Now, we can solve the unknown coefficients using the outer gauge

condition (9)3. With the potential radiation (24), the coefficient D
(1)
n

can be solved

D(1)
n =

iĀ
(0)
M,1n

2j′1n

, (39)

from the gauge condition of O(ε2) and the other coefficients

E(1)
n = 0, F (1)

n = − iĀ
(0)
M,1n

2j′1n

, D(2)
n = −kx

2

Ā
(1)
M,2n

j′2n

, (40)

from the gauge condition of O(ε4). The higher order correction of the
magnetic scalar potential radiation, see (24), is found to be a dipole

ε4Ψ̃(4)
M,sc = ε4Ψ(4)

M11,sc

=−ε4
i

30

Ā
(0)
M,1n

j′1n

tanh(j′1n`)
(
2J3(j′1n)− 1

j′1n

J2(j′1n)
)
h

(1)
1 (S) sinφ sin θ, (41)
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which leads to O(ε2) in the inner field. The scalar potential
radiation (24) and the notation definitions of the vector components
in (38) are summarized in Table 1.

Inspecting the radiation terms to O(ε4) in Table 1, we find that
they are solely determined by the two inner scalar potentials, Ψ(0)

M,sc

and Ψ(1)
M,sc. As an example, we solve numerically for the coefficients

and construct the inner potential fields. For ` = 1.5, the convergence
properties of the inversed algebraic system, c.f. Appendix A, has been
verified in Kuo et al. [17], that if the coefficients are truncated to N =
120 terms, we produce an relative error no more than approximately
3% at the singular pore exit corner. Figures 3(a) and (b) show the
scattering potentials, (21), of O(1) and O(ε) on the φ = π/2 and π/4
cut planes. They are normalized by the incident angle factors 1 and

Table 1. Magnetic dipole radiation and its associated radiation of
O(ε4). The summation operator from n = 1 to ∞ is omitted. For
TE incident, multiply each component of the scalar potentials with kz

and exchange sinφ and sin(2φ) by cosφ and cos(2φ), c.f. Section 4
Trivial adjustments of the conjugate vector potentials can be found
straightforwardly using the gauge condition.

Scalar magnetic potential Multipole moment coefficients

Ψ
(2)

M11,sc
=−iB̄

(2)

M11h
(1)
1 (S) sin θ sin φ B̄

(2)

M11 = 1
2
Ā

(0)
M,1n tanh(j′1n`)J2(j

′
1n)

Ψ
(4)

M31,sc
= iB̄

(4)

M31h
(1)
3 (S) B̄

(4)

M31 = 1
80

Ā
(0)
M,1n tanh(j′1n`)

sin θ(5 cos2 θ − 1) sin φ
(
J2(j

′
1n)− 2

j′1n
J3(j

′
1n)

)

Ψ
(4)

M22,sc
=kxB̄

(4)

M22h
(1)
2 (S) sin2 θ sin(2φ) B̄

(4)

M22 = 1
8
Ā

(1)
M,2n tanh(j′2n`)J3(j

′
2n)

Ψ
(4)

M11,sc
=−iB̄

(4)

M11h
(1)
1 (S) sin φ sin θ B̄

(4)

M11 = 1
30

Ā
(0)
M,1n

j′1n
tanh(j′1n`)(

2J3(j
′
1n)− 1

j′1n
J2(j

′
1n)

)

Vector electric potential Multipole moment coefficients

A
(2)

E00
y ,sc

= C̄
(2)

E00h
(1)
0 (S) C̄

(2)

E00 =
Ā

(0)
M,1n

2j′1n
J1(j

′
1n) tanh(j′1n`)=B̄

(2)

M11

A
(4)

E22
x ,sc

=−C̄
(4)

E22h
(1)
2 (S) sin2 θ sin(2φ) C̄

(4)

E22 =
Ā

(0)
M,1n

16j′1n
J3(j

′
1n) tanh(j′1n`)

A
(4)

E11
x ,sc

= ikxC̄
(4)

E11h
(1)
1 (S) sin θ sin φ C̄

(4)

E11 =
Ā

(1)
M,2n

4j′2n
J2(j

′
2n) tanh(j′2n`)

A
(4)

E20
y ,sc

=−C̄
(4)

E20h
(1)
2 (S)(3 cos2 θ − 1) C̄

(4)

E20 =
Ā

(0)
M,1n

24j′1n
tanh(j′1n`)(

J1(j
′
1n)− 2

j′1n
J2(j

′
1n)

)

A
(4)

E22
y ,sc

= C̄
(4)

E22h
(1)
2 (S) sin2 θ cos(2φ)

A
(4)

E11
y ,sc

= ikxC̄
(4)

E11h
(1)
1 (S) sin θ cos φ
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ikx, respectively. Our focus is drawn to the lobe structures, the leading
term of (22) and (23), of the multipole inner scattering fields, the right
pannels in Fig. 3. They are respectively a dipole in the y-direction
and a quadrupole of (2, 2). The multipole moment coefficients, the
strengths of the radiation terms, B̄

(2,4)
Mmn and C̄

(2,4)
Emn , are the functions

of the pore depth `, as depicted in Fig. 4. They all increase from zero
as ` increases from zero, and saturate to their constant values when `
is larger than about 1.

Another striking feature is that the multipoles are not organized
in a strictly ascending manner but exhibit an intervened structure. For
example, in O(ε4) of the radiation field, the scattering scalar potential
wave is composed of an octupole, a quadrupole, and a dipole, and
the Cartesian components of the electric vector potential consist of
quadrupoles and dipoles. This is due to the finite size effect of the
pore.

Up to this point, we have only used the gauge condition to
determine the unknown coefficients for the radiation. We need to verify
if the solution satisfies the boundary condition in the pore. The electric
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Figure 4. Multipole moment coefficients versus the pore depth,
associated with the electric potentials. (a) coefficients for O(ε2), (b)
coefficients for O(ε4) electric scalar potentials, (c) coefficients for O(ε4)
magnetic vector potentials.



198 Kuo, Chern, and Chang

field reads

E(1)
pore = −∇i ×A(1)

E,pore

=− iĀ
(0)
M,1n

j′1n

sinh(j′1n(z + `))
ρ cosh(j′1n`)

(
eρJ1(j′1nρ) cosφ + eφj′1nJ ′1(j

′
1nρ) sinφ

)
.

It is clear that the field fulfills the vanishing tangential electric field on
the perfect conducting surface in the pore. The zero z-component in
the pore indicates that the conjugate electric field with the magnetic
scalar potential is a transverse electric (TE) waveguide mode.

The leading order radiation of the magnetic and electric fields,
associated with the magnetic potential, Ψ(2)

M11,sc
, and the electric vector

potential, A(2)
E00

y ,sc
, are obtained by using the definition of the electric

vector potential and (10)1, and they are explicitly

E(3)
TE = ε3

eiS

S
B̄

(2)
M11

( 0,
cosφ,

− cos θ sinφ

)

spherical

,

B(3)
TE = ε3

eiS

S
B̄

(2)
M11

( 0,
cos θ sinφ,

cosφ

)

spherical

,

(42)

in the spherical coordinate. We have also omitted terms smaller than
O(S−2) for clarity. Unlike the field radiation of a electro-magnetic
dipole, (42) is a dipole aligning in the ey direction at the pore exit,
and its strength does not depend on the incident angle. The TE suffix
of the fields are given because the fields in the pore correspond to a
TE waveguide mode.

3.4. Magnetic Vector Potential and Associated Higher
Order Corrections

The magnetic vector potential and its higher order corrections can
be found in the same way as the electric vector potential in the
previous section. Without repeating the details, we only represent
the calculation results.

The two leader orders of the inner magnetic vector potentials are
found in a much simpler form than their electric counterparts, which
contain only the z-components

A(1)
M,pore = ezikx

Ā
(0)
E,0n

j2
0n

J0(j0nρ)
cosh(j0n(z + `))

cosh(j0n`)
,
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A(2)
M,pore = −ezk

2
x

Ā
(1)
E,1n

j2
1n

J1(j1nρ) cos φ
cosh(j1n(z + `))

cosh(j1n`)
.

The magnetic fields associated with the two orders of the magnetic
vector potentials are

B(1)
pore =∇i×A(1)

M,pore = eφ
ikx

j0n
Ā

(0)
E,0n

cosh(j0n(z + `))
ρ cosh(j0n`)

J1(j0nρ),

B(2)
pore =∇i×A(2)

M,pore = k2
x

Ā
(1)
E,1n

2j1n

cosh(j1n(z + `))
cosh(j1n`)(

eρ(J0(j1nρ)+J2(j1nρ)) sin φ + eφ(J0(j1nρ)−J2(j1nρ)) cos φ
)
,

which obviously correspond to TM waveguide modes.
With the perfect conducting surface condition, the z-component

of the magnetic vector potential satisfies the Neumann condition on
the flanged surface. The radiation of the vector potential can be found
using an integral relation similar to (21), which leads to

AM,sc = ε2ezkx

Ā
(0)
E,0n

j2
0n

tanh(j0n`)J1(j0n)h(1)
0 (S)

+ε4ez
kx

12

Ā
(0)
E,0n

j2
0n

tanh(j0n`)
(
J1(j0n)− 2

j0n
J2(j0n)

)
h

(1)
2 (S)

(
1−3 cos2 θ

)

+ε4ez
ik2

x

2

Ā
(1)
E,1n

j2
1n

J2(j1n) tanh(j1n`)h(1)
1 (S) sin θ cosφ

= ε2ezA
(2)
M00

z ,sc
+ ε4ezA

(4)
M20

z ,sc
+ ε4ezA

(4)
M11

z ,sc
. (43)

The higher order correction of the electric scalar potential to the
radiation, the last term of (32), is obtained by employing the gauge
condition (9)3

Ψ̃(4)
E,sc = Ψ(4)

E10,sc

=− ikx

15

Ā
(0)
E,0n

j2
0n

tanh(j0n`)
(
J1(j0n)− 2

j0n
J2(j0n)

)
h

(1)
1 (S) cos θ. (44)

These radiation components up to O(ε4) are summarized in Table 2.
We take the same case, ` = 1.5 for numerical demonstration of

the inner scalar electric potential fields. Figs. 5(a), (b) show the inner
potentials, (28) and (29), Ψ(0)

E,sc and Ψ(1)
E,sc normalized by −kx and
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−ik2
x. From their lobe structure and directivities in z ≥ 0, the first

term of (30) and (31), the former is a vertical dipole and the latter
is a quadrupole (2, 1). Varying `, we obtain the multipole moment
coefficients as functions of the pore depth, Fig. 6. They show the
common characteristics of the previous magnetic scalar potentials, that
they are zero at ` = 0 and saturate to their respective constant values
when ` is larger than about 1. In addition, the multipoles all vanish
when the incident wave is normally shed on the pore because they
depend on the incident factors kx and k2

x.
The leading electric and magnetic radiation fields are obtained

using (10)2 with the potentials Ψ(0)
E10,sc

and A(1)
M00

z ,sc
, and they are
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Figure 5. Electric scalar potentials of the inner field for ` = 1.5 for
(a) O(1) plane and (b) O(ε), on φ = 0 plane. The left column is
the total field. The right column is the scattering multipoles, Ψ(0,1)

E,sc ,
after subtracting the external forcing field. They are (a) the dipole
(1,0), and (b) the quadrupole (2, 1). The fields are normalized by the
incidence factors, which are −kx and −ik2

x, respectively.
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Table 2. Electric dipole radiation and its associated radiation of
O(ε4). The summation operator from n = 1 to ∞ is omitted.

Scalar electric potential Multipole moment coefficients

Ψ
(2)

E10,sc
=−ikxB̄

(2)

E10h
(1)
1 (S) cos θ B̄

(2)

E10 =
Ā

(0)
E,0n

j20n
tanh(j0n`)J1(j0n)

Ψ
(4)

E30,sc
= ikxB̄

(4)

E30h
(1)
3 (S) cos θ(5 cos2 θ − 3) B̄

(4)

E30 = 1
20

Ā
(0)
E,0n

j20n
tanh(j0n`)(

J1(j0n)− 2
j0n

J2(j0n)
)

Ψ
(4)

E21,sc
=k2

xB̄
(4)

E21h
(1)
2 (S) sin θ cos θ cos φ B̄

(4)

E21 = 1
2

Ā
(1)
E,1n

j21n
tanh(j1n`)J2(j1n)

Ψ
(4)

E10,sc
=−ikxB̄

(4)
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(4)
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Ā
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Figure 6. Multipole moment coefficients versus the pore depth,
associated with the electric potentials. (a) coefficients for O(ε2), (b)
coefficients for O(ε4) electric scalar potentials, (c) coefficients for O(ε4)
magnetic vector potentials.
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explicitly

E(3)
TM = −ε3kxB̄

(2)
E10

eiS

S
sin θeθ,

B(3)
TM = −ε3kxB̄

(2)
E10

eiS

S
sin θeφ,

(45)

in the spherical coordinate. This is the resultant field of a dipole
aligning in the ez direction at the pore exit. The TM suffix indicates
that the fields are associated with a TM wave guidemode in the pore.
The vertical dipole strength is −kxB̄

(2)
E10 and, because it is proportional

to kx, excitation of this mode depends on the nonzero inclination
angle. A physical intuition can be drawn that the nonzero incident
angle introduces an external electrical forcing component in the z-
direction, hence creating voltage potential differences in this direction
and resulting in the vertical dipole radiation.

4. TRANSVERSE ELECTRIC POLARIZED INCIDENCE

We consider the TE polarized incidence in this section. The external
wave field, the sum of the incident wave and its total reflective wave
by the flanged perfect conducting surface, is

E∗ext = −2i|E∗
inc|

( 0
1
0

)
exp(ik∗xx∗) sin(k∗zz

∗).

From the Maxwell Equation (1), the external magnetic field is

iω∗B∗
ext = −2i|E∗

inc|
( −k∗z cos(k∗zz∗)

0
ik∗x sin(k∗zz∗)

)
exp(ik∗xx∗).

After nondimensionalization and expansion in the inner region, the
forcing, expressed by the potentials, becomes

Eext = iεkz∇i × (ezρz cosφ) + O(ε2)

and

Bext = kz∇i(ρ cosφ) + iε
kxkz

4
∇i

(
ρ2 cos(2φ)

)
+ iε

kxkz

4
∇i

(
ρ2 − 2z2

)

+O
(
ε2

)
, (46)

in the cylindrical coordinate variables.
Observing the form of the scalar potentials between (46) and

those (15) in the TM incidence, we conclude that the first two terms
are readily associated with the magnetic scalar potentials found in the



Progress In Electromagnetics Research B, Vol. 26, 2010 203

previous section, but with an additional incident factor kz and with
the triangular sine functions of the azimuthal angles replaced by the
cosines. Trivial adjustments, e.g., the component orientations, are also
needed for their conjugate vector potentials, and they can be found
straightforwardly using the gauge condition. For brevity, they are not
rederived here, and the solution in Table 1 holds (with the incident
angle and directivity adjustment; see the caption).

The still unsolved potential is the first order magnetic scalar
potential, Ψ(1)

M , of the azimuthal mode m = 0. The integral equation
that this potential satisfies is identical to (17) with Ψ(1)

M,ext|< =
ikxkz(ρ2 − 2z2)/4, the zeroth aximuthal mode of the external incident
field. The pore potential Ψ(1)

M,pore is expanded by

Ψ(1)
M,pore = ikxkz

(
Ā

(1)
M,00 + Ā

(1)
M,0nJ0(j′0nρ)

cosh(j′0n(z + `))
cosh(j′0n`)

)
, (47)

and the inverted algebraic system for Ā
(1)
M,00 and Ā

(1)
M,0n is referred to

Appendix B. This leads to the second order inner electric vector
potential in the form of

A(2)
E,pore = eρD

(2)
n J1(j′0nρ)

cosh(j′0n(z+`))
cosh(j′0n`)

+ezE
(2)
0n J0(j′0nρ)

sinh(j′0n(z+`))
cosh(j′0n`)

+ezikxkzĀ
(1)
M,00(z+`), (48)

where D
(2)
n and E

(2)
n are the unknown coefficients to be solved. The

last term arises due to the constant term ikxkzĀ
(1)
M,00 in (47). The

normal component of (48) is zero on the surface, which corresponds to
the vanishing normal magnetic field on the perfect conducting surface.
The radiation terms of the scalar and the vector potentials, including
the magnetic scalar potential correction Ψ̃(4)

M,sc from the higher order,
are

ΨM,sc = −ε4
kxkz

6j′0n

Ā
(1)
M,0n tanh(j′0n`)J2(j′0n)

(
1−3 cos2 θ

)
h

(1)
2 (S)

+ε4Ψ̃(4)
M,sc = ε4Ψ(4)

M20,sc
+ ε4Ψ̃(4)

M,sc,

ÃE,sc = −ε4
iD

(2)
n

2
tanh(j′0n`)J2(j′0n) sin θ

( cosφ
sinφ

0

)
h

(1)
1 (S)
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+ε4
ikxkz

2
Ā

(1)
M,00` cos θ

( 0
0
1

)
h

(1)
1 (S)=ε4




A(4)
E11

x ,sc

A(4)
E11

y ,sc

A(4)
E10

z ,sc


.

They are all of O(ε4). Applying the outer gauge condition, we obtain

D(2)
n tanh(j′0n`)J2(j′0n) = −kxkzĀ

(1)
M,00`+

kxkz

j′0n

Ā
(1)
M,0n tanh(j′0n`)J2(j′0n).

Interestingly, with the D
(2)
n , we find that the correction is a monopole,

Ψ̃(4)
M,sc = Ψ(4)

M00,sc
= ikxkz


Ā

(1)
M,00`

2
− Ā

(1)
M,0n

3j′0n

tanh(j′0n`)J2(j′0n)


h

(0)
0 (S).

(49)
Its associated inner field is of O(ε3), which we omit in this paper to
proceed. One can, however, verify that the inner solution fulfills the
Poisson equation ∇2

i Ψ
(3) = −Ψ(1), from (11)2. Table 3 summarizes the

radiation terms of this zero azimuthal mode, (49) and (49).
To illustrate the inner field of this mode, we use the same pore

` = 1.5 and sketch the magnetic potential in Fig. 7. It is a quadrupole
(2, 0) field. The induced multipoles of this mode have a common
incident factor kxkz. The contribution of these multipoles to the
scattering field is, therefore, maximized when the incident angle is 45◦.
Their multipole moment coefficients, Fig. 8, however, exhibit a major
different structure than those in Sections 3.3 and 3.4. The reason is
the nonzero constant Ā

(1)
M,00, Fig. 8(b), which leads to the moment

Table 3. Radiation of the zeroth azimuthal mode. These terms are
in adjunct to those in Table 1 of the TE incidence.

Scalar electric potential

Ψ
(4)

M20,sc
=kxkzB̄

(4)

M20h
(1)
2 (S)(3 cos2 θ−1) B̄

(4)

M20 = 1
6j′0n

Ā
(1)
M,0n tanh(j′0n`)J2(j

′
0n)

Ψ
(4)

M00,sc
= ikxkzB̄

(4)

M00h
(0)
0 (S) B̄

(4)

M00 =(
Ā

(1)
M,00`

2
− Ā

(1)
M,0n

3j′0n
tanh(j′0n`)J2(j

′
0n)

)

Vector magnetic potential Multipole moment coefficients

A
(4)

E11
x ,sc

= ikxkzC̄
(4)

E11h
(1)
1 (S) sin θ cos φ C̄

(4)

E11 =

1
2

(
Ā

(1)
M,00`−

Ā
(1)
M,0n

j′0n
tanh(j′0n`)J2(j

′
0n)

)

A
(4)

E11
y ,sc

= ikxkzC̄
(4)

E11h
(1)
1 (S) sin θ sin φ

A
(4)

E10
z ,sc

= ikxkzC̄
(4)

E00h
(1)
1 (S) cos θ C̄

(4)

E00 = 1
2
Ā

(1)
M,00`
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Figure 8. Multipole moment coefficients versus the pore depth,
associated with the magnetic potentials of the TE incidence. (a) B̄

(4)
M20 ,

(b) the constant Ā
(1)
M,00 in (47), (c) coefficients with the effect of Ā
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For the finite thick plate, the horizontal axis is the plate thickness.

coefficients, B̄
(4)
M00 , C̄

(4)
E11 , and C̄

(4)
E00 , being almost linearly proportional

to the pore depth, Fig. 8(c). The dependence of these coefficients on
` contains the integrated effect of the depth-wise magnetic component
of the TE polarized incidence.
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As the previous section, we conclude here by presenting the
explicit form of the leading order radiation of the physical fields, which
reads

E(3)
TE = ε3kzB̄

(2)
M11

eiS

S

( 0,
− sinφ,

− cos θ cosφ

)

spherical

,

B(3)
TE = ε3kzB̄

(2)
M11

eiS

S

( 0,
cos θ cosφ,
− sinφ

)

spherical

,

(50)

with a linear dependence on kz. The associated waveguide mode in the
pore is a TE mode. It is simply the dipole field of (42) with a factor
kz, accounting for the horizontal component of the incident magnetic
field, and with a rotation with respect to the z-axis by −π/2; i.e.,
φ → φ + π/2.

5. LEADING DIPOLE RADIATION

The present method has been extended to find the scattering of a
small pore in a finite thick perfect conducting plate; see the minimum
details in [21]. Both reverse scattering and the transmitted waves
are obtained. It is therefore informative to compare the dipoles
between the two configurations, together with the classical dipole
representations, Sections 11.1.2 and 11.1.3 [16].

The dipole radiation fields for both of TM and TE incidences
read (42), (50) and (45). By aligning the magnetic and the electric
dipole in the same way as in [21], we find that these dipoles are
induced by the y- and x-, i.e., the horizontal, components of the
incident magnetic field and the z-component of the incident electric
field, respectively. Excluding the incident angle factors, 1, kz and −kx,
the correspondent magnetic and electric dipole moments are

m = 4πB̄
(2)
M11 , p = 4πB̄

(2)
E10 ,

where the first magnetic dipole moment accounts for the two horizontal
magnetic dipoles. Together with the reverse scattering and transmitted
dipoles through the finite thick plate, we have the effective dipole
moments versus the pore depth/plate thickness in Fig. 9.

Combining the two geometric configurations, we find that the
reverse scattering asymptotes to the same strength, demonstrated by
the leading dipoles, as the pore depth increases. The convergent
manner versus the pore depth indicates that the source of the reverse
scattering is localized near the pore exit facing towards the incident
wave. The classical Bethe’s solution, exactly at |m| = 8/3 and
|p| = 4/3, [22], is also depicted for comparison.
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Figure 9. Comparison of the dipole moments to the back scattering
and transmitted dipoles of the finite thick plate. (a) The magnetic
dipole moment (b) the electrical dipole moment versus the pore depth
(thick blue line).

6. CONCLUSION

The three-dimensional scattering wave field of electromagnetic waves
incident obliquely on a small pore in a semi-infinite perfect conducting
domain is solved analytically using the method of matched asymptotic
expansion. In order to facilitate the analysis, we utilize the duality
property of the source-free Maxwell equations to formulate the
problem. This enables us to incorporate the solution found in a
counterpart acoustic scattering problem, [17], to the electromagnetic
wave system. In this formulation, an auxiliary scalar and a vector
potential are introduced. Both the scalar and the vector potentials
satisfy the wave equations if they satisfy the Lorentz gauge condition.
When the pore is small, the wavelength is much larger than the
radius of the pore, and therefore, the scattering field can be divided
into an inner field, near the pore region, and an outer radiation
field. Their characteristic length scales are the pore radius and the
wavelength, respectively. The governing equations in the inner field
can be simplified to the Laplace or Poisson equation. They are
solved analytically by the method developed by Fabrikant. The outer
radiation field is described by the wave equations and the scattering
multipoles are determined by the matching procedures. With the help
of the gauge condition, we carry out the matching procedure to O(ε)
in the inner region and O(ε4) in the outer region.

Both TM and TE polarized incident waves, as defined in Fig. 1,
are calculated. For the two orders of the inner fields, the key for
the solutions is the magnetic/electric scalar potentials, and five such
fields, (20), (28), and (47), are found. The major contributors
of the inner field are the two zeroth order fields, Figs. 3(a) and
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5(a). They correspond somewhat to fields presented in [5] in the
numerical investigation of the transmission of the electromagnetic
waves through a rectangular hole. The electro/magneto-vector
potentials are induced according to the gauge condition, and from
their derived electro/magneto-fields in the pore, they are associated
with TE and TM waveguide modes, respectively.

The inner fields lead to the radiation of the multipoles. By
matching, we obtain multipole scattering expansions for both of the
TM and TE polarized incident waves, which are summarized in
Tables 1, 2, and 3. It is also found that, though the induced vector
potentials in the inner region are one order smaller than the causing
scalar potentials, there are components that radiate with the same
order as the scalar potential radiation in the outer region. The
physical electro/magneto-field radiation can only be correctly obtained
by taking this mathematical structure into account.

In addition, the multipoles are not organized in a strictly
ascending way. For example, in O(ε4) of the radiation field,
the scattering scalar potential waves are composed of octupoles,
quadrupoles, and dipoles, and the vector potentials are composed
of quadrupoles and dipoles, Tables 1 and 2. In the case of the TE
incidence, there is even a monopole radiation of the magnetic scalar
potential, Table 3, whose strength is linearly proportional to the depth
of the pore. This does not mean that the monopole can exist alone;
rather, in contrast, it has to be associated with its companion electric
vector potential. This particular multipole structure is caused by the
finite size effect of the pore.

The dependence of the incident angle is extracted as multiplier
factors. The only geometric effect of the pore after normalization with
respect to the pore radius is the depth. It modifies the wave scattering
through its influence on the effective multipole moment coefficients,
B̄

(2,4)
MEmn and C̄

(2,4)
EMmn . The coefficients are shown to vanish altogether at

` = 0. For TM incidence, the coefficients asymptote to their respective
constant values when ` exceeds about 1. On the other hand, for TE
incidence, the magnetic component in the depth-wise direction induces
radiation multipoles of O(ε4), whose strengths are linearly proportional
to the pore depth. The incident factors also reveal the alternation of
the induced waveguide modes in the pore. When the wave is normally
shed on the pore, kx = 0, only the TE mode in the pore is excited.
When the incident wave is inclined with a non-zero z-component of
the electric field, the TM waveguide mode is raised.

The leading dipole fields for both of the incident polarizations
are explicitly calculated. For the magnetic scalar potential, the dipole
lies on the horizontal xy plane, but for the electric scalar potential,
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the dipole is vertical to the pore exit. The present theory has been
extended to the scattering of a small pore in a finite thick perfect
conducting plate. Both reverse scattering and the transmitted waves
are obtained. Combining the two results, we find that the reverse
scattering asymptotes to the same strength, demonstrated by the
leading dipoles, as the pore depth increases. The fast convergence
versus the pore depth indicates that the source of the reverse scattering
is localized near the pore exit facing towards the incident wave. The
classical Bethe’s solution, [22], is also depicted for comparison between
the two geometric configurations. In the future, the present expansions
will enable us to treat the pore as an individual scatterer and thus to
investigate the wave fields from surfaces with various pore structures by
formulating the mutual interactions as multiple scattering processes;
see Garcia de Abajo [3], Ishimaru [23].
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APPENDIX A. ALGEBRAIC EQUATIONS FOR TM
INCIDENCE

We use the method developed by Fabrikant, [18], to find analytically
the asymmetric three-dimensional potentials. The solving procedures
are detailed in [17] and are not repeated here. For the zeroth order, we
have the electric potential, Ψ(0)

E , analogous to the acoustic wave with
the pressure-release condition and the magnetic potential, Ψ(0)

M , to that
with the rigid wall condition. The inverted algebraic systems for the
integral equations of the two potentials, (26) and (17), are accordingly

M(0,1)
M A(0,1)

M,1 = N(0,1)
M , M(0,1)

E A(0,1)
E,0 = N(0,1)

E , (A1)

For the former equation, we have the vectors and the matrices

N(0)
M =

2
j′21l

(
sin j′1l − j′1l cos j′1l

)
,

N(1)
M = ikx

2
3

√
π

2j′2n

J 5
2
(j′2n),
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M(0,1)
M =





π
2

{
j′ml
2

(
J2

m+ 1
2

(j′ml)− Jm− 1
2
(j′ml) Jm+ 3

2
(j′ml)

)

+Jm+ 1
2
(j′ml) Jm− 1

2
(j′ml)

}

+π
4 j′ml tanh(j′ml`)

(
1− m2

j′2ml

)
J2

m (j′ml) if n = l,

π
2
(j′mnj′ml)

−1/2

j′2mn−j′2ml

{
j′2mnj′mlJm+ 1

2
(j′mn) Jm− 1

2
(j′ml)

−j′mnj′2mlJm− 1
2
(j′mn)Jm+ 1

2
(j′ml)

}
if n 6= l,

(A2)

where m = 1 and 2 for M(0)
M and M(1)

M , respectively. On the other
hand, the vectors and the matrices of (A1)2 read

N(0)
E = −kx

√
2
π

j
− 3

2
0l J 3

2
(j0l),

N(1)
E = −ik2

x

2
3

√
2
π

j
− 3

2
1n J 5

2
(j1n),

M(0,1)
E =





− 1
2jml

tanh(jml`)Jm−1(jml)Jm+1(jml)

+ 1
2jml

{
J2

m+ 1
2

(jml)−Jm− 1
2
(jml)Jm+ 3

2
(jml)

}
, if n = l,

(jmnjml)
−1/2

j2
mn−j2

ml

{
jmlJm+ 1

2
(jmn)Jm− 1

2
(jml)

−jmnJm− 1
2
(jmn)Jm+ 1

2
(jml)

}
, if n 6= l,

with m = 0 and 1 for M(0)
E and M(1)

E , respectively.

APPENDIX B. ALGEBRAIC EQUATIONS FOR TE
INCIDENCE

For the first order scalar potential of the azimuthal mode m = 0 in the
pore, (47), we have the inverted algebraic system

(
1 VT

V M(1)
M

) (
A

(1)
0

A(1)
0

)
= ikxkz

( 1
6

N(1)
M

)
,

where the sub-matrices and vectors are
A(1)

0 = A
(1)
0l ,

V = Vn =
sin(j′0n)

j′0n

,

N(1)
M = N

(1)
M,l =

(j′20l − 2) sin j′0l + 2j′0l cos j′0l

2j′30l

,
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and

M(1)
M =





1
2

(
1 + sin(2j′0n)

2j′0n

)
+ πj′0n

4 tanh(j′0n`)J2
0 (j′0n), if n = l,

1
2

(
sin(j′0n−j′0l)

j′0n−j′0l
+ sin(j′0n+j′0l)

j′0n+j′0l

)
, if n 6= l.
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