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Abstract—This paper presents a reconstruction approach which
exploits the field detected by a holographic radar in order to localize
and geometrically qualify a set of scattering objects. In particular,
thanks to the adoption of the Kirchhoff Approximation, the problem
is formulated as a linear inverse one wherein the unknown function
is the characteristic function accounting for the support (location and
geometry) of the target(s). The reconstruction performances of the
approach are investigated through an accurate numerical analysis, and
an experimental validation is also performed with the aim of testing
the effectiveness and the practical relevance of the proposed method.

1. INTRODUCTION AND MOTIVATIONS

The employ of holographic radar is well assessed in literature
as imaging and diagnostic tool for hidden objects detection and
localization in shallow layers, with applications ranging from material
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and civil engineering to ground probing (e.g., to detect buried
landmines) [1–3].

Holographic radars exhibit some differences in the working
principle compared to the usual time-domain pulsed radar. In fact,
the classical time-domain radar works by [4]

1. emitting a UWB (Ultra-wideband) signal;
2. collecting by a receiving antenna the backscattered signal reflected

by the heterogeneities present in the investigated medium;
3. achieving information on the targets embedded in the investigated

medium by visualizing and processing the backscattered signal
collected in the previous step.

Differently, the holographic radar works by transmitting a continuous
wave (single tone) at several frequencies [2], so that the data collected
by the system are in the spatial and frequency domains [2]. In
particular, the collected signal (which is used in the subsequent stages
of processing and/or visualization) arises as an ‘interference signal’
mathematically given by the product of the field scattered by the
targets and the reference field deriving by the direct coupling between
the transmitting and receiving antennas [4].

Moreover, whereas the time-domain impulse radar works by
emitting a continuous frequency spectrum, the holographic radar emits
a discrete set of frequencies. In particular, the choice of the operating
frequency band and of the number of frequencies is dictated by the
necessity to provide a sufficient electromagnetic contrast (at least
at one of the operating frequencies) between object and embedding
medium [1–3]. In fact, for each single working frequency, “blind”
depths arise where the sensitivity of the holographic subsurface radar
appears to be minimal, due to the non constructive interference [1].

Compared to time-domain impulse radars, holographic radars, by
working with discrete spectra, are much easier to be adapted to regula-
tions and demands due to electromagnetic compatibility [5]. Moreover,
the use of multi-frequency signal provides good performances in terms
of noise rejection.

Another important advantage of holographic radar technology
is the possibility to image without reverberation dielectric materials
that lie above (or even directly on) a metal surface. Such materials
cannot currently be inspected non-destructively with traditional time-
domain impulse radar technology. In fact, the reverberation of pulses
between the radar antenna and shallow metal objects obscures the
actual location and the shape of the objects, while the object is lost
in the multiple reflections (often called ‘ghosts’ or ‘phantoms’) of the
transmitted impulse signal [6]. The capability of holographic radar to



Progress In Electromagnetics Research, Vol. 107, 2010 317

image objects located over metal surfaces could be very important, f.i.
for inspection of the heat protection systems of space ships [2].

Despite of the advantages offered by the hardware, one of the
main limitations arising in the use of the holographic radar is the lack
of an accurate modeling of the electromagnetic scattering, which is
important to set-up inversion approaches able to retrieve the geometry
of the targets (especially when the targets are not close to the
measurement plane over which the radar system moves, — see [7] for
more details on this issue).

As a crucial circumstance, no investigation of the resolution
limits of the holographic radar system has been faced. Moreover,
it is worth nothing that there is an essential distinction of the term
“spatial resolution” between holographic radars and classical impulse
radars. For holographic radars this term is accounted for the point
spread function over the plane of view at a constant depth (i.e., at
a constant distance between the measurement and the object plane).
As matter of fact, the spatial resolution is dependent on the depth
of the plane of view, on the pattern of the transmitting antenna, and
on the working frequency. Even, there is a considerable influence of
microwave attenuation in the surveying medium on quality of recorded
holograms [8].

In this paper, the problem of the localization and the geometry
determination of the targets by holographic radar data in the
framework of the linear inverse scattering problem [9] is investigated.
In particular, the formulation of the reconstruction problem as a linear
inverse one is achieved by means of the adoption of the Kirchhoff
Approximation (see [10, 11]). By using a linear formulation, the inverse
problem is solved by exploiting the assessed tool of the Singular Value
Decomposition [12], which permits to set-up stable inversion schemes
and also to investigate their reconstruction performances [12–15].

The paper is organized as follows. Section 2 is devoted at
presenting the formulation of the forward problem. In Section 3,
the corresponding inverse problem is stated as a linear one, and
the reconstruction approach is described. Finally, in Section 4 and
Section 5 an analysis with synthetic data and an accurate experimental
validation of the reconstruction approach are presented, respectively.
Conclusions follow.

2. PROBLEM FORMULATION

The transmitting/receiving antenna system plays a key-role in all the
ground penetrating radar applications [16, 17]. In order to introduce
the approach at hand, let us assume that the antenna system is
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deployed under a multi-monostatic configuration (i.e., the location of
the transmitting antenna coincides with the measurement point) and
moves over a scanning plane at z = 0 while radiating a monochromatic
wave.

In particular, we assume a transmitting antenna defined as
a rectangular aperture with an aperture field having an uniform
tangential field E0 directed along the y-axis. By applying the
Equivalence Theorem [18], it is easy to prove that the electromagnetic
field radiated by such an aperture in the half-space z > 0 is the same
as the field radiated by the equivalent magnetic surface density current
~Jm = 2E0x̂ having support on the aperture. Now, we make the further
simplifying hypothesis that the sides of the aperture are small in terms
of the radiated wavelength and denote with A the area of the aperture.

The choice of the uniform aperture field is justified on the basis
of the considerations made in [7] and by the fact that we are now
considering as antenna an elementary source. Such an elementary
source gives us the possibility to account more complicated sources
since the formulation below will remain the same with the only
exception that the radiated field is expressed under an integral form.

Therefore, by denoting with R =
√

(x− x′)2 + (y − y′)2 + z2 the
distance between the observation point [located at the point (x, y, z)]
and the magnetic dipole point [located at the coordinates (x′, y′, 0)],
the transverse components of the radiated magnetic field are given by

Hx(x, y, z) = S(f)2E0A[(β2/R)− β2(x− x′)2/R3] exp(−jβR) (1a)
Hy(x, y, z) = S(f)2E0A[−β2(x− x′)(y − y′)/R3] exp(−jβR) (1b)

Note that in (1a) and (1b) we have retained the only terms of the
radiated field that behave as 1/R; in other words, we neglect in the
expression of the radiated magnetic field the terms that go to zero in
a faster way compared to the dependence 1/R. S(f) = −j/(4πωµ0) is
a term only-frequency dependent, wherein j is the imaginary unit and
ω = 2πf (being f the working frequency); β and µ0 represent the wave-
number of the investigated medium and the magnetic permeability in
free space, respectively.

We assume that the objects to be investigated have a planar
shape and dimensions comparable with the probing wavelength,
and that they are located in a plane at constant depth z̃;
under these assumptions, it is possible to exploit the Kirchhoff
Approximation [10, 11] and to write the electric density current induced
on the target’s surface as

~Jopt = 2n̂× ~Hi = −2ẑ × (Hxx̂ + Hyŷ)
= −2HxU(x, y)δ(z − z̃)ŷ + 2HyU(x, y)δ(z − z̃)x̂ (2)
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wherein n̂ = −ẑ is the normal to the targets’ surfaces and ~Hi is the
incident magnetic field. The geometry of the targets is accounted
by U(x′, y′), which is the unknown characteristic function accounting
for the illuminated surface of the target, and δ(·) is the Dirac delta
function.

The two components of the induced electric current in Eq. (2)
give rise to the scattered field, which is evaluated in the same point
of the source (x′, y′, 0); for the scattered field we consider only the
y-component given by the sum of two contributions:
• a first contribution radiated by the y-component of the electric

current in Eq. (2), i.e.,

E1sy = S(f)S1(f)
∫

V

−2E0A[(β2/R)− β2(x− x′)2/R3]

[(β2/R)− β2(y − y′)2/R3] exp(−2jβR)U(x, y)δ(z − z̃)dxdy (3a)
• a second contribution radiated the by x-component of the electric

current in Eq. (2), i.e.,

E2sy = S(f)S1(f)
∫

V

2E0A[−β2(x− x′)(y − y′)/R3]

[−β2(y − y′)(x− x′)/R3] exp(−2jβR)U(x, y)δ(z − z̃)dxdy (3b)
wherein S1(f) = −j/(4πωε0).

By considering the constant term C0e
jϕ0 as reference field and

taking into account the real part of the ‘interference’ of the scattered
field with such a reference field, finally we obtain the datum of the
problem as

Esx = S(f)S1(f)
∫

V

2C0E0A

{
[−β2(x− x′)(y − y′)/R3][−β2(y − y′)(x− x′)/R3]+
−[(β2/R)− β2(x− x′)2/R3][(β2/R)− β2(y − y′)2/R3]

}

cos(2βR + ϕ0)U(x, y)δ(z − z̃)dxdy (4)
that can be rearranged as

Esx = −S(f)S1(f)
∫

V

2E0C0A
{
[(β2/R)][(β2/R)− β2(x− x′)2/R3

−β2(y − y′)2/R3]
}

cos(2βR + ϕ0)U(x, y)δ(z − z̃)dxdy (5)
Therefore, the problem at hand can be cast as the determination of the
unknown characteristic function U(x, y) (accounting for the location
and geometry of the target) at depth z̃ starting from the scattered
field datum Esx given in Eq. (5).
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3. THE RECONSTRUCTION APPROACH

As it was mentioned above, the problem at hand is formulated as the
inversion of the linear integral Eq. (5), which connects the unknown
characteristic function at the depth z̃ to the interference signal.

Such an inversion is performed by means of the Singular Value
Decomposition (SVD) [12, 13] of the operator defined by Eq. (5), which
provides the singular system {σn, un, vn}∞n=0, wherein the set {σn}∞n=0
denotes the sequence of the singular values ordered in a decreasing
sequence while {un}∞n=0 and {vn}∞n=0 form the basis for the space of
the visible objects (i.e., the objects that could be retrieved by the error-
free data) and for the closure of the range of the operator, respectively.

As a crucial circumstance, the analysis of the singular values of the
operator at hand (see Fig. 1) allows to state the ill-posedness [13] of the
inverse problem. In particular, for three different distances between the
measurement plane and the investigation plane (depths 0.02m, 0.2m,
and 2 m), Fig. 1 depicts the normalized amplitude of the singular values
in the case of a measurement domain with side s = 0.48m (where the
measurements are collected at a step of 0.02m). The investigation
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Figure 1. Behaviour of the singular values of the operator at hand
for different distances between the measurement and the investigation
planes: d = 0.02m, solid line; d = 0.2m, dotted line; d = 2m, dashed
line.
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plane (wherein the target is assumed to reside) has the same extent of
the measurement plane. The work frequency is f = 3 GHz.

The numerical investigation of the singular values (see Fig. 1)
allows us to point out how the information content (given as the
number of significant singular values) increases as long as the distance
between the measurement plane (z = 0) and the investigation plane
decreases.

Because of the exponential decay of the singular values, the
Truncated SVD (TSVD) expansion [13] has been adopted as
regularization scheme, and the following regularized solution has been
considered:

γ =
N∑

n=0

1
σn

< Es, vn > un (6)

where < ·, · > denote the scalar product in the data space.
By restricting the solution space to the one spanned by the first

N+1 singular functions {un}∞n=0, the TSVD regularization scheme does
not amplify the effect of errors and uncertainties on data, so that the
solution is made stable. The choice of the index N has to be performed
with regard to ‘the degree of regularization’ one wants to achieve in
the inversion also in dependence of the signal to noise ratio [13].

It is worth nothing that the SVD tool permits to investigate
also the performances of the reconstruction approach in terms of
the regularized point spread function in dependence on the level of
truncation in the SVD and on the parameters of the geometry (as
shown in [14, 15]).

4. RECONSTRUCTION PERFORMANCES OF THE
IMAGING APPROACH

This section is devoted at presenting the performances of the
reconstruction approach in dependence on the parameters of the
measurement configuration and of the effects of different quantities
and uncertainties.

In particular, a test case where the measurements are collected
with a spatial step d = 0.02m over a finite square domain of side
s = 0.48m located at the plane z = 0 is considered. The working
frequency is f = 3 GHz. The investigation plane (within which the
target is assumed to reside) has the same extent of the measurement
plane. Different studies and issues are addressed in the following
Subsections.
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4.1. The Effect of the Regularization Parameter and of the
Distance between the Planes in TSVD Scheme

In this Subsection, the case of the different thresholds (truncation
index N) exploited in the TSVD scheme is presented [see Eq. (6)]. In
particular, a number of numerical experiments have been performed
by varying the parameter freg, which represents the minimum singular
value considered in the TSVD regularization normalized to the
maximum singular value. Initially, assumption that the data are not
affected by noise has been done, and the reconstruction results are
given in terms of the modulus of the function γ retrieved by the TSVD
scheme [see Eq. (6)].

The reconstructions presented below are concerned with a point
target located at the center of the measurement plane, i.e., x = y = 0.

Figure 2. Reconstruction (amplitude of the characteristic function)
of the target point with regularization parameter freg = 0.1 at different
distances between the investigation plane and the measurement plane:
d = 0.02m (left panel), d = 0.2m (right panel), and d = 2 m (bottom
panel).
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Figure 2 shows the reconstruction of the point target for the
three different distances between the measurement plane and the
target (investigation) plane. In the TSVD scheme, only the terms
corresponding to the singular values larger than freg · σ0 have been
retained, wherein σ0 is the first and largest singular value and freg is a
regularization parameter which has to be properly chosen by the user.
In this Subsection, the choice freg = 0.1has been performed.

The three reconstructions are concerned with the depths d =
0.02m, d = 0.2m, and d = 2 m, and allow to point out how the
achievable resolution worsens as the depth increases. This is coherent
with the singular values behaviour of Fig. 1. In fact, if the distance
between the planes increases, then the number of singular values larger
than freg · σ0 decreases and, accordingly, the resolution deteriorates.

In Fig. 3, the effect of the threshold freg adopted in the TSVD
as far as the resolution limits is shown. In particular, for the case
d = 0.2m, besides the above presented case (i.e., threshold freg = 0.1),
the result with freg = 0.9 is reported in order to prove that a stronger
degree of the regularization entails a loss of resolution.

Finally, the case concerned with the effect of the error in the
knowledge of the depth of the target (i.e., distance between the planes)
has been considered. In particular, in the inversion model a distance
between the planes d = 0.2m has been imposed, whereas the two
considered datasets have been generated by considering respectively
the actual depth equal to 0.1m and 0.3 m. The two reconstruction
results are reported in Fig. 4 and allows one to state that an inaccurate
knowledge of the depth of the targets induces a defocusing effect in the
reconstruction.

Figure 3. Reconstruction (amplitude of the characteristic function) of
the target point at distance d = 0.2m with different TSVD thresholds:
freg = 0.1 left panel; freg = 0.9 right panel.
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Figure 4. Reconstruction (amplitude of the characteristic function)
of the target point at d = 0.2 m when the depth of the investigation
plane is erroneously accounted for in the inversion model: d = 0.1 m,
left panel; d = 0.3 m, right panel.

Figure 5. Reconstruction (amplitude of the characteristic function)
of an extended object with freg = 0.1 at different distances between
the investigation plane and the measurement plane: d = 0.02m (left
panel), d = 0.2m (right panel), and d = 2 m (bottom panel).



Progress In Electromagnetics Research, Vol. 107, 2010 325

4.2. Reconstruction of an Extended Object

This subsection is devoted at presenting reconstruction results for a
square object of side s = 0.08m. Once a threshold freg = 0.1 has been
fixed in the TSVD scheme, a number of numerical experiments have
been performed by varying the distance between the two planes. The
achieved results, which are shown in Fig. 5, prove that an increasing
of such a distance induces a worsening of the reconstruction. However,
the contour of the object is clearly identified for the depths d = 0.02m
and d = 0.2m, while in the case d = 2 m it is still possible to detect
the target and roughly determine the shape.

As a final assessment of the proposed approach, the reconstruction
procedure has been performed by starting from noisy data. Fig. 6
shows the results achieved by considering data with a Signal to Noise
Ratio SNR = 0.7 and exploiting freg = 0.1 in the TSVD scheme. As
it can be seen, despite of the very low SNR, the approach is still able
to detect and roughly determine the extent of the object.

5. RECONSTRUCTION RESULTS FROM
EXPERIMENTAL DATA

This section is devoted at presenting the results of the application of
the proposed processing approach to experimental data. In particular,
a subset of the measurements presented in [7] has been used to evaluate
the performances of the approach.

The experiment is concerned with a sheet of paper where
embedded letters was constructed.

Figure 6. Reconstruction (am-
plitude of the characteristic func-
tion) of an extended object with
freg = 0.6 and SNR = 0.7.

Figure 7. Application of the
proposed processing approach to
experimental data: Photo of the
investigated object.
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The letters were cut from a thin aluminium foil. The dimensions
of the word ‘RASCAN’ are 44 cm by 11.5 cm, as shown in Fig. 7. The
paper sheet with aluminium lettering was placed on a plaster sheet, and
it was covered by other plaster sheets one-by-one. The single plaster
sheet has a thickness equal to 1.2 cm and relative dielectric permittivity
ε = 2.41 F/m. After addition of each new sheet to the stack, the hidden
paper sheet was scanned by hand using the RASCAN-4/4000 radar.
Every scan included simultaneous recording of ten radar holograms, at
each of five discrete frequencies, with two polarizations per frequency.
The dimensions of scanned area were equal to 65 cm by 28 cm.

A minimal training of the operator has been required to proper
record the RASCAN radar holograms. In particular, holograms were
recorded as individual raster or scanning lines along which the radar
head was swept by hand. In order to avoid distortion of the image,
these lines were parallel and equidistant.

The time required for the scanning procedure depended on the
dimensions of the area and on the selected step between raster lines.
Measurements collected with a step of length l = 0.5 cm along the two
directions were exploited, so that a rectangular measurement grid with
a uniform spacing distance was considered.

The numerical experiments are concerned with a working
frequency f = 3.85GHz, and different numbers of plaster sheets
covering the target. In particular,
• the first result is concerned with the case of two sheets covering

the target (so that the thickness of the plaster sheets is equal to
2.4 cm);

• the second result is concerned with the case of four sheets covering
the target (so that the thickness of the plaster sheets is equal to
4.8 cm);

• the third result is concerned with the case of six sheets covering
the target (so that the thickness of the plaster sheets is equal to
7.2 cm).

For each of these experiments, Figs. 8–10 compare the data used in the
inversion with the reconstruction result in terms of amplitude of the
retrieved characteristic function.

In the case wherein a number of sheets larger than three has been
adopted, the outlines of letters have become more blurred, and the
images have exhibited a wavy nature. These phenomena are readily
explained: at very shallow depths, there is direct reflection in nadir
from surface of the letters with very high level of reflected signal (higher
than the level of the reference one and higher than off-nadir reflections).

The comparison between the data and the reconstruction makes
it possible to point out, especially for the first and third experiment
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(see Figs. 8 and 10), that the reconstruction results are more easily
interpretable and cleaner compared to the data. Differently, these good
performances do not arise for the second experiment (see Fig. 9), where
the quality of data is not suitable to achieve a reconstruction result of
quality comparable to the ones of the other two experiments.

Figure 8. First reconstruction result from experimental data (d =
2.4 cm): Comparison (in terms of amplitude of the characteristic
function) between the data used in the inversion (left panel) and the
reconstruction result (right panel).

Figure 9. Second reconstruction result from experimental data
(d = 4.8 cm): Comparison (in terms of amplitude of the characteristic
function) between the data used in the inversion (left panel) and the
reconstruction result (right panel).

Figure 10. Third reconstruction result from experimental data
(d = 7.2 cm): Comparison (in terms of amplitude of the characteristic
function) between the data used in the inversion (left panel) and the
reconstruction result (right panel).
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6. CONCLUSION

This paper has presented a simple inversion approach for the
problem of imaging embedded targets thanks to holographic radar
data. A linear inversion approach has been implemented under the
hypothesis of Kirchhoff Approximation and by exploiting as solution
tool the Singular Values Decomposition of the relevant operator.
The TSVD has permitted us to outline the performances of the
inversion approach in dependence of some factors as: the distance
between the measurement plane and the investigation plane (and/or
its non-accurate knowledge), the degree of regularization in the inverse
problem, the presence of noise on the input data.

Moreover, experimental data sets recorded by subsurface radar
of RASCAN type were used in order to test the effectiveness of the
proposed procedure. It has been shown that the restored holograms
give better resolution in comparison with original microwave images.

As future developments of the research activity, we will address the
problem of the determination of the depth of the targets by exploiting
the multi-frequency information collected by the system.
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