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Abstract—In this paper, we propose a brief and general process to
compute the eigenvalue of arbitrary waveguides using meshless method
based on radial basis functions (MLM-RBF) interpolation. The main
idea is that RBF basis functions are used in a point matching method
to solve the Helmholtz equation only in Cartesian system. Two kinds
of boundary conditions of waveguide problems are also analyzed. To
verify the efficiency and accuracy of the present method, three typical
waveguide problems are analyzed. It is found that the results of various
waveguides can be accurately determined by MLM-RBF.

1. INTRODUCTION

For the conducting waveguide problems, there are many diverse
numerical procedures to solve the Helmholtz equation. These
numerical procedures include traditional and advanced numerical
methods, such as finite element method (FEM) [1], coupled transverse-
mode integral Equation [2], moment method [3], finite difference
frequency domain method [4], multipole expansion technique [5], and
the methods of external excitation [6], of which the interpolation
procedure is implemented on a certain regular mesh.

In recent years, meshfree or meshless methods based on a set of
independent points have been used to solve the Helmholtz equation.
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For example, hybrid boundary-node method [7], boundary knot
method [8], radial point interpolation method (RPIM) [9],meshfree
least square-based finite difference method [10], and Element-free
Galerkin (EFG) method [11], have been applied to the Helmholtz
equation. EFG was also applied to the time-domain field problem [12].
Some of these meshless methods were reported to have some
advantages: Significantly lower dispersion than the FEM [9], high
convergence rates and high accuracy [7], and suitable for complicate
geometry simulation [8].

The scattered data interpolation with radial basis functions
(RBFs) which was first proposed by Kansa [13] in 1990 are powerful
tools in multi-variable approximation. It has been successfully
used to solve various partial differential equations which include the
Helmholtz equation of waveguide problems. Zhao proposed a novel
conformal meshless method based on RBF coupled with coordinate
transformation technique to analyze arbitrary waveguide problems [14].
Elliptical waveguides are computed by meshless collocation method
with Wendland RBFs [15]. Waveguide problem in cylindrical system is
also solved by using radial basis function (RBF) method [16]. For time-
domain Maxwell equations, the RBF method is applied to waveguide
eigenvalue problems [17] and transient electromagnetic problems [18].

The purpose of this paper is to propose a breif and general
process of meshless method based on the RBF interpolation technique
(MLMRBF) to solve the Helmholtz equation of arbitrary waveguide
problems. The proposed MLM-RBF is a weighted residual method that
is based on the RBF interpolation technique at a set of independent
points and the weighted residual procedure adopts the point matching
method. This paper is organized as follows. In Section 2, the RBF
interpolation technique and the discretization formulation of Helmholtz
equation by MLM-RBF will be described. In Section 3, we will use
three typical waveguide problems to validate the proposed method.
Section 4 is the conclusion.

2. RADIAL BASIS FUNCTION MESHLESS APPROACH
FOR HELMHOLTZ EQUATION

2.1. The RBF Interpolation Method

The unknown function U(r) in the computation domain Ω can be
interpolated approximately by a series of RBF:

U(r) ≈ Uh(r) =
N∑

I=1

aIφI (r), r ∈ Ω (1)
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Figure 1. The distribution of center nodes rI and collocation nodes rJ,
supported domain radius dmI and node distance h in the computation
domain Ω.

where φI(r) = φ(‖r − rI‖), is the radial basis function centered at a
set of independent points r1, . . . , rI, . . . , rN ∈ Ω (also called center
nodes, see Fig. 1), aI are unknown coefficients to be computed and
‖ • ‖ represents the Euclidean distance r between the node r and the
center node rI.

It’s known that node distribution affects the results of the RBF
interpolation. In order to obtain the accurate interpolation, nodes
in the computation domain Ω need nearly homogeneous distribution;
nodes close to and at the boundaries need high density [19].

According to the range of RBFs’ supported domain, RBFs can
be classified into two types: The globally supported RBFs and the
compactly supported RBFs. In this paper, two global RBFs and one
compact RBF are chosen to solve the waveguide problems. They are
the global Gaussian RBF with shape parameter c:

φI (r) = exp(−c‖r− rI‖2), (2)
the global quintic RBF without shape parameter:

φI (r) = ‖r− rI‖5, (3)
and the compact RBF given by Wu [20]:

φI (r) = (1− r)6+
(
6 + 36r + 82r2 + 72r3 + 30r4 + 5r5

)
(4)

where
r =

‖r− rI‖
dmI

(5)
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in which dmI is the radius of supported domain (also called supported
parameter) of RBF at the center node rI and

(1− r)+ =
{

1− r, 0 ≤ r ≤ 1
0, other (6)

From (1), we can see that the partial derivative of uh(r) is only
related to RBF. The first-order partial derivatives of RBF can be
expressed as

∂pφI(r) =
∂φI(r)

∂r

∂r

∂p
(7)

where p represents x, y or z in Cartesian system and
∂r

∂p
=

p− pI

coe ∗ ‖r− rI‖ (8)

in which coe = 1 for global RBFs, while according to (5), coe = dmI

for compact RBFs.
The second-order partial derivative of RBF can be expressed as:

∂pqφI(r) =
∂2φI(r)

∂r2

∂r

∂p

∂r

∂q
+

∂φI(r)
∂r

∂2r

∂p∂q
(9)

where q represents x, y or z in Cartesian system, and ∂2r/∂p∂q is
obtained via (8)

∂2r
∂p∂q

=
1

coe ∗ ‖r− rI‖3

[
∂p

∂q
‖r− rI‖2 − (p− pI)(q − qI)

]
(10)

2.2. Helmholtz Equation Expressed by MLM-RBF

Suppose that the waveguide boundaries are parallel to the longitudinal
z (see Fig. 2). The Borgnis’ function U(r) satisfies the homogenous
scalar Helmholtz equation in two-dimensional (2D) Cartesian
system [21]:

∂2U(r)
∂x2

+
∂2U(r)

∂y2
+ λ2U(r) = 0, r ∈ Ω (11)

where λ2 = k2 − k2
z , k represents the propagation constant, kz

represents the longitudinal propagation constant. For the transverse
magnetic (TM) mode case, the boundary conditions of U(r) on Γ
satisfy

U(r)|Γ = 0 (12)
And the boundary conditions of transverse electric (TE) mode satisfy

∂U(r)
∂n

∣∣∣∣
Γ

= 0 (13)
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where ∂n represents the normal derivative on the boundary Γ.
Substituting the RBF interpolation function (1) into (11) and

two boundary conditions (12), (13), we get the RBF interpolation
formulation of Helmholtz equation




N∑

I=1

aI

[
∂xxφI(r) + ∂yyφI(r) + λ2φI(r)

]
= 0, r in Ω

N∑

I=1

aIφI(r) = 0, r on Γ, for TM mode

N∑

I=1

aI∂nφI(r) = 0, r on Γ, for TE mode

(14)

Then, point-matching method is applied to Equation (14) at a set
of collocation nodes r1, . . . , rJ, . . . , rM ∈ Ω (M ≥ N) (see Fig. 1).
Thus, we get the discretization formulations of Helmholtz equation of
TM and TE modes by MLM-RBFs. They could be written by the
matrix formulation:

Aa = −λ2Ba (15)

where the vector coefficient a = [a1, . . . , aN ]T , the individual elements
of matrix A can be written as

AIJ =





∂xxφI(rJ) + ∂yyφI(rJ), rJ in Ω
φI(rJ), rJ on Γ, for TM mode
∂nφI(rJ), rJ on Γ, for TE mode

(16)

Γ

Ω
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Figure 2. The structure of
arbitrary waveguide.
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Figure 3. The ∂xφ and ∂yφ
projected on the normal direction
on rJ of the arbitrary curved
boundary.
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in which the ∂nφ equals to the sum of ∂xφ and ∂yφ projected on the
normal direction (see Fig. 3):

∂nφI(rJ) = ∂xφI(rJ) · cos(n̂, x̂) + ∂yφI(rJ) · cos(n̂, ŷ)
= ∂xφI(rJ) · cos(θ) + ∂yφI(rJ) · sin(θ) (17)

where x̂, ŷ, and n̂ are unit vectors in the x-, y-directions, and the
normal direction on the boundary Γ respectively. The angle θ is
between x̂ and n̂ (see Fig. 3).

For both TE and TM cases, the individual elements of the matrix
B in (15) are

BIJ =
{

φI(rJ), rJ in Ω
0, rJ on Γ

(18)

Equation (15) is the generalized eigenvalue equation. When M > N ,
(15) is M equations in N unknowns, i.e., an overdetermined linear
equation; the least square method can be used to solve it. In this
study, suppose the collocation nodes locate on the center nodes, i.e.,
M = N . The eigenpairs λj , aj, can be computed from (14), and then
substituting aj into (1), the field distribution of the jth-eigenmode can
be obtained.

3. VALIDATION OF THE PROPOSED METHOD

In order to validate the proposed method, three typical waveguide
problems are solved in this section: Rectangular waveguide, elliptic
waveguide, and triangular waveguide. The eigenvalues of TM and TE

5%

|| r  ||I

|| r ||

Figure 4. Truncated boundary of Gaussian RBF.
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modes in each waveguide problem are calculated by MLM-RBFs with
the global Gaussian, r5 RBFs, and compact Wu’s RBF. To analyze
the accuracy of the numerical algorithm, the relative error is defined
as follows:

Err =
|λc − λc0|

λc0
× 100% (19)

where λc is the numerical cutoff wavelength by MLM-RBFs and λc0 is
the analytic solution. The results of MLM-RBFs are compared with
those of the traditional mesh-based FDM and FEM methods on the
condition that the node distribution is the same.

For a set of center nodes in the domain Ω, a node parameter h
at rI, is defined as the minimum distance between the other nodes
and rI, as shown in Fig. 1. In the global Gaussian RBF case, the
shape parameter c influences the pulse width of supported domain.
In the compact RBF case, dmI influences the supported domain. So,
for convenient analysis, the parameter c of Gaussian RBF needs to
be transferred to dmI . Suppose that the truncated boundary is set
where the Gaussian RBF degenerates to 5% of its peak value and so
the distance ‖rI‖ is set as dmI , as shown in Fig. 4. From (6), we can
get

c = − log(0.05)
d2

mI

(20)

Usually, let dmI be more than one time of h, so that the supported
domain of RBFs at the nodes could be overlaid.

3.1. Standard BJ-100 Rectangular Waveguide

The structure of the standard waveguide BJ-100 (22.86mm ×
10.16mm) is shown in Fig. 5. Suppose that the nodes distribute

Figure 5. The node distribution of the standard BJ-100 waveguide.
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Table 1. The cutoff wavelengths (λc/mm) and relative errors of TM
mode by FDM, FEM and MLM-RBF in rectangular waveguide case.

mode λc0 FDM Err% FEM Err% r
5
RBF Err%

Guassian

RBF
Err%

Wu’s

RBF
Err%

TM11 1.8569 1.8608 0.21 1.8501 0.37 1.8570 0.01 1.8530 0.21 1.8549 0.11

TM21 1.5187 1.5220 0.22 1.5092 0.63 1.5185 0.01 1.5162 0.16 1.5174 0.09

TM31 1.2192 1.2235 0.35 1.2077 0.94 1.2187 0.04 1.2176 0.13 1.2183 0.07

TM41 0.9962 1.0023 0.61 0.9833 1.29 0.9958 0.04 0.9951 0.11 0.9957 0.05

TM12 0.9918 1.0011 0.94 0.9808 1.11 0.9929 0.11 0.9902 0.16 0.9915 0.03

TM22 0.9284 0.9363 0.85 0.9150 1.44 0.9289 0.05 0.9270 0.15 0.9280 0.04

TM32 0.8454 0.8522 0.80 0.8291 1.93 0.8452 0.02 0.8442 0.14 0.8449 0.06

TM51 0.8339 0.8422 0.99 0.8159 2.16 0.8337 0.02 0.8331 0.10 0.8336 0.04

TM42 0.7594 0.7660 0.87 0.7406 2.48 0.7587 0.09 0.7584 0.13 0.7589 0.07

TM61 0.7135 0.7241 1.49 0.6979 2.19 0.7135 0.00 0.7130 0.07 0.7135 0.00

noted: for the global Gaussian RBF case, dmI = 4.85 × h; for the
compact Wus RBF case, dmI = 14.5× h.

uniformly in x̂- and ŷ-directions. The number of arranged nodes in
rectangular region is set as 31×14. In order to compare the calculation
accuracy of the numerical methods, let the node distribution of FEM
and FDM be the same as that of MLM-RBF.

The cutoff wavelengths and the relative errors of the ten lowest-
order TM modes computed by MLM-RBF, FDM and FEM are shown
in Table 1. From the Table, we can see that relative errors by MLM-
RBF for all of the three RBFs are less than those by FDM and FEM.
Furthermore, the relative errors by MLM-RBF are even an order of
magnitude less than those by FDM and FEM for the higher-order
modes after TM41.

Figure 6 shows the comparision of the curves of relative errors
by FDM, FEM, and MLM-RBF in the 60 lowest-order TM modes.
From the figure, we can see that the relative errors of three numerical
algorithms fluctuate slightly and increase generally as the order of
mode increases. In the r5 RBF and Wu’s RBF cases, their relative
errors are far less than those of FDM and FEM. The relative errors of
Gaussian RBF case are still less than those of FDM and FEM although
they change greatly when the order number is over 20.

Table 2 shows the results of ten lowest-orders TE modes computed
by MLM-RBF, FDM and FEM. We can see that the relative errors for
three RBFs’ cases are a little less than those of FDM and FEM for
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Table 2. The cutoff wavelengths (λc/mm) and relative errors of TE
mode by FDM, FEM and MLM-RBF in rectangular waveguide case.

mode λc0 FDM Err% FEM Err% r
5
RBF Err%

Guassian

RBF
Err%

Wu’s

RBF
Err%

TE10 4.5720 4.5741 0.05 4.5699 0.05 4.5780 0.13 4.8074 5.15 4.6345 1.37

TE20 2.2860 2.2902 0.18 2.2819 0.18 2.2918 0.25 2.3205 1.51 2.2915 0.24

TE01 2.0320 2.0370 0.25 2.0271 0.24 2.0385 0.32 2.0507 0.92 2.0294 0.13

TE11 1.8569 1.8608 0.21 1.8501 0.37 1.8549 0.11 1.8743 0.94 1.8565 0.02

TE30 1.5240 1.5303 0.41 1.5180 0.39 1.5290 0.33 1.5323 0.54 1.5232 0.05

TE21 1.5187 1.5220 0.22 1.5090 0.64 1.5097 0.59 1.5268 0.53 1.5142 0.30

TE31 1.2192 1.2235 0.35 1.2078 0.94 1.2106 0.71 1.2224 0.26 1.2135 0.47

TE40 1.1430 1.1514 0.73 1.1347 0.73 1.1485 0.48 1.1455 0.22 1.1418 0.11

TE02 1.0160 1.0260 0.98 1.0062 0.96 1.0235 0.74 1.0135 0.25 1.0143 0.17

TE41 0.9962 1.0023 0.61 0.9836 1.26 0.9921 0.41 0.9973 0.11 0.9909 0.53

noted: for the global Gaussian RBF case, dmI = 5.79 × h; for the
compact Wus RBF case, dmI = 20× h.
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Figure 6. The relative errors of FDM, FEM and RBF-MLM vary
with mode order increases in TM mode case.
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most of TE modes. The case of r5-RBF without shape parameter is
taken as a comparative example, the calculation accuracies of the TE
modes are less than those of TM modes. In addition, like TM case,
the relative errors by MLM-RBF do not always increase as the order
of mode increases.

3.2. Elliptical Waveguide

In this section, the elliptical waveguide with curved boundary (see
Fig. 7) is solved. Let long axis b = 1 and the eccentricity e = 0.5. The
conformal node distribution fitting naturally the curved boundaries is
adopted, as shown in Fig. 7. Let the number of node layer from center
point to outer boundary be 10, and node distance on each layer be
equal to layer distance h. Suppose the node distribution is the same
as that of the FEM.

There are four types of propagation mode: TMcm, TMsm, TEcm

and TEsm in elliptical waveguide, which are the hybrid modes of the
linear combination of TM and TE modes in elliptical waveguide [22].
The subscripting symbol c, s represent odd mode and even mode in
the hybrid modes respectively. The solution of ten lowest-order hybrid
modes are computed by the modified continued fractional method [22].
In this paper, these hybrid modes are calculated directly by the TM
and TE discretization formulation of MLM-RBF in Cartesian system.

Table 3 shows the results of ten lowest-orders hybrid modes
computed by MLM-RBF and FEM. From the table, we can see that
the relative errors of MLM-RBF are less than those of FEM for most
of hybrid modes, especially for TMc,s mode cases whose accuracy is far
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Figure 7. Nodes distribution of the elliptical waveguide.
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Table 3. The cutoff wavelengths (λc/m) and relative errors of hybrid
mode by FEM and MLM-RBF in elliptical waveguide case.

mode λc0 FEM Err% r
5
RBF Err%

Guassian

RBF
Err%

Wu’s

RBF
Err%

TE c11 3.3945 3.3891 0.16 3.4147 0.60 3.4164 0.65 3.4308 1.07

TE s11 2.9745 2.9688 0.20 2.9913 0.57 2.9809 0.22 2.9850 0.35

TM c01 2.4196 2.4153 0.18 2.4184 0.05 2.4194 0.01 2.4188 0.03

TE c21 1.9497 1.9430 0.34 1.9542 0.23 1.9514 0.09 1.9454 0.22

TE s21 1.9079 1.9012 0.35 1.9092 0.07 1.9090 0.06 1.9031 0.25

TM c11 1.5761 1.5675 0.55 1.5764 0.02 1.5760 0.01 1.5760 0.01

TE c01 1.4994 1.4904 0.60 1.5121 0.85 1.4988 0.04 1.4927 0.45

TM s11 1.4673 1.4577 0.65 1.4676 0.02 1.4672 0.01 1.4673 0.00

TE c31 1.4027 1.3941 0.61 1.3947 0.57 1.4024 0.02 1.3940 0.62

TE s31 1.3979 1.3896 0.59 1.3893 0.62 1.3975 0.03 1.3888 0.65

noted: for the global Gaussian RBF case, dmI = 7×h; for the compact
Wus RBF case, dmI = 20× h.

greater than that of FEM. And the relative errors of TMc,s modes are
far less than those of TEc,s modes. In three RBFs cases, the Gaussian
RBF case has the maximum calculation accuracy, the relative errors
of eight higher modes are less than 0.1% for TMc,s or TEc,s modes.
Therefore, Gaussian RBF with a appropriate control parameter dmI is
a better choice to solve the elliptical waveguide using MLM-RBF.

Here, we just take TEc31 and TEs31 for example to show the
field distribution by RBF-MLM with the global r5-RBF, as shown in
Fig. 8. It can be seen that the field distribution perfectly represents
the physical modes. Although the field distribution of both modes is
similar, there is some little difference.

3.3. Right-angle Triangle Waveguide

In this section, triangle waveguide with two sharp-angled boundaries
is calculated by MLM-RBF. The structure and node distribution of
right-angle triangle waveguide is shown in Fig. 9. Let the height of
triangle waveguide ht = 1 and the node number in each direction be
25. Suppose the node distribution is the same as that of FEM. In
this example, only one global r5-RBF is chosen to compute the eight
lowest-order TM and TE modes of triangle waveguide.

The analytic cutoff wavelength of TM and TE modes in triangle
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waveguide is given by [23] as follows




λc0TM =
π√
2ht

√
m2 + (m + 2n− 1)2

λc0TE =
mπ

ht
,

nπ√
2ht

, m, n = 1, 2, . . . (21)

(rJ) Table 4 shows the results of the TM modes by MLM-RBF and
FEM. From the table, we can see that the relative errors of MLM-RBF
are an order of magnitude less than those of FEM except for TM41

mode. Due to no control parameter of r5-RBF, the condition numbers

(a) TEc31

(b) TEs31

Figure 8. Field distribution of two hybrid modes by MLM-RBF with
global r5 RBF in elliptical waveguide.
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h t

collocation nodes

h

Figure 9. Node distribution of the right-angle triangle waveguide.

Table 4. The cutoff wavelengths (λc/m) and relative errors of TM
mode by FEM and MLM-RBF in triangle waveguide case.

TM11 TM21 TM12 TM31 TM22 TM13 TM41 TM32

λc0 1.2649 0.7845 0.6860 0.5657 0.5252 0.4650 0.4417 0.4216

FEM 1.2606 0.8875 0.7774 0.6776 0.6218 0.5561 0.5447 0.5132 0.4708 0.4533 0.4337 0.4301 0.4059

Err % 0.34 0.91 1.22 1.70 2.28 2.52 1.81 3.72

r
5
RBF 1.2649 0.8946 0.7844 0.6864 0.6326 0.5655 0.5553 0.5255 0.4851 0.4658 0.4477 0.4415 0.4218

Err % 0.00 0.01 0.06 0.04 0.06 0.17 1.36 0.05

Table 5. The cutoff wavelengths (λc/m) and relative errors of TE
mode by FEM and MLM-RBF in triangle waveguide case.

TE 1 TE 2 TE 3 TE 4 TE 5 TE 6 TE 7 TE 8

λc0 2.8284 2.0 1.4142 1.0 0.9428 0.7071 0.6667 0.5657

FEM 2.8266 1.9961 1.4105 1.2583 0.9923 0.9373 0.8875 0.7727 0.6998 0.6775 0.6556 0.6213 0.5566

Err % 0.06 0.20 0.26 0.77 0.58 1.03 1.66 1.61

r
5
RBF 2.8267 1.9941 1.4127 1.2583 0.9945 0.9433 0.8889 0.7788 0.7065 0.6827 0.6621 0.6265 0.5662

Err % 0.06 0.30 0.11 0.55 0.05 0.09 0.69 0.09

of coefficient matrix A and B in (15) are great up to 1010. In addition,
according to analytical formula (21), there exist many redundant
solutions for both MLM-RBF and FEM. The field distributions of
TM21 and TM32 modes by RBF-LMLM with the global r5-RBF are
shown in Fig. 10. It can be seen that the field distribution perfectly
represents the physical modes.
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(a) TM21

(b) TM32

Figure 10. Field distribution of two TM modes by MLM-RBF with
global r5-RBF in triangular waveguide.

The results of the eight lowest-order TE modes of the triangle
waveguide by MLM-RBF and FEM are shown in Table 5. Like TM
case, we can see that the relative errors of MLM-RBF are less than
those of FEM and there exist redundant solutions. In addition, in this
waveguide case, the relative errors of MLM-RBF are far less than those
of FEM for all TE modes, which is obviously different from the former
two waveguide cases in which the relative errors of MLM-RBF are
close to those of FEM and FDM. It is because node density of triangle
waveguide is far more than the former two that the high convergence
rate and high accuracy could be obtained [7].

About the algorithm complexity of the present method, from (16)
and (7)–(10), we can see that each element of matrix A require about
twenty multiplications for r5 RBF case (more than 20 for the other
RBFs). In addition, the non-zero elements for each matrix column
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equal to the number of collocation node in the supported domain of
the center node. Usually, the supported domain of RBF expands more
than one node, even above ten nodes. Thus, the present algorithm
complexity is much more than FEM and FDM.

4. CONCLUSION

In this paper, MLM-RBF has been applied to solve the scalar
Helmholtz equation in Cartesian system. The global Gaussian, r5 and
compact Wu’s RBFs are used to compute the cutoff wavelength of three
specific waveguide problems. To analyze the accuracy of proposed
method, the node distribution of meshless method is set the same as
the those of mesh-based FDM and FEM.

In rectangular waveguide case, by comparing the results of MLM-
RBF with those of FDM and FEM, higher accuracy can be seen in
both TM and TE modes by the proposed method with all three RBF
cases. The calculation errors of MLM-RBF increase generally as the
order of mode increases like FDM and FEM.

In elliptical waveguide case, under the natural conformal node
distribution, the results of RBF-MLM for three RBFs cases have very
higher calculation accuracy than those of FEM. The Gaussian RBF
case has the highest calculation accuracy in three RBFs cases.

In right-angle triangle waveguide case, the results of MLM-RBF
with r5-RBF are in agreement with the analytic solutions. For most
of the modes, the relative errors of MLM-RBF are far less than those
of FEM. However, there are some pseudo solutions in both MLM-RBF
and FEM.

In three typical waveguide problems, the field distributions of TE
and TM modes perfectly represents the physical mode distribution,
which shows that the field distributions could be correctly calculated
by the proposed method. The calculation accuracy of MLM-RBF is
greater than that of mesh-based FDM and FEM, especially for the
Dirichlet problem of waveguides. However, the calculation amount of
MLM-RBF is more than that of FEM and FDM. The present process
of MLM-RBF is a brief and general meshless method, which can be
flexibly applied to compute the eigenvalues of arbitrary waveguides.
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