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Abstract—An analysis is presented by means of a mode matching
method for two microwave cavities of different sizes which are fed by a
TE 10 waveguide and loaded with lossy dielectric slab type material.
The accuracy of the results obtained is presented together with a
comparison of the results which are obtained by the HFSS numerical
method. Optimization of the load location was performed in order
to maximize the electrical field on the material. The principle of
this optimization is based on finding the existence of the positions
in which the reflection coefficient S11 is the lowest. When the feeding
guide for the two different microwave cavities was at the centre of
the resonator, the change in the reflection coefficient distribution was
detected according to the different positions of the material in the oven,
and then the lowest positions were found. The changes in the electric
field in the detected positions were recorded.
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1. INTRODUCTION

Microwave heating is widely used in industry due to its advantages
over conventional heating methods [1]. However, it is rather difficult
to design an appropriate system according to the material which will
be heated in spite of the present numerical methods, and very few
studies have been carried out in this field [2–5].

The results found by means of the present numerical methods
are related to checking the accuracy of the method rather than
optimization.

The mode matching method has been widely used in a large
number of applications of electromagnetism [6]. A considerable number
of studies have been presented on finding the parameter S11 in an
inhomogenously loaded microwave resonator. In the studies carried
out, amplitudes of the reflection coefficient related to the frequency
have been obtained for the structures examined [7–11].

The parameter S11 changes depending on a considerable number
of parameters such as frequency, the dimensions of the resonator,
the position of the feeding guide on the resonator, the dielectric
permittivity, the geometry of the load, and the position and size of the
load in the microwave resonator. In the literature sufficient searches
for the parameter S11 have not been carried out, especially from the
point of view of microwave heating.

In the studies of numerical and hybrid methods such as the finite
difference time domain, finite element method, and mode matching,
the changes in the parameter S11 in the structures examined have been
presented in comparison with each other [12–16].

Differently in this work, the scattering parameter S11 has been
obtained by changing the position of the material along the z axis
while keeping stable the factors which affect the scattering parameter
S11 in the resonator loaded with lossy slab type dielectric material,
such as the frequency, the dimensions of the resonator, and the position
of the feeding guide on the resonator. In this way, the change in the
electric field has been found in the resonator at the lowest values of the
reflection coefficient. At these points the efficiency of the microwave
oven is at a maximum and loss power density on the material can be
at a maximum too.

2. THEORETICAL BACKGROUND

Basically, we can divide the resonator into four basic parts as shown
in Figure 1.

c1 is the starting point of the feeding guide’s x coordinate and c2



Progress In Electromagnetics Research M, Vol. 14, 2010 73

 

a

b

d

t

l 

c1 c
2 

v2
v 1  

waveguide
 

B

A 

1 

2

3

4

Multimode

cavity

Dielectric

slab

Figure 1. Three-dimensional rectangular cavity loaded with lossy
slab.

is the last point of the feeding guide’s x coordinate; in the same way
v1 is the starting point of the feeding guide’s y coordinate and v2 is the
last point of the feeding guide’s y coordinate. t is the slab thickness,
d and l are the empty spaces of the resonator, and a and b are the
resonator’s x and y dimensions respectively.

When the basic equalities are taken into account and the equality
of tangential electric field compounds (at the point of intersection of
the first and the second area) on the aperture and mode matching
equalities in the related boundaries (2) are used, the equation can be
formulated as follows:
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where k is the mode propagation constant, eh is the normal TE mode
vector, hh is the normal TM mode vector; m and n are mode indices,
Et is the tangential electric field, Ht is the tangential magnetic field.
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In finding the reflection coefficient in the second part which is
indicated with a minus sign, the equation below which consists of the
effects of the third and fourth parts can be used as follows:
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The magnetic current is approximated with a truncated set of
independent basis functions:
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By solving the matrix equation above it is possible to find the
coefficients amnx and amny. After that B coefficients can be obtained
by means of (19).

On the condition that the waveguide is between c1 and c2 in the
x direction and between v1 and v2 in the y direction, the base and
weighting functions can be presented as follows [17]:
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3. NUMERICAL RESULTS

Numerical results have been obtained for two different resonators,
of which one is small and the other is bigger. Firstly the changes
in the reflection coefficient have been obtained by using as the load
a lossy material with a width of 20 mm and dielectric permittivity
of 2.5–0.1j and using a resonator whose dimensions are 125 mm,
93mm, and 117 mm in the x, y, and z directions respectively. The
operating frequency is 2.45 GHz. The resonator with dimensions of
125×93×117 mm was used for numerical analysis in this work because
when the resonator is empty there are a lot of resonant modes around
2.45GHz.

The comparison of the results of Ansoft HFSS and mode matching
for d = 20 mm is presented in Fig. 2 (for a 2.15–2.45 GHz wide band
interval and a 100 MHz frequency change). HFSS is a commercial
3D full-wave Finite Element Method (FEM) solver for electromagnetic
structures developed by Ansoft Corporation. The acronym originally
stood for high frequency structural simulator. It to computes the
electrical behavior of high-frequency and high-speed components. It is
one of the common and powerful applications used for antenna design,
and the design of complex RF electronic circuit elements including
filters, transmission lines, and packaging. The software becomes the
industry-standard simulation tool for 3D full-wave electromagnetic
field simulation. HFSS provides E- and H-fields, currents, S-
parameters and near and far radiated field results. Intrinsic to the

Figure 2. Reflection coefficient
of the cavity as seen by the guide.

Figure 3. Amplitude of the re-
flection coefficient versus slab po-
sition obtained with mode match-
ing and Ansoft HFSS at 2.45GHz
for the first cavity.
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success of HFSS as an engineering design tool is its automated solution
process where users are only required to specify geometry, material
properties and the desired output. It generates an appropriate, efficient
and accurate mesh for solving the problem using the proven finite
element method. Ansoft HFSS is essential for field computations but it
suffers with respect to the computational time and computer memory
required to implement it.

Examining Fig. 3, it can be seen that the amplitude of the
reflection coefficient is at the lowest point when the slab shaped load
covering all the crosscuts is at d = 0.5 cm and at d = 8 cm and the
amplitude of the reflection coefficient is at the highest point when the
slab shaped load is at d = 5.5 cm.

Figure 4. The change in the
electric field in the resonator for
d = 0.5 cm.

Figure 5. The change in the
electric field in the resonator for
d = 8 cm.

Figure 6. The change in the
electric field in the resonator for
d = 5.5 cm.

Figure 7. Comparison of the
reflection coefficient amplitude.
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When the positions of d = 0.5 cm and d = 8 cm are examined
(Fig. 4 and Fig. 5, the points where the reflection coefficient is low)
it can be said that the electrical field distribution on dielectric slab
shaped material is more homogeneous and shows a wider distribution
compared to the position of d = 5.5 cm (Fig. 6, the point where the
reflection coefficient is high). This situation can be shown by means of
(23), which has already expressed the power efficiency [2].

η = 1− |S11|2 (29)

The change in the reflection coefficient between 1.8 and 3.2GHz
has been presented for the second cavity in Fig. 7. The second
cavity’s dimensions are 37.8 cm, 25.8 cm, and 35.2 cm in the x, y,
and z directions respectively. The slab shaped material’s dielectric
permittivity is 2.5–0.1j and it is placed at d = 18 cm and has a width
of 2.6 cm. The feeding guide’s x dimension is 8.6 cm, its y dimension
is 4.3 cm, and it is placed entirely at the centre of the resonator.

The amplitudes of reflection coefficients have been drawn in these
cases: 1) the waveguide is at the centre of the resonator; 2) the width
of the material is 2.6 cm; and 3) the position of the material which is
between the intervals of 8 and 23 cm of the resonator in the z direction
has been changed every 0.5 cm.

It is clear from Fig. 8 that the amplitude of the reflection
coefficient is at its lowest point at the height of d = 11.5 cm. When
the dielectric material is at the height of d = 11.5 cm and for the
frequency band 2.3–2.6 GHz, which also includes the magnetron’s

Figure 8. Amplitude of the re-
flection coefficient versus slab po-
sition obtained with mode match-
ing and Ansoft HFSS at 2.45GHz
for the second cavity.

Figure 9. Comparison of the
reflection coefficient amplitude.
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operating frequency, 2.45 GHz, the position of the comparison of the
Ansoft HFSS and mode matching methods is presented in Fig. 9.

It can be seen from Fig. 8 that the values of the position in which
the reflection coefficient distribution is the lowest are at d = 11.5 cm,
d = 14.5 cm, and d = 21 cm respectively. According to these positions
electric field distributions have been found by means of Ansoft HFSS.

It can be seen from Figs. 10–13 that the electric field amplitude
and power efficiency in the resonator are affected by the amplitude
of the reflection coefficient. The electric field is distributed more
efficiently in the resonator and on the dielectric material at the lowest
point of reflection coefficient amplitudes.

Different analyses must be included for the different locations of
the dielectric slab with Ansoft HFSS. In those analyses the reflection
coefficient is obtained for a frequency interval which includes 2.45 GHz,
whereas in this paper the frequency is determined as 2.45 GHz and
the location of the dielectric slab is changed by chosen intervals in

Figure 10. The electric field
distribution in the resonator for
d = 11.5 cm.

Figure 11. The electric field
distribution in the resonator for
d = 14.5 cm.

Figure 12. The electric field
distribution in the resonator for
d = 21 cm.

Figure 13. The electric field
distribution in the resonator for
d = 19.5 cm.
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the Matlab program. In this way the reflection coefficient is obtained
according to the location of the slab. By this process we can find the
position which has the lowest reflection coefficient in a shorter time
than when using Ansoft HFSS.

4. CONCLUSION

In this article, an analysis of a multimode resonator with the mode
matching method has been presented. The changes in the amplitude of
the reflection coefficient according to the frequency have been obtained
and these results are compared to the results of Ansoft HFSS. By using
this method, the positions of the material which will make the reflection
coefficient the lowest in the microwave resonator have been found.
The accuracy of the results has been presented in comparison with
those obtained using Ansoft HFSS. The amplitudes of the reflection
coefficients are obtained according to the slab shaped material in the
z direction. In the microwave resonator, the changes in the electric
field at the lowest reflection coefficient points have been found. The
amplitudes of reflection coefficients have been examined for the position
where the operating frequency and the position of the feeding guide
are stable. It has been found that the reflection coefficient shows much
variation in the dimensions of the resonator and the position of the
material. The results achieved have been examined from the point
of view of the electrical field distribution on the load, which directly
affects microwave heating. In this way the efficiency of power in the
multimode resonator has been maximized and also the appropriate
values of the position of the material for microwave heating have been
presented for the resonator.

Since the aim of this work is to present the accuracy of the method,
the permittivity and loss of the dielectric material are not particularly
chosen. Different materials which have different permittivities and
losses can also be investigated by the same process.

A quasi linear change has been detected between the reflection
coefficient change and the position of the load for the first oven, which
is dimensionally smaller according to the feeding guide and which
supports a smaller number of modes. Such a relationship as this has
not been obtained for the second oven, which is dimensionally bigger
and which supports a greater number of modes.

Optimization can be carried out for the stable operating frequency
and feeding guide position on a specific resonator according to the
position of load, as presented in this study. With the method presented
in this article it is also possible to perform similar optimizations and
to find the width of the load by keeping the feeding guide stable and
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to find the position of the feeding guide by keeping the load position
stable.
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