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Abstract—An inverse equivalent surface current method working
with equivalent electric and/or magnetic surface current densities on
appropriately chosen Huygens surfaces is investigated. The considered
model with triangular surface meshes is compatible with the models
known from method of moments (MoM) solutions of surface integral
equations. Divergence conforming current basis functions of order 0.5
and of order 1.5 are considered, where the order 0.5 functions are
the well-known Rao-Wilton-Glisson basis functions. Known near-field
samples typically obtained from measurements are mapped on the
unknown equivalent surface current densities utilizing the radiation
integrals of the currents as forward operator, where the measurement
probe influence is formulated in a MoM like weighting integral. The
evaluation of the forward operator is accelerated by adaptation of the
multilevel fast multipole method (MLFMM) to the inverse formulation,
where the MLFMM representation is the key to full probe correction
by employing only the far-field patterns of the measurement probe
antennas. The resulting fully probe corrected algorithm is very flexible
and efficient, where it is found that the computation speed is mostly
dependent on the MLFMM configuration of the problem and not that
much on the particular equivalent current expansion as long as the
expansion is able to represent the currents sufficiently well. Inverse
current and far-field pattern results are shown for a variety of problems,
where near-field samples obtained from simulations as well as from
realistic measurements are considered.
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1. INTRODUCTION

Various applications of practical interest, for example antenna
diagnostics, near-field (NF) far-field (FF) transformation etc., require
the investigation of radiated/scattered NFs, where these fields are
known for a set of observation points located arbitrarily around
the object under test. A variety of techniques, such as free-
space eigenmode expansions for canonical surfaces [1–4] or Huygens
equivalent electric/magnetic current representations [5–7], can be
found in the literature. The inverse equivalent current methods
(ECMs) usually expand the unknown surface current densities
employing pulse or Rao-Wilton-Glisson (RWG) [8] basis functions,
and obviously the ECMs have the potential to work with arbitrary
Huygens surfaces and even with irregular sample locations. In order
to achieve an efficient ECM, it is highly desirable to have an accelerated
evaluation of the full radiation operators. Therefore, fast Fourier
transform (FFT) based algorithms have been of very early interest [9].
The known disadvantage of the FFT approach is its restriction to
planar Huygens and scan surfaces with regular sampling. More
flexibility is achieved by the fast multipole method (FMM), where a
single level FMM was applied with limited success in [10] to accelerate
an ECM. Also, the algebraic adaptive cross approximation (ACA)
technique has been implemented in order to compress the discretized
forward IE operator in [11].

In a recent publication [7], a robust and efficient ECM has been
reported by the application of the spherical harmonics expansion based
MLFMM (SE-MLFMM) [12] with NF and FF translations [13, 14]
employed for the iterative solution of the normal equation system
obtained from RWG based discretization of the ECM IE operator.
In this method, an IE is formulated relating the discretized unknown
equivalent surface current densities and known NF samples. The IE
is solved by a method of moments (MoM) like solution procedure and
the inverse equivalent currents are modeled using RWG basis functions,
which are known to be of mixed order 0.5.

In MoM solutions of IEs, it is known that higher-order (HO)
modeling of current densities often provides great reduction of the
number of unknowns for a given problem and a desired accuracy or
equivalently, better accuracies are achievable for the same number of
basis functions, but of higher order (e.g., [15–17] etc.).

In the current contribution, hierarchical curl-conforming nearly-
orthogonal HO expansion functions (up to mixed order 1.5)
available in [16] have been transformed to the divergence-conforming
counterparts for the discretization of inverse equivalent currents on
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triangular meshes [17].
In most applications, the NF data of the antenna under test (AUT)

is obtained from measurements, which are influenced by measuring
probes. Therefore, a correction of the probe influence within the
inverse solution algorithm is mandatory in order to obtain accurate
results. In the present work, full probe correction capability is achieved
by virtue of the MLFMM formulation adapted to the inverse solver,
since the probe influence appears just as the FF pattern of the probe
within the k-space integrals to be evaluated in the MLFMM [18].

In what follows, the inverse model and the formulation of
the inverse constraint equations are first discussed. The essential
contribution of the present paper is the MLFMM accelerated ECM
formulation, which includes a full measurement probe correction,
and the investigation of HO basis functions within the MLFMM
accelerated ECM. The rigorous probe correction becomes possible
due to the k-space representation within the MLFMM formulation.
Also, a unified representation for NF and FF translations within the
MLFMM is given. The iterative solution of the equation system is
described and details on the implementation of the probe correction are
given. The resulting algorithm provides full probe correction capability
for arbitrary measurement sample distributions together with low
computational cost and complexity. A variety of results are presented,
where the behavior of the algorithm for various measurement probes,
for different discretizations, and for different basis function orders
is demonstrated. Results with synthesized NF measurement data
obtained from simulations as well as with NF data from realistic
measurements are considered. In particular, the functionality of the
probe correction algorithm is demonstrated for badly miss-aligned
halfwave dipoles, which produce a very complicated receiving pattern
from the point of view of an NF measurement.

2. FORMULATION

2.1. Model and Constraint Equations

Consider an antenna or scatterer configuration as illustrated in
Figs. 1(a) or (b), where the radiated or scattered electromagnetic
NF is sampled by arbitrary measurement probes at some arbitrary
sample locations rM . The measured signals at the output ports
of the probes are characterized by the open-circuit voltages U(rM ),
where time harmonic fields with ejωt are considered throughout this
paper. The uniqueness of the introduced equivalent currents can be
studied by invoking Huygens’ and equivalence principles [19], where
this is however not that important for the present study. Instead
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Figure 1. Inverse equivalent current model and near-field
measurement configuration: (a) Closed Huygens surface around
radiation or scattering object. (b) Equivalent currents directly located
on the antenna or scatterer.

our models according to Figs. 1(a) or (b) can be chosen arbitrarily
and we may end up with a unique or non unique description, which
is typically solved in a least mean square error (LMSE) sense. In
the case of Fig. 1(a), the closed surface can be placed as close to the
object’s surface as possible in order to obtain the maximum amount
of diagnostic information or it can be chosen in some distance to
the object, where the field distribution is smoother. The idea of
models according to Fig. 1(b) is to introduce a priori information about
the object’s geometry and material composition, where in particular
magnetic surface current densities are omitted on the surface of perfect
electric conductors (PEC). The electric field intensity E(r) generated
by the equivalent surface current densities JA(r′) (electric) and MA(r′)
(magnetic) together with some incident field Einc(r) is given by

E(r)=
∫∫

A

[
ḠE

J (r, r′) · JA(r′)+ḠE
M (r, r′) ·MA(r′)

]
dA′+Einc(r), (1)

where ḠE
J (r, r′) is the dyadic Green’s function for electric currents

and ḠE
M (r, r′) is the dyadic Green’s function for magnetic currents,

both typically given in free space. Also, A is the surface on which the
surface currents are presumed. Since the electric fields at the sample
locations rM to be used in (1) are typically measured by a measurement
probe with some finite dimensions and some direction dependence,
the influence of this measurement probe must be considered and this
can be done by working with the probe open-circuit voltage Um(rM )
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representing the measurement signal according to

Um(rM ) =
∫∫∫

Vprobe

wm(r) ·E(r) dV , (2)

where Vprobe is the volume of the probe supporting equivalent currents
representing the probe influence and wm(r) is the spatial vector
weighting function of the probe representing the equivalent currents
on the probe, including conversion to voltage. The index m indicates
that various probes can be used at the different measurement locations,
where typically two independent polarizations will be measured at
every measurement location rM . In order to numerically solve the
set of constraint equations resulting from the combination of (1) and
(2), the surface current densities in (1) are discretized on triangular
surface meshes according to

JA(r′) =
∑

p

Jpβp(r′) , MA(r′) =
∑

q

Mqβq(r′) , (3)

where βp,q are hierarchical vector basis functions [17]. These
basis functions are derived from the nearly orthogonal tangentially
continuous field basis functions αp,q as presented in [16], which are
converted into normally continuous current counterparts βp,q using

βp,q = n̂p,q ×αp,q, (4)

where n̂p,q are appropriately oriented unit surface normals on the
discretization triangles. Since the implementation of the higher order
basis functions within the ECM is very similar to the case of surface
IE solutions by MoM, we refer to [15, 17] for further description of the
basis functions incorporated in the present ECM formulation.

The resulting linear typically non-quadratic equation system is

∥∥∥∥∥∥∥∥

· · · ... · · · ... · · ·
· · · CJ

mp · · · CM
mq · · ·

· · · ... · · · ... · · ·

∥∥∥∥∥∥∥∥
︸ ︷︷ ︸

‖C‖





...
jp
...

mq
...





︸ ︷︷ ︸
{x}

=




...
Um(rM )− U inc

m (rM )
...




︸ ︷︷ ︸
{b}

(5)
where normalized current expansion coefficients jp = Jp/(c2J0) and
mq = Mq/(c2M0) were introduced in order to have the flexibility to
improve the conditioning of the resulting equation system. A well
conditioned equation system is typically obtained by choosing J0 and
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M0 according to M0/J0 = Z0 =
√

µ0/ε0 ≈ 377 Ω, where either M0 or
J0 can be chosen freely. c2 is a further scaling factor, which can be used
for a different scaling of the 2nd order functions within the hierarchical
basis function set. Another way of normalization is, e.g., presented
in [6]. U inc

m (rM ) is calculated according to (2) with E replaced by
Einc. Also, the matrix entries are given by

CJ
mp = c2J0

∫∫∫

Vprobe

wm(r) ·
∫∫

A

ḠE
J (r, r′) · βp(r′) dA′dV, (6)

CM
mq = c2M0

∫∫∫

Vprobe

wm(r) ·
∫∫

A

ḠE
M (r, r′) · βq(r′) dA′dV . (7)

The required Green’s functions in free space are

ḠE
J (r, r′) = −j

ωµ

4π

(
Ī +

1
k2
∇∇

)
e−jk|r−r′|

|r− r′| , (8)

ḠE
M (r, r′) = − 1

4π
∇× Ī

e−jk|r−r′|

|r− r′| . (9)

Utilizing the FMM representation of the scalar Green’s function of free
space [20]

e−jk|X+d|

|X + d| = lim
L→∞

∫
©
∫

e−jk·d TL(k̂, X̂) dk̂2 (10)

valid for arbitrary vectors with |X| > |d| with the FMM translation
operator

TL

(
k̂, X̂

)
=

jk

4π

L∑

l=0

(−j)l(2l + 1)h(2)
l (k|X|)Pl(k̂ · X̂) , (11)

where h(2)
l is the second kind spherical Hankel function of degree l and

Pl is the Legendre polynomial of degree l, the FMM representation of
the matrix entries in (6) and (7)

CJ
mp=−jωµ c2J0

4π

∫
©
∫

TL

(
k̂, r̂Mg

)
w̃∗

m

(
k̂
)
·
(
Ī− k̂k̂

)
· β̃p

(
k̂
)

dk̂2 ,(12)

CM
mq =−c2M0

4π

∫
©
∫

TL

(
k̂, r̂Mg

)
w̃∗

m

(
k̂
)
·
(
β̃q

(
k̂
)
× k̂

)
dk̂2 (13)

is obtained. The ˜ indicates Fourier transform according to

β̃p,q(k̂) =
∫∫

A

βp,q(r′) ejk·(r′−rg)dA′, (14)
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where rg is the center of the FMM or MLFMM group [12, 20] to which
basis function βp,q belongs and k̂ is the unit vector in the direction
of k. Similarly, w̃∗

m(k̂) is the inverse Fourier transform (conjugate
complex indicated by the ∗) with respect to the measurement location
rM (coordinate origin of the probe). rMg in (12) and (13) is therefore
rMg = rM − rg. If |rMg| is considerably larger than the relevant
MLFMM group dimensions and the extent of the probe antenna (i.e.,
some FF criterion is fulfilled) [13, 14], the translation operator in (11)
can be replaced by

TFF (rMg) =
e−jk|rMg |

|rMg| δ
(
k̂ − r̂Mg

)
. (15)

The Dirac-δ in this FF translation operator together with the
integration over the Ewald sphere in (12) and (13) leads to the well-
known FF representation of the matrix entries with one locally plane
wave propagating along the vector from the source location to the
observation location.

The matrix entries in (12) and (13) are written with direct
translations from some MLFMM group center to probe positions.
However, the evaluation can also be done in a way that the translations
are performed into some MLFMM group center and the wave
contributions at the probe positions are then obtained by the MLFMM
typical disaggregation and anterpolation procedures [7, 12, 13, 20].

2.2. Solution of Equation System and Probe Correction

The linear equation system (5) is solved in an LMSE sense and this is
equivalent to solving the normal equation [21, 22]

‖C‖ad ‖C‖ {x} = ‖C‖ad {b} , (16)

where ‖C‖ad is the adjoint (transpose conjugate complex) of ‖C‖.
Further details on the solution of the equation system are found in [7].
Important to note is that an iterative equation solver is employed
(based on the generalized minimal residual solver (GMRES)), which
requires only the evaluation of matrix/vector products for solution.
These matrix/vector products are very efficiently evaluated by using
the MLFMM like strategy as introduced in [7], which combines NF and
FF translations in a very efficient manner and which was extended
in order to consider the probe receiving characteristics represented
by w̃∗

m(k̂) in (12) and (13). These probe receiving characteristics
are nothing else than the FF patterns of the weighting functions in
standard FMM or MLFMM solutions of IEs. However, in the numerical
implementation, transformations from the global coordinate system
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into the local probe coordinate systems at the various measurement
locations must be performed very carefully.

If the measurement location is very close to the sources, the
calculation of the matrix entries according to (6) and (7) would be
desirable. However, this would require the knowledge of appropriate
spatial functions wm(r). In order to avoid these spatial functions, the
FMM groups on the finest level are typically chosen so small that all
matrix entries can be computed according to (12) and (13). If this
does not work, because the support of the basis functions is too large,
the basis functions can be even subdivided by treating the quadrature
samples on the basis functions separately and collect their plane wave
contributions at the individual probes. Towards this, the full FMM
translation operator (11) or for less accurate results even the FF
translation operator (15) can be used. The latter would be equivalent
to the probe pattern correction procedure as discussed in [23].

3. RESULTS

An important aspect for the application of the MLFMM accelerated
ECM is an appropriate choice of the MLFMM parameters. A lot of
information on this topic is found in the relevant MLFMM literature,
e.g., [20] and contained references. For the probe corrected ECM, the
number L of multipoles in the MLFMM is chosen according to Eq. (8)
in [18] with d0 = 3, . . . , 5, where d is chosen as the sum of the MLFMM
box size containing the sources and of the MLFMM box size containing
the measurement probe. On higher levels both box sizes are typically
equal. However, on the lowest level it must be considered that the size
of the probe antenna can be larger than the MLFMM box size. Also,
the order P of the spherical harmonics according to [12] used to expand
the FF patterns of the basis functions is chosen as P = L/2 in order
to achieve high accuracy. An appropriate FF criterion for the selection
of FF translations within the MLFMM has been derived in [14] and is
also used in [13]. In order to achieve good ECM results it is however
recommended to increase this FF distance by a factor of 2 to 3.

The first considered example is the parabolic reflector with Yagi
feed as displayed in Fig. 2. The diameter of the dish is 400mm
and the operation frequency is chosen to be 4.0 GHz. The reflector
is fed by a 6-element Yagi antenna and reference simulations of the
configuration were performed by the IE solver from CST MWS. The
resulting 3D radiation pattern is also shown in Fig. 2. Employing the
IE solver from CST MWS complete NF measurement scenarios with
realistic λ/2-probe antennas were performed. Spherical measurements
were considered with a radius of 1m, 36 samples in ϑ-direction and
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72 samples in ϕ-direction. In one scenario, the probes were oriented
horizontally and vertically resulting in a perfect alignment with ϑ̂ and
ϕ̂ in all spherical measurement positions. In the second scenario, the
horizontal and vertical probes were rotated by 45◦ as illustrated in
Fig. 3. The figure shows the local probe coordinate system where the
local x-axis is always directed towards the global coordinate origin and
the local z-axis along ϑ̂. The ECM computations have been worked

Yagi feed

Figure 2. Geometry of Yagi-fed parabolic reflector together with 3D
radiation pattern (gain, IEEE) from CST MWS.

(a) (b)

Figure 3. Orientation and radiation patterns (directivity) of the
oblique λ/2-probes obtained by rotation of 45◦ from the horizontal
and vertical orientations, respectively.
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out with a cuboidal Huygens surface (390 mm × 390 mm × 115 mm)
enclosing the reflector together with the feed supporting electric and
magnetic surface current densities. Fig. 4 compares the ECM results
for vertical and horizontal probes obtained for a mesh with a total of
38 610 (electric and magnetic) unknowns of order 0.5 with the reference
results from CST MWS. Remarkable is that even the low cross
polarized components show pretty good agreement. The computation
time on one core of an Intel Core 2 Quad Q9550 CPU with 2.83GHz
was about 1 100 sec with a memory requirement of about 25 MByte.
The radiation patterns for the case with oblique probe orientation
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Figure 4. (a) E- and (b) H-plane radiation patterns obtained with
vertical and horizontal λ/2-dipole probes.
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are shown in Fig. 5. ECM results with probe correction and without
probe correction are compared with the reference results from CST
MWS. The ECM results without probe correction were computed with
the radiation patterns of the horizontal and vertical probes instead of
the patterns of the oblique probes. Both E-plane patterns compare
very well with the reference, whereas the H-plane pattern shows some
discrepancies in particular for the cross polarized component. However,
from the E-plane pattern it can be seen, that the cross polarized
component possesses a very deep null in the H-plane and that the
observed error in the H-plane looks obviously much more dramatic
than it is. Moreover, it is clearly seen, that the probe correction
improves the value of the cross polarized component by about 30 dB.
The achieved results with deliberately badly misaligned probes show
that the presented probe correction works even for very complicated
probes without appreciable symmetry.

In the next example, inverse ECM currents on a 20λ PEC plate
are investigated, where only electric currents on the PEC plate are
assumed. Firstly, the scattered electric fields on a spherical grid of
11 536 sample locations due to a plane wave incident on the plate at
grazing angle have been computed employing MoM solution of IE with
sufficiently fine triangular discretization of the plate. The influence of
a possible measurement probe is not considered in this example and
the ECM solution is directly obtained with ϑ- and ϕ-components of the
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Figure 7. Equivalent surface current densities on a Huygens surface
representing base station antenna Kathrein 742 445 radiating at
1.92GHz. The Huygens surface is the surface of an elliptical cylinder
of height 1 490 mm with half axes 157 mm and 60 mm. Electric and
magnetic surface currents were assumed in the computations and lower
order and higher order results are compared.

electric field. From the field samples, the ECM currents are computed
on the plate with basis functions of order 0.5 and 1.5 using about
1.4 subdivisions per wavelength. For the solution of 2 727 order 0.5
unknowns and 9 170 order 1.5 unknowns, the ECM solver converged
to less than 10−4 residual error in 6748 sec and 1180 sec (one core
of Intel Core 2 Quad Q9550 CPU with 2.83GHz), respectively. The
computation time for the order 0.5 unknowns was very long for this
example, since the approximation of the current distribution was below
an acceptable limit and the ECM solver converged thus very badly. The
memory requirements for order 0.5 and order 1.5 cases were 265 MByte
and 272 MByte, respectively. The bistatic RCS in the vertical plane
is plotted in Fig. 6. The order 1.5 results show better agreement with
the MoM reference than those of order 0.5, even though the mesh was
very coarse.

Finally, the realistic spherical NF measurement of a Kathrein
742 445 base station antenna at a frequency of 1.92 GHz is considered.
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Figure 8. Equivalent surface current densities on a Huygens surface
representing base station antenna Kathrein 742 445 radiating at
1.92GHz. The Huygens surface is the surface of an elliptical cylinder
of height 1 490mm with half axes 157mm and 60 mm. Electric surface
currents were assumed in the computations and lower order and higher
order results are compared with different values of second order scaling
constant c2.

The number of NF measurement locations was 4 186, where
two polarizations with open-ended hollow waveguide probes were
measured. The ECM computations were performed with a closed
Huygens surface as illustrated and described in Fig. 7, where different
discretization densities and the available two different orders of basis
functions were considered. Also, all computations were carried out
with full probe correction. The current densities displayed in Figs. 7
and 8 were obtained with a relatively dense mesh with 9 008 triangles
resulting in 13 512 basis function of order 0.5 and 45 040 basis functions
of order 1.5 for every type of current. The order 1.5 computation
with electric and magnetic currents comprised therefore a total of
90 080 basis functions. Fig. 7 shows both current types for the
ECM computations assuming electric and magnetic currents with
Z0 = 377 Ω and c2 = 1.0 (see (6) and (7) and discussion just
before). As expected, due to the fine mesh the currents for the
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Figure 10. (a) H-plane radiation patterns, (b) E-plane radiation
patterns for various meshes.

different expansion orders are very similar. The current distributions
for the electric currents only case in Fig. 8 show some more differences,
where the higher order currents appear more irregular than the lower
order currents. An explanation for this behavior is that the equation
system with the HO functions is usually worse conditioned than with
the LO functions and regularization of this equation system by the
iterative LMSE solver does not work that well. The conditioning of
the equation system can be modified by the scaling parameter c2 for
the HO functions and it can be seen in Fig. 8 that c2 = 0.5 reduces
the irregularity of the current distribution compared to the case of
c2 = 1. The computation times for this mesh were on the order of
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2 000 sec to 4 000 sec dependent on the chosen MLFMM parameters.
It is interesting to note that the computation times with basis functions
of order 0.5 and of order 1.5 were almost identical. Also, further
computations with coarser meshes showed that the computation times
are mostly determined by the MLFMM configuration, i.e., the grouping
structure, the number of multipoles, etc. Since in the ECM all
interactions are computed via MLFMM translations, the particular
expansion with basis functions is no longer important after the field
contributions of the basis functions have been aggregated in the
MLFMM groups. In contrast to this, the memory requirement depends
more on the number of basis functions. The computations with the
90 080 order 1.5 unknowns required about 400 MByte of memory,
whereas the computation with the 27 024 order 0.5 unknowns required
about 85 MByte. In both cases, the computations were carried out
with a finest MLFMM group size of (0.04 m)3 with multipole orders
L = 8 and P = 4, where only NF MLFMM translations have been
used. Fig. 9 shows the E-plane radiation patterns obtained with the
fine mesh with 9 008 triangles, where results for electric and magnetic
currents as well as for electric currents only are shown. Both show
very good agreement with the reference pattern even for the cross
polarized component. Fig. 10(a) shows the corresponding H-plane
patterns also with very satisfying agreement. Fig. 10(b) shows again E-
plane patterns, but with different meshes and orders of basis functions.
The fine HO (order 1.5) result is the same as shown in Fig. 9(a)
and the coarse results were achieved with a mesh consisting of 1 510
triangles with an average edge length of 4.2 cm. Electric current only
computations are considered and order 0.5 and order 1.5 resulted in
2 265 and 15 100 basis functions, respectively. The radiation patterns
show that the accuracy starts to deteriorate with this coarse mesh
density, particularly with the lower order basis functions.

4. CONCLUSION

An inverse equivalent current method (ECM) has been studied
for the reconstruction of equivalent surface currents on arbitrarily
shaped radiation and scattering structures and in particular for
the subsequent far-field radiation pattern and radar cross section
computation. Higher-order basis functions of order 1.5 have been
utilized to discretize the unknown inverse equivalent surface currents
to obtain better accuracies with fewer discretizations per wavelength.
Furthermore, the influence of the measurement probe on the near-field
samples was compensated by a full probe correction technique without
increasing the complexity of the algorithm. The full probe correction is
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coming along with the plane wave representation of the multilevel fast
multipole method (MLFMM), which was adapted in order to accelerate
the forward operator and its adjoint computation within the inverse
method. A variety of results has been presented proving the feasibility
of the full probe correction, the MLFMM like acceleration, and the use
of higher order basis functions. However, it was found that an MLFMM
accelerated ECM is rather insensitive to the particular discretization
since after aggregation of the radiated fields of the basis functions
in the MLFMM groups the possible redundancy of an inefficient
discretization is removed and all necessary interactions are computed
after removing this redundancy. The presented algorithm is an efficient
tool for diagnostic purposes, for the construction of equivalent sources
representations, and for near-field far-field transformations.
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