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THE CONDUCTANCE BANDWIDTH OF AN ELEC-
TRICALLY SMALL ANTENNA IN ANTIRESONANT
RANGES
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Abstract—Accurate approximations of the conductance and the
conductance bandwidth of an electrically small antenna valid in
resonant and antiresonant ranges were found. It was shown that the
conductance bandwidth of an antenna tuned on maximal power of
radiation is inversely proportional to the magnitude of the frequency
derivative of the input impedance |Z ′(ωcd)| of the antenna at frequency
of maximal conductance. That is a generalization of the well
known relationship, according to which, the conductance bandwidth
of an antenna tuned on resonance in a resonant range is inversely
proportional to the magnitude of the frequency derivative of the
input reactance of the antenna |X ′

0(ω0)| at resonant frequency.
Obtained approximate formulas display inverse proportionality of the
conductance bandwidth to the approximate quality factor of the
antenna in resonant and antiresonant ranges.

A differential definition of the fractional conductance bandwidth
was formulated, which is convenient for the case of closely spaced
resonances of an antenna.

As an example, numerical calculations for oblate spheroidal and
spherical antennas in shells with negative permittivity in resonant and
antiresonant ranges was used to confirm accuracy of the obtained
approximations of the conductance and the conductance bandwidth
of an electrically small antenna.
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1. INTRODUCTION

Evaluation of broadbanding potential of an antenna is one of the most
important questions. Interconnection of bandwidth with the quality
factor, electrical size, and the input impedance has been discussed in a
number of papers [1–8]. Inverse proportionality of the conductance
bandwidth of an antenna to the frequency derivative of the input
reactance of electrically small antenna |X ′

0(ω0)| at resonant frequency
ω0 in resonant ranges is commonly accepted [1–3]. However, this
relation is not valid in antiresonant ranges [1].

Frequency dependence of a flow of energy accepted by an antenna
is defined by frequency dependence of the conductance of the antenna.
The conductance bandwidth is defined by the input impedance of an
antenna [1]. If feed line of an electrically small antenna is electrically
small, accepted energy is solely defined by the input impedance of the
antenna.

In case of an electrically long feed line, waves travelling through
an interface of an antenna with its feed line are partially reflected at
the interface [1, 6, 7]. Resonant properties of an antenna are modified
by its feed line and matching network [6]. As a result, the fractional
matched voltage-standing-wave-ratio (VSWR) bandwidth [1] is two
times broader than the conductance bandwidth in resonant range [2, 3],
while frequencies of their maximums do not coincide.

Broadening of the VSWR bandwidth is explained by an impact
of the reflected wave on the input port of the antenna. An antenna is
matched with its feed line only at resonant frequency. In vicinity of the
resonant frequency, there is a frequency-dependent increase of voltage
on the input port of the antenna conditioned by wave reflection. As
a result, the bandwidth of the antenna widens as compared with the
conductance bandwidth of the same antenna with an electrically small
feed line.

A matching network combining resonant and antiresonant
properties can also be used to widen the bandwidth of the antenna [6–
8]. Because of electrically small sizes of discussed antennas, a practical
matching network has to be electrically small and may be viewed
as a part of the antenna [8]. Therefore, notion of the conductance
bandwidth is fully defined and reasonable in the quasi-static model of
an electrically small antenna.

Derivation of approximate formulas for the conductance band-
width of an electrically small antenna functional in antiresonant ranges
and verification of obtained results by comparison with exact conduc-
tance and the quality factor of the oblate spheroidal and spherical
antennas in shells with negative permittivity are presented in the pa-
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per.

2. APPROXIMATION OF THE CONDUCTANCE AND
THE CONDUCTANCE BANDWIDTH OF AN ANTENNA

2.1. Conductance and Inverse Conductance of an Antenna
Tuned on Zero Reactance

Power accepted by an antenna tuned on zero reactance at a frequency
ω0 is [1]

PA (ω) =
1
2
|U0 (ω)|2G0 (ω) , (1)

where |U0(ω)| — amplitude of voltage at the input port of the antenna,
G0(ω) —conductance of the antenna, G0(ω) = Re[1/Z0(ω)], Z0(ω) —
impedance of the antenna. Resistance and reactance of an electrically
small feed line and a voltage generator is considered small as compared
with impedance of the electrically small antenna.

Conductance of an antenna tuned on zero reactance at a frequency
ω0 is

G0 (ω) =
R0 (ω)

[R0 (ω)]2+ [X0 (ω)]2
, (2)

where R0(ω), X0(ω) — resistance and reactance of the antenna. There
is a rapidly varying function X2

0 (ω) in vicinity of the resonant frequency
ω0 in the denominator of the conductance (2). In contrast, the inverse
conductance is

g0 (ω) = G−1
0 (ω) =

[R0 (ω)]2+ [X0 (ω)]2

R0 (ω)
. (3)

Derivatives of the inverse conductance (3) with respect to frequency at
ω = ω0 are

g′0 (ω0) = R′
0 (ω0) ,

g′′0 (ω0) =
R0 (ω0) R′′

0 (ω0)+2 [X ′
0 (ω0)]

2

R0 (ω0)
,

(4)

where, in contrast with [2, 3], derivatives of resistance is assumed not
equal to zero to take into account energy of the antenna in antiresonant
ranges.

According to (4), the inverse conductance, similar to the
conductance, has no extremum at ω0 in a general case (R′

0(ω0) 6=
0). Assuming that the maximum of G0(ω) is at the frequency ωcd

(G′
0(ωcd) = 0), one can find

ωcd = ω0 −4ω, (5)
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where 4ω — difference between frequencies of resonance and maximal
conductance. One can expand g0(ω) in Taylor series in vicinity of the
extremum

g0 (ω) = g0 (ωcd) +
1
2
g′′0 (ωcd) (ω − ωcd)

2 + O[(ω − ωcd)
3], (6)

where g0(ωcd) = [R0(ωcd)]2+[X0(ωcd)]2

R0(ωcd) in accordance with (3). According
to (6), derivatives of the inverse conductance are

g′0 (ω) = g′′0 (ωcd) (ω − ωcd) + O[(ω − ωcd)
2],

g′′0 (ω) = g′′0 (ωcd) + O[(ω − ωcd)].
(7)

Using (4) and the second Equation (7) in the first Equation (7), one
can find for frequency ω = ω0

4ω ∼= g′0 (ω0)
g′′0 (ω0)

=
R′

0 (ω0) R0 (ω0)
R0 (ω0) R′′

0 (ω0) + 2[X ′
0 (ω0)]

2 , (8)

where terms of the first infinitesimal order in (7) were neglected. In
contrast to (26) [1], the term [R′

0(ω0)]
2 is absent in the denominator

of (8) that makes (8) more exact in antiresonant ranges, according
to simulation results for LCR circuits. In resonant frequency ranges
[X ′

0(ω0)]
2 À |R0(ω0)R′′

0(ω0)|, whereas 4ω is [1]

4ω ∼= 4ωX =
R′

0 (ω0)R0 (ω0)
2[X ′

0 (ω0)]
2 , (9)

where 4ωX — corresponds to the approximation valid in resonant
range.

In antiresonant ranges R0(ω0) is a rapidly varying function. Using
a piecewise approximation of R0(ω0) by a power dependency, it is
easy to prove that R

′2
0 (ω0) ≈ |R0(ω0)R′′

0(ω0)|. Using the latter
approximation in (8), one finds

4ωZ =
F (ω0) R0 (ω0) R′

0 (ω0)
2[X ′

0 (ω0)]
2 + 2[R′

0 (ω0)]
2 =

F (ω0) R0 (ω0) R′
0 (ω0)

2|Z ′0 (ω0)|2
, (10)

where F (ω0) — a limited function of antiresonant conditions.
Comparing (8) and (10), one finds

F (ω0) =
2|Z ′0 (ω0)|2

R0 (ω0) R′′
0 (ω0) + 2[X ′

0 (ω0)]
2 . (11)
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2.1.1. The Approximated Inverse Conductance and Conductance

Using the second Equation (4) and (11) in the second relationship (7)
at frequency ω = ω0, one finds approximate value of g′′0(ωcd) expressed
by means of resonant parameters

g′′0 (ωcd) ∼= 2|Z ′0 (ω0)|2
F (ω0) R0 (ω0)

. (12)

Using (12) in (6), one finds an approximation for the inverse
conductance

g0 (ω) ∼= g0 (ωcd)

(
1 +

( |Z ′0 (ω0)| (ω − ωcd)
R0 (ω0)

)2
)

, (13)

where g0(ωcd) ≈ R0(ω0)/F (ω0).
According to (13), the conductance bandwidth related to the

approximate inverse conductance does not depend on F (ω0), yet F (ω0)
is necessary to calculate g0(ωcd) and4ωZ . Using (10) in (13), one finds
for ω = ω0

F (ω0) ∼= 1 +
1
4
q2F 2 (ω0) , (14)

where q = q(ω0) = R′0(ω0)
|Z′0(ω0)| — parameter of antiresonance conditions.

Magnitude of q is close to zero in resonant ranges, and limited by the
unit in antiresonant ranges (|q| ≤ 1).

According to (14), the range of values of F (ω0), presented as a
function of F (q(ω0)), is

F (ω0) = F (q (ω0)) =
{

1, q = 0,

2, |q| = 1.
(15)

Using (14) and (15), in case of |q| ∼= 0, one can find

F (q (ω0)) = 1 +
1
4
q2 + O

[
q2

]
. (16)

Using the geometric series with the first two terms equal to terms
in (16) as an approximation of F (q(ω0)), one finds

F (q (ω0)) ∼=
∞∑

n=1

(
q2

2

)n−1

=
2

2− q2
, (17)

which satisfies (15). However, in antiresonant ranges, |q| > 0.7,
F (q) > 1.14, a more non-linear function than (17) better satisfies
definition (11). The corrected F (ω0) is

F (q (ω0)) ∼= 2
2− q4

. (18)
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Using (13) in (3), one finds the approximate conductance of an
antenna tuned on resonance at frequency ω0 in resonant or antiresonant
ranges

G0Z (ω) = G0Z (ωcd)

[
1 +

( |Z ′0 (ω0)| (ω − ωcd)
R0 (ω0)

)2
]−1

, (19)

where G0Z(ωcd) ≈ F (ω0)/R0(ω0).
The approximate conductance of an antenna tuned on resonance

in resonant ranges (|q| ¿ 1) is

G0X (ω) = G0X (ωcd)

[
1 +

( |X ′
0 (ω0)| (ω − ωcd)

R0 (ω0)

)2
]−1

, (20)

where G0X(ωcd) ≈ 1/R0(ω0).
In vicinity of maximal conductance ω ∼= ωcd, one finds an

exponential expression of the approximate conductance

G0EZ (ω)= G0Z (ωcd) exp

[
−

( |Z ′0 (ω0)| (ω − ωcd)
R0 (ω0)

)2
]

. (21)

2.1.2. The Conductance Bandwidth

According to [1], the conductance bandwidth for an antenna tuned
on resonance at a frequency ω0 is defined as the difference between
the two frequencies ω∓ at which the power accepted by the antenna,
excited by a constant value of voltage U0(ω), is a given fraction of the
power accepted at the frequency ω0. In contrast to the definition in [1],
the conductance bandwidth is defined here in regard to frequency of
maximal conductance ωcd, at which the power accepted by an antenna
is maximal. If the accepted power at frequencies ω∓ is the (1−α) part
of the accepted power at ωcd, one finds

G0Z (ω∓)= (1− α)G0Z (ωcd) , (22)

where 0 ≤ α ≤ 1. Using (19) in (22), the half-width of frequency
dependence of the conductance of an antenna tuned on resonance at a
frequency ω0 in resonant or antiresonant ranges is

4ω∓Z = ω+ − ωcd = ωcd − ω− =
β0.5R0 (ω0)
|Z ′0 (ω0)| , (23)

where

β =
α

1− α
=

G0Z (ωcd)−G0Z (ω∓)
G0Z (ω∓)

. (24)
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Using (24) at frequency ω∓ = ω0, one finds

β0 = F (ω0)− 1, (25)

where β0 — value of the parameter β corresponding to the conductance
at a resonant frequency ω0. According to (15), (24), and (25), in
resonant ranges F (ω0) ≈ 1, α0 ≈ 0, while ω0

∼= ωcd. In antiresonant
ranges, F (ω0) ≈ 2, α0 ≈ 0.5, while ω0 corresponds to a half
of the maximal conductance. Therefore, meanings of resonance in
resonant and antiresonant ranges are essentially different, despite of
zero reactance of the antenna in both cases.

According to (20), the half-width of the conductance band-
width [1–3] in a resonant frequency range well away from a frequency
of antiresonance (|q| ¿ 1) is

∣∣4ω∓X

∣∣ =
β0.5R0 (ω0)

X ′
0 (ω0)

. (26)

The fractional conductance bandwidth of an antenna (FBW) in
resonant or antiresonant ranges is

FBWcdZ =
2

∣∣4ω∓Z

∣∣
ωcd

=
2β0.5R0 (ω0)
ωcd |Z ′0 (ω0)| , β =

α

1− α
, (27)

where frequency of maximal conductance ωcd is the central frequency
of the conductance bandwidth.

The fractional conductance bandwidth of an antenna tuned on
resonance in a resonant range well away from an antiresonant frequency
in accordance with [1–3] is

FBWcdX =
2

∣∣4ω∓X

∣∣
ω0

=
2β0.5R0 (ω0)
ω0 |X ′

0 (ω0)| . (28)

In accordance with [1], the fractional conductance bandwidth for a
resonant range (28) is not valid for an antenna tuned on resonance in
an antiresonant frequency range.

The fractional conductance bandwidth based on the exponential
approximation G0EZ(ω) (21) is

FBWcdE =
2R′

0 (ω0)
|Z ′0 (ω0)| (−ln(1− α))0.5 ≈ 2β0.5R0 (ω0)

|Z ′0 (ω0)| , (29)

where β ¿ 1. The exponential approximation of the conductance (21)
in case of β ¿ 1 gives the same fractional conductance bandwidth as
in the case of (19).

Frequency dependence of the inverse conductance is approximated
by the polynomial of the second order (13). Therefore, it is possible to
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formulate a simple differential definition of the fractional conductance
bandwidth. Using (6) for ω = ω∓, one can find

g0 (ω∓) = g0 (ωcd) +
1
2
g′′0 (ωcd) (ω∓ − ωcd)

2 + O[(ω∓ − ωcd)
3]. (30)

Using (22), one finds

g0 (ω∓) =
g0 (ωcd)
(1− α)

. (31)

According to (30) and (31), the fractional conductance bandwidth
of an antenna in a differential form is

FBWcdD =
2

∣∣4ω∓
∣∣

ωcd

∼= 2β0.5

ωcd

(
2g0 (ωcd)
g′′0r (ωcd)

)0.5

. (32)

The definition (32) is directly applied for an antenna tuned on
resonance in a resonant range (ω0

∼= ωcd). The differential definition of
the fractional conductance bandwidth is equivalent to the definition of
the conductance bandwidth (22), (31). The differential definition can
be used in order to calculate the 3 dB conductance bandwidth (β = 1)
in case of closely spaced resonances.

2.1.3. Conductance Bandwidth and the Quality Factor

The quality factor of an antenna tuned on zero reactance at frequency
ω0 is [1, 4, 5]

Q (ω0) =
ω |W (ω0)|
PA (ω0)

, (33)

where W (ω0) — time-averaged energy of non-propagating electromag-
netic field. It is worth to notice that the quality factor of an untuned
antenna is lower up to two times [4, 5] because of deficiency in energy
of an electric or magnetic field. Calculations of the quality factor with
(33) are based on rather complex numerical evaluations of W (ω0) [2–
5, 11]. Convenient form of the exact quality factor for numerical cal-
culation is [1]

Q (ω0) =
ω0

2R0 (ω0)

∣∣∣∣X ′
0 (ω0)− 4

|I0|2
[WL (ω0)+WR (ω0)]

∣∣∣∣ , (34)

where WL(ω0) — time-averaged energy of losses of electromagnetic
field, WR(ω0) — energy of antenna radiation. The approximate quality
factor of an antenna tuned at frequency ω0 is [1]

QZ (ω0)
ω0

2R (ω0)

√
[R′ (ω0)]

2 +
[
X ′ (ω0) +

∣∣∣∣
X (ω0)

ω0

∣∣∣∣
]2

, (35)
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where primes stand for frequency derivatives.
The lower bound on the exact quality factor of an antenna tuned

on resonance is [4]

Qlb = ηr

(
1

k3a3
+

1
ka

)
, (36)

where a — radius of a minimal imaginary sphere enclosing the antenna,
k — the wave number of radiation, ηr — antenna radiation efficiency.
The quality factor of an antenna normed on Qlb shows efficiency of
using of volume occupied by the antenna.

Comparing the approximate quality factor (35) with the
approximate fractional conductance bandwidth (27), one finds

FBWcdZ ∼= ω0β
0.5

ωcdQZ (ω0)
. (37)

Inverse proportionality of the bandwidth of an electrically small
antenna to the approximate quality factor was used to define a
measurable quality factor of an antenna [3, 6]. There is no essential
difference between values of the approximate and the exact quality
factors in resonant ranges. However, combining resonance and
antiresonance of an antenna and matching network [6] or close
resonances and antiresonance of an antenna [8], it is possible to obtain
a wider bandwidth of antennas than one can expect, calculating the
lower bound and the exact quality factor. Therefore, antiresonant
ranges of antennas with small quality factors are especially interesting
for simulation.

3. NUMERICAL RESULTS

3.1. Evaluation of the Approximation of the Conductance of
an Electrically Small Antenna Tuned on Resonance

Electrically small antennas can be modeled by a simple LCR circuit.
The model circuit with resonant and antiresonant properties comprises
of a parallel LCR circuit in series with capacitance or inductance [1] in
comparison with more complex models of antennas of bigger electrical
size [12].

For example, electrically small dipole antennas in shells with
negative permittivity [9, 10] can be used to evaluate exactness of
obtained approximations of the conductance and the conductance
bandwidth. Structure of the oblate spheroidal antenna in the shell
is shown in Fig. 1. The antenna consists from two oblate semi-ellipses
with the axis of rotation Z. Semi-ellipses are separated from each other
by the narrow gap with sides coordinates — η′, η′, (η′ = 0.05). The
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η = 1
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Eη

Hϕ
Eξ

2l
η = 0

η = −1

η = 0

ξ1

ξ0

I

II

Figure 1. Oblate spheroidal coordinate system ξ, η, ϕ (cross-section
by plane ϕ = const, const + π). Coordinate surfaces: Confocal oblate
ellipsoids of rotation (in relation to the axis Z), one-sheet hyperboloids,
and semi-planes accordingly; ξ = ξ0 — surface of the antenna divided
by a narrow feed gap, 2l — height of the antenna, ξ = ξ1 — an outer
boundary of the shell [9].

antenna is covered by a confocal layer of a substance (metamaterial,
plasma) with Drude’s permittivity. The height of the antenna is 2l.

Numerical simulation of the antennas in confocal shells has been
done by solving of a boundary-value problem in oblate spheroidal
coordinate system. Results of numerical modeling for the oblate
spheroidal and spherical antennas with maximal electrical size 0.19
(Electrical size of the oblate spheroidal antenna in direction of the
height is kl = 0.019.) were obtained by solving of Maxwell’s system
of material and field equations for the lowest oblate spheroidal mode
TM11 [9].

The parallel LCR circuit of those antennas providing antiresonant
properties is comprised of inductive reactance of the shell with negative
permittivity and capacitive reactance of free space around the shell [9].
Because of inductive reactance of the shells in series with the parallel
LCR circuit, a resonant frequency ω0 of those antennas is higher than
an antiresonant frequency ω0 > ωa.
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Resonant and antiresonant properties of the spherical and oblate
spheroidal antennas are functions of negative permittivity of their
shells [9]. Simulated dependences of the parameter of antiresonant
conditions q for the spherical and oblate spheroidal antennas from
magnitude of the negative real part of relative permittivity |ε′| in
Fig. 2 display resonant and antiresonant ranges of the antennas.
Resonance is tuned in ranges of comparatively small magnitudes of
negative permittivity where parameter q in Fig. 2 varies from 0 to
−1 (X ′

0(ω0) ≥ 0). Parameter q varies from −1 to +1 in vicinity of
the central antiresonant permittivity of each antenna where numerical
value of q is equal to zero. Variation of q from −1 to +1 in Fig. 2
corresponds to antiresonant ranges X ′

0(ω0) < 0. Ranges of permittivity
corresponding to decrease of q from +1 relate to untuned antennas with
inductive reactance.

Frequency dependencies of the exact conductance (2) of the oblate
spheroidal antenna tuned on resonance (X0(ω0) = 0, X ′

0(ω0) > 0)
in resonant (q = −0.01) and antiresonant (q = −0.99) ranges are
shown in Fig. 3 and Fig. 4 together with corresponding graphs of the
approximate conductance calculated by means of relations (19)–(21).

Figure 3 compares the conductance G0(ω/ω0) (2) of the oblate
spheroidal antenna in resonant range with approximations of the
conductance G0Z(ω/ω0) (19), G0X(ω/ω0) (20), and G0EZ(ω/ω0) (21)
plotted as functions of ω

ω0
, (ω0 = 6× 109 rad/s). Relative permittivity

of the shell ε = −1 − 0.004i provides resonance frequency well away
from the antiresonant range according to Fig. 2.

As it is shown in Fig. 3, curves of the conductance (2) and
approximations of conductance (19), (20) coincide with accuracy better

−1

−0.5

0

0.5

1

q

sphere

sphd

0 1 2 3 4 5

Magnitude of relative negative permittivity, |    |ε'

Figure 2. Parameter of antiresonant conditions q = R′0(ω0)
|Z′0(ω0)| for the

oblate spheroidal and spherical antennas in the shells as functions of
magnitude of the real part of relative negative permittivity |ε′|.
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Figure 3. G0(ω) — conductance of the oblate spheroidal antenna in
the shell with relative permittivity ε = −1−0.004i tuned on resonance
at frequency ω0 (2), G0z(ω) — approximation of G0(ω) with parameter
Z ′0(ω0) (19), G0x(ω) — approximation of G0(ω) with X ′

0(ω0) (20),
G0EZ(ω) — approximation of G0(ω) with Z ′0(ω0) (21).

than 0.5% (β < 1). Approximations based on X ′
0(ω0) and Z ′0(ω0)

are close throughout the entire frequency range. Found difference
between frequencies ω0 and ωcd corresponds to value of 4ω (8) with
accuracy 0.3%. Values of the approximate maximal conductance
(19) and the exact maximal conductance (2) coincide with accuracy
better than 0.2%. The fractional conductance bandwidths calculated
with Z ′0(ω0) (27) and X ′

0(ω0) (28) are equal to the exact fractional
bandwidth with accuracy better than 0.3% (β < 1).

Figure 4 compares the conductance G0(ω/ω0) (2) with approx-
imations of the conductance G0Z(ω/ω0) (19), G0X(ω/ω0) (20), and
G0EZ(ω/ω0) (21) for the oblate spheroidal antenna tuned on resonance
in antiresonant range (q ∼= −0.99). Relative permittivity of the shell
ε = −2.05 − 0.004i provides the highest degree of convergence of res-
onance and antiresonance (ω0 ≈ ωa, X0(ω0)≈ 0, X ′

0(ω0) ≈ 0). The
conductance has maximum at frequency ωcd ≈ 1.0139ω0 in Fig. 4. As
a result, the antenna is tuned on resonance at an edge of the conduc-
tance bandwidth.

As it is shown in Fig. 4, curves of the exact conductance (2) and
approximations of the conductance (19) (β < 1), (21) (β < 0.1) based
on Z ′0(ω0) coincide with accuracy better than 5%. Approximation
based on X ′

0(ω0) (20) gives a noticeably wider curve, which corresponds
to a considerably overestimated bandwidth. Difference between ω0 and
ωcd corresponds to value of 4ω (8) with accuracy better than 3%.
The fractional conductance bandwidth based on Z ′0(ω0) (27) (β < 1)
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Figure 4. G0(ω) — conductance of the of the oblate spheroidal
antenna in the shell with relative permittivity ε = −2.05−0.004i tuned
on resonance at frequency ω0 (2), G0Z(ω) — approximation of G0(ω)
with parameter Z ′0(ω0) (19), G0X(ω) — approximation of G0(ω) with
X ′

0(ω0) (20), G0EZ(ω) — exponential approximation of G0(ω) with
Z ′0(ω0) (21).

and (29) (β < 0.1) coincides with the exact fractional bandwidth with
accuracy better than 0.2%. Accuracy of calculation of the maximal
conductance with approximation (19) is about 10%.

3.2. Approximation of FBW and the Quality Factor of
Antennas Tuned on Maximal Power of Radiation

The conductance bandwidth can be calculated by means of the
differential definition (32). That allows presenting of the conductance
bandwidth in resonant and antiresonant ranges of the antennas in one
graph. The same frequency (ωcd = 6 × 109 rad/s) was employed for
calculations of the conditions of maximal conductance being tuned by
the size of the antenna. The size of the shell of the antenna was being
defined by condition of maximal power of radiation for a given value of
permittivity of the shell [9]. Conditions of maximal power of radiation
are close to conditions of maximal power accepted by the antenna in
case of low losses in the shell medium. Those conditions are also close
to resonant conditions in resonant and antiresonant ranges X ′

0(ω0) ≥ 0
that provides almost zero reactance of antennas.

Condition of zero reactance in antiresonant range X ′
0(ω0) < 0

corresponding to antiresonance was not employed because antiresonant
conditions do not provide the conductance bandwidth. Convergence
of resonance and antiresonance at frequency ω0 = ωa, X0(ω0) = 0,
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X ′
0(ω0) = 0) means that resonant and antiresonant properties are

always related. In fact, resonant frequency is connected with both
antiresonant and maximal conductance frequencies (5). A frequency
of maximal conductance ωcd is always situated out of antiresonant
range X ′

0(ω0) < 0. Therefore, the quality factor of an antenna tuned
on antiresonance does not correspond to the conductance bandwidth
of the antenna in contrast with [13].

Analysis of results of [1, 6, 9, 10, 14–16] showed that antennas
tuned on resonance in antiresonant ranges X ′

0(ω0) ≥ 0 provide
comparatively low values of the quality factor corresponding to
comparatively wide bandwidth. That can be explained by optimal
use of the antennas volume.

Therefore, the fractional conductance bandwidth of the antennas
tuned on maximal power of radiation was calculated by means of the
differential definition (32) and relation (37) connected with the quality
factor. Dependences of the fractional conductance bandwidths (β = 1)
of the oblate spheroidal and spherical antennas are presented in Fig. 5
as functions of magnitude of the real part of relative permittivity |ε′|
of the shells. According with Fig. 2 and Fig. 5, values of the fractional
conductance bandwidths of the antennas calculated by means of (32)
and (37) are almost equal in resonant and antiresonant X ′

0(ω0) ≥ 0
ranges of permittivity. In antiresonant ranges X ′

0(ω0) < 0, values
of the fractional conductance bandwidth estimated by the use of
approximate quality factor (37) in some degree exceed values calculated
by means of the differential definition. However, inverse values of
the approximate quality factor are better approximating the fractional
conductance bandwidth than corresponding values of the exact quality
factor. Therefore, the approximate quality factor is an especially useful
parameter in antiresonant ranges in accordance with [6, 8].

Notion of resonance is not applicable in antiresonant ranges
X ′

0(ω0) < 0, whereas ωcd ≈ ω0 in resonant ranges. Results of
simulation of the conductance of the antennas tuned on maximal
conductance showed that frequency of maximal conductance can be
used instead of resonant frequency in relation (19). Therefore, the
fractional conductance bandwidth of an electrically small antenna
connected with power supply via an electrically small feed line in the
form valid throughout resonant and antiresonant ranges is

FBWcdZ (ωcd) ∼= 2β0.5R (ωcd)
ωcd |Z ′ (ωcd)|

∼= β0.5

QZ (ωcd)
, (β ¿ 1). (38)

The differential definition stays valid in the range of comparatively
high magnitudes of negative permittivity corresponding to the decrease
of q from +1 in Fig. 2. At the same time, relations connected with the
approximate quality factor (37) and (38) become invalid.
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Figure 5. Fractional conductance bandwidth FBWcd (FBW (32),
1/Q (37), (38)) (β = 1) of the oblate spheroidal (sphd) and spherical
(sphere) antennas in the shells as functions of magnitude of the
negative real part of relative permittivity |ε′|.

4. CONCLUSION

The conductance and the fractional conductance bandwidth of
an electrically small antenna tuned on resonance are efficiently
approximated by (19), (27) in resonant and antiresonant ranges
X ′

0(ω0) ≥ 0. The fractional conductance bandwidth of an antenna
tuned on maximal conductance (38) is inversely proportional to the
magnitude of the frequency derivative of the input impedance |Z ′(ωcd)|
at the frequency of maximal conductance throughout resonant and
antiresonant ranges. That is a generalization of the well known
relationship for the conductance bandwidth of an electrically small
antenna, according to which the conductance bandwidth is inversely
proportional to the magnitude of the frequency derivative of the input
reactance of the antenna |X ′

0(ω0)| at resonant frequency in resonant
ranges [1–3].

Obtained relations correspond to dependency of both the
VSWR [1] and Bode-Fano [6] bandwidths from 1/|Z ′0(ω0)| in resonant
and antiresonant X ′

0(ω0) ≥ ranges. At the same time, the VSWR [1]
and Bode-Fano [6] bandwidths are not fully compatible with notion of
an electrically small antenna because of essential role of feed line with
wave character of electromagnetic field. As a result, the conductance
bandwidth of an electrically small antenna with frequency of maximal
conductance ωcd is two times narrower than the VSWR bandwidth
with the maximum at resonant frequency ω0.

It is worth to notice that calculation of reflection parameters
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cannot provide information about bandwidth of an antenna in case of
quasi-static electromagnetic field of an antenna with electrically small
feed line.
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