
Progress In Electromagnetics Research B, Vol. 24, 63–78, 2010

IMPACT OF DIMENSIONAL PARAMETERS ON MU-
TUAL INDUCTANCE OF INDIVIDUAL TOROIDAL
COILS USING ANALYTICAL AND FINITE ELEMENT
METHODS APPLICABLE TO TOKAMAK REACTORS

M. R. Alizadeh Pahlavani and A. Shiri

Department of Electrical Engineering
Iran University of Science and Technology (IUST)
Tehran, Iran

Abstract—A toroidal field coil (TFC) is composed of several
individual toroidal coils (ITCs), which are connected in a series and
distributed in a toroidal and symmetrical form. Cross section of ITCs is
rectangular or negligible. This paper presents analytical equations for
mutual inductance of two ITCs applicable to Tokamak reactors using
the filament method. These equations are based on those formulated
by Neumann. The numerical analysis of the integrations resulting
from these equations is solved using the extended three-point Gaussian
algorithm. The finite element method (FEM) is employed to verify the
mutual inductance equations of ITCs. The results obtained using the
FEM, when dimensional parameters of ITCs are changed, confirm the
analytical and empirical results showing an error of less than 0.2043%
in the worst case. This indicates the reliability of the presented
equations.

1. INTRODUCTION

Different coils in the area of superconductor magnetic energy storage
(SMES), nuclear fusion reactors, and Tokamak reactors have been
studied [1]. As an example, all Tokamak reactors have an array of
TFC, poloidal field coil (PFC), and central solenoid coil (CSC). The
TFC is composed of several ITCs connected in a series and distributed
in a toroidal and symmetrical form. The magnetic field line is created
by a combination of TFC, PFC and a toroidal plasma current. Note
that a helical toroidal coil (HTC) can create the magnetic field line, as
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Figure 1. The magnetic part of a Tokamak reactor.

well [2–7]. The CSC is used to drive the toroidal plasma current in a
Tokamak reactor. The magnetic part of a Tokamak reactor is shown in
Fig. 1. As seen in this figure, each of TFC, PFC, and CSC is composed
of several ITCs which are distributed in different forms. The capability
of modular implementation of the TFC is one of its main advantages
over the HTC [8].

An inductive link consists of two ITCs, forming a loosely coupled
transformer. An ITC consists of several coaxial circular rings. Each
ring of an ITC has an inductive link with a ring of another ITC,
and there is a mutual inductance between them. In this paper,
all of the rings belong to the first and the second ITCs are called
primary and secondary rings, respectively. Each primary ring (in the
first ITC) generates a magnetic field that is partly picked up by the
secondary ring (in the second ITC). In this way, the power can be
transferred wirelessly. The decrease in power transfer efficiency of the
inductive power system is caused by lower mutual inductance due to
misalignment of the rings. Therefore, in the equations of the mutual
inductance between two rings, misalignments have to be taken into
consideration. Many investigations have been done in the literature
to the problem of mutual inductance calculation for coaxial circular
coils [9–15]. These contributions have been based on the application
of Maxwell’s formula, Neumann’s formula, and the Biot-Savart law.
The mutual inductance of coaxial circular rings can be obtained in
analytical or semi-analytical forms expressed by elliptical integrals of
the first, second, and third kind, Heuman’s Lambda function, Bessel
functions, and Legendre functions [16–18]. However, the calculation of
the mutual inductance of non-coaxial circular rings is of fundamental
practical interest to electrical engineers and physicists. In this paper,
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we will present the mutual inductance between two inclined ITCs when
either their axes intersect at the center of one of the ITCs or their axes
intersect but not at the center of one of them. This is accomplished
using complete elliptic integrals of the first and the second kind.
Also, we will use the filament method [19–28] to calculate the mutual
inductance between two ITCs. These ITCs may have any cross-section.
Note that the analytical equations are purely 3-D because ITCs’ axes
may be coaxial or non-coaxial. In this paper, we use extended three-
point Gaussian numerical integration to solve the presented equations.
They are validated using the FEM.

This paper is organized as follows: In Section 2, analytical
equations are presented to calculate the mutual inductance between
two inclined rings when either their axes intersect at the center of one
of the rings or their axes intersect but not at the center of one of them.
In Section 3, analytical equations are presented to calculate the mutual
inductance between two inclined ITCs when either their axes intersect
at the center of one of the ITCs or their axes intersect but not at the
center of one of them. In Section 4, the analytical results of Sections 2,
and 3 are compared with the FEM results. Finally, in this section,
magnetic flux density of two series ITCs is demonstrated.

2. ANALYTICAL EQUATION FOR MUTUAL
INDUCTANCE BETWEEN TWO RINGS

In this section, the analytical equation for mutual inductance between
two inclined circular rings is presented (see Fig. 2).

This equation is derived using Neumann’s equation and is solved
using complete elliptic integrals of the first and the second kind and
the numerical integration method. The numerical integration method
is based on the extended three point Gaussian algorithm [29]. The
mutual inductance between two filamentary circular rings with inclined
axes, one with radius Rph, and another with radius Rsl, whose centers
are not on the same axis, can be calculated as:

M =
µ0

π

√
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Figure 2. Two inclined filamentary circular rings (axes intersect but
not at the center of either).

ξr = βr − αr cosϕ sin θ (4)

Ψ(kr) =
(

2
kr
− kr

)
K(kr)− 2

kr
E(kr) = Q1/2(xr), xr =

2− k2
r

k2
r

(5)

Rph the radius of the primary ring (larger ring);
Rsl the radius of the secondary ring (smaller ring);
cgp the latitudinal distance between rings’ centers;
yp the longitudinal distance between rings’ centers;
θ the angle between ring’s axes;
K(kr) the complete elliptic integral of the first kind;
E(kr) the complete elliptic integral of the second kind;
Q1/2(xr) Legendre function of the second kind and half-integral
degree;
µ0 = 4π × 10−7 H/m the magnetic permeability of the vacuum.

3. ANALYTICAL EQUATION FOR MUTUAL
INDUCTANCE BETWEEN TWO ITCS

For the calculation of the mutual inductance between all inclined
circular rings of two inclined circular ITCs either with rectangular or
negligible cross section, we use the well-known filament method and
Equation (1). In the following calculations, we take into consideration
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two ITCs when either their axes intersect at the center of one of the
ITCs (Case I) or their axes intersect but not at the center of one of
them (Case II). Note that Case II is a global state of Case I. Fig. 3
shows Case II where the secondary ITC is inclined. In this paper, the
cross sections of the primary and the secondary ITCs are considered
rectangular. The symbols in this figure are as follows:

Rp the average radius of the rings of the primary ITC (larger ITC);
Rs the average radius of the rings of the secondary ITC (smaller
ITC);
Wp the width of the cross section of the primary ITC;
Lp the length of the cross section of the primary ITC;
Ws the width of the cross section of the secondary ITC;
Ls the length of the cross section of the secondary ITC;
c the latitudinal distance between ITCs’ centers;
d the longitudinal distance between ITCs’ centers;
θ the angle between ITCs’ axes;
Rpin the inner radius of the primary ITC;
Rpout the outer radius of the primary ITC;
Rsin the inner radius of the secondary ITC;
Rsout the outer radius of the secondary ITC.

In Figs. 4 and 5, the primary and the secondary ITCs are presented
in detail, respectively. In these figures, all the rings of each ITC are in
series with each other. The symbols in these figures are as follows:

g · h the number of the rings in the primary ITC;
h the number of the layers in the primary ITC;
g the number of the rings in each layer of the primary ITC;
p · l the number of the rings in the secondary ITC;
l the number of the layers in the secondary ITC;
p the number of the rings in each layer of the secondary ITC;
dw the diameter of the conductor;
Hrp the longitudinal distance between the rings of the primary
ITC;
Hzp the latitudinal distance between the rings of the primary ITC;
Hrs the longitudinal distance between the rings of the secondary
ITC;
Hzs the latitudinal distance between the rings of the secondary
ITC.
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Figure 3. Two inclined circular ITCs with rectangular cross section
(axes intersect but not at the center of one of the ITCs).

Figure 4. The primary filamentary circular ITCs in detail.

Note that all centers of the rings of the inclined secondary ITC lie
in different points away from the axis of the primary ITC. Similarly, all
centers of the rings of the primary ITC lie in different points away from
the axis of the secondary ITC. The centers of these rings are on the
same axes (see Figs. 4 and 5). In fact, in these arrangements we obtain
a set of coupled filamentary inclined rings. So, it is necessary to make
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Figure 5. The secondary filamentary circular ITCs in detail.

some modifications in the filament method to take into consideration
the different positions of the primary and the secondary rings which
are, respectively, replaced by the primary and the secondary ITCs.

Thus, the mutual inductance between two inclined circular ITCs
of rectangular cross section can be obtained in the following form:

M =
gg∑

i=g1

hh∑
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pp∑
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ll∑
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where:
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Lp = Rpout −Rpin = h(Hrp + dw),
Wp = g(Hzp + dw)

Rs(t) = Rs +
Ls

l
t, Rs = 0.5(Rsout + Rsin), (14)

Ls = Rsout −Rsin = l(Hrs + dw),
Ws = p(Hzs + dw)

z(i, s) = c− Wp

g
i +

Ws cos θ

p
s (15)

[l1, l2, . . . , ll−1, ll]
= [−0.5(l − 1),−0.5(l − 1) + 1, . . . , 0.5(l − 1)− 1, 0.5(l − 1)] (16)
[p1, p2, . . . , pp−1, pp]
= [−0.5(p− 1),−0.5(p− 1) + 1, . . . , 0.5(p− 1)− 1, 0.5(p− 1)] (17)
[h1, h2, . . . , hh−1, hh]
= [−0.5(h− 1),−0.5(h− 1) + 1, . . . , 0.5(h− 1)− 1, 0.5(h− 1)] (18)
[g1, g2, . . . , gg−1, gg]
= [−0.5(g − 1),−0.5(g − 1) + 1, . . . , 0.5(g − 1)− 1, 0.5(g − 1)] (19)

4. CONFIRMATION OF ANALYTICAL RESULTS
USING FEM

The FEM is a numerical and computer-based technique for solving a
variety of practical engineering problems that arise in different fields.
It is recognized by developers and users as one of the most powerful
numerical analysis tools ever devised to analyze complex problems in
engineering. Because of its diversity and flexibility as an analytical
tool, it is receiving much attention in engineering schools and in
industry [30].

In this section, the mutual inductance between two ITCs are
obtained using FEM when one of the dimensional parameters (Hrp,
Hzp, C) are varied. Also, the real depth of penetration of two series
ITCs versus frequency is obtained using FEM in the presence of a
traveling plane electromagnetic wave. Then, the obtained results are
compared with the corresponding analytical results. Fig. 6 shows the
implemented model of two ITCs using FEMM software. As seen in
this figure, because the ITCs have a symmetrical axis, it is enough to
mesh only the half of the ITCs in FEM analysis. In this paper, non-
uniform triangular meshing with open boundaries is used to simulate
the experimental environment. The parameters of the ITCs are given
in Table 1.
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Figure 6. The implemented model of two series ITCs using FEMM
software.

Table 1. The parameters of ITCS.

PARAMETERS OF THE PRIMARY 

ITC

PARAMETERS OF THE SECONDARY 

ITC

g 3 p 4

h 4 l 5

rpH 0.5 [mm] rsH 0.5 [mm]

zpH 0.5 [mm] zsH 0.5 [mm]

pL 66 [mm] sL 82.5 [mm]

pW 49.5 [mm] sW 66 [mm]

pR 100 [mm] sR 100 [mm]

= 58 [MS /m], = 8.85 [pF /m], d = 0 [mm]

= 0.4π [µH /m], dw = 16 [mm], θ = 0 [rad]

σ ε

µ

MATLABr m-files are used to simulate the mutual inductance
between two rings. Numerical integrations of Equation (1) are
solved using the extended three-point Gaussian algorithm. The
mutual inductance between two flat rings with Rph = 0.2 [m], Rsl =
0.25 [m], cgp = 0.1 [m], θ = 0 [rad] and yp = 0 [m] using FEM
result is calculated 0.2513 [µH] while the same inductance using the
empirical result is calculated 0.24879 [µH] [31, 32]. The error resulting
from the comparison between the empirical and the FEM result
is calculated 0.01%. Additionally, the analytical result, which is
obtained using Equation (1), shows an error of 0% when compared
with the empirical result. Note that an “empirical result” is a formula
based on observation experiments. In this paper, it means that
other researchers have performed experiments in the laboratory and
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developed a correlation between the inputs of the experiments and the
outputs. So, the developed equations do not rely on basic science; they
are just based on experimental works.

Figure 7 shows the magnetic flux density of two series ITCs when
the current flowing through ITCs is 10 [KA]. As seen in this figure,
the magnetic flux density is concentrated in the inner radius of the
ITCs. Fig. 8 confirms this issue and shows that the magnetic flux
density concentration occurs in the inner radius of the ITCs. Note
that the magnetic flux density in Fig. 8 is drawn between two ITCs for
z = 50 [mm].

Figure 9 and Table 2 compare the FEM and the analytical results
of the mutual inductance between two ITCs versus Lp. The relation
between Lp and Hrp is given in Equation (13). This figure shows that
the mutual inductance decreases when Hrp increases. In other words,
the inductive link between two ITCs decreases when Lp increases while
Rp remains constant. This figure also shows that the decrease rate of
mutual inductance in the inner rings of the primary ITC is much more
than the increase rate of the mutual inductance in the outer rings of
the primary ITC. The measured average error is less than 0.2043%.
This error may be due to the mesh size and the computational error.

Figure 7. The magnetic flux density of two series ITCs in constant
toroidal.
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Figure 8. The magnetic flux
density of two series ITCs in
constant toroidal plane for z =
50 [mm].

Figure 9. Comparing the FEM
and the analytical results of the
mutual inductance versus Lp.

Figure 10. Comparing the FEM
and the analytical results of the
mutual inductance versus Wp.

Figure 11. Comparing the
FEM and the analytical results of
the mutual inductance versus the
volume of the primary ITC.

Figure 10 and Table 2 compare the FEM and the analytical results
of the mutual inductance between two ITCs versus Wp. The relation
between Wp and Hzp is given in Equation (14). This figure shows that
the mutual inductance increases when Hzp increases. In other words,
the inductive link between two ITCs increases when Wp increases
while other parameters remain constant. From this figure it is also
deduced that the increase rate of the mutual inductance in the upper
rings of the primary ITC is much more than the decrease rate of the
mutual inductance in the lower rings of the primary ITC. The measured
average error is less than 0.1354%.
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Figure 11 and Table 2 compare the FEM and the analytical results
of the mutual inductance between two ITCs versus the volume of the
primary ITC (Volumep). The relation between Volumep and Hzp and
Hrp is given in Equation (20). This figure shows that the mutual
inductance decreases when Volumep increases. In other words, the
more concentrated the primary ITC, the more mutual inductance
between two ITCs. The measured average error is less than 0.0815%.

Volumep = 2πRpLpWp =2πRpgh(Hrp + dw)(Hzp + dw) (20)

Table 2. Comparing the FEM and the analytical results of the mutual
inductance.

 

3

 The mutual inductance  [µH] 

versus [mm]versus Lp
  

FEM .Analyt pVolume FEM .Analyt pW FEM .Analyt pL 

   11.7531    11.7678     0.0085 13.0959 13.1034 0.1008 10.8558 10.9106 0.1344 

   11.7422    11.7652     0.0087 13.1091 13.1289 0.1018 10.8512  10.8962 0.1357

   11.7531    11.7626     0.0088 13.1530 13.1547 0.1027 10.8428 10.8817 0.1370 

   11.7518    11.7600     0.0090 13.1472 13.1808 0.1037 10.8395 10.8671 0.1382 

   11.7415    11.7574     0.0092 13.1789 13.2073 0.1046 10.8291 10.8526 0.1395 

   11.7299    11.7548     0.0093 13.2024 13.2340 0.1056 10.8010 10.8381 0.1408 

   11.7598    11.7521     0.0095 13.2427 13.2610 0.1066 10.7967 10.8236 0.1421 

   11.7454    11.7495      0.0097 13.2942 13.2884 0.1075 10.7907 10.8090 0.1434 

   11.7335    11.7468     0.0099 13.2898 13.3161 0.1085 10.7605 10.7945 0.1446 

   11.7469    11.7441     0.0100 13.3361 13.3441 0.1094 10.7789 10.7800 0.1459 

   11.7264    11.7413     0.0102 13.3452 13.3724 0.1104 10.7494 10.7655 0.1472 

   11.7223    11.7386     0.0104 13.4109 13.4011 0.1114 10.7358 10.7509 0.1485 

   11.7131    11.7359     0.0106 13.4291 13.4301 0.1123 10.7225 10.7364 0.1498 

   11.7330    11.7331     0.0108 13.4254 13.4594 0.1133 10.7117 10.7219 0.1510 

   11.7274    11.7303     0.0109 13.4619 13.4891 0.1142 10.6893 10.7075 0.1523 

   11.7239    11.7276     0.0111 13.5093 13.5191 0.1152 10.6736 10.6930 0.1536 

   11.7128    11.7248     0.0113 13.5193 13.5494 0.1162 10.6671 10.6785 0.1549 

   11.7148    11.7220     0.0115 13.5579 13.5801 0.1171 10.6590 10.6641 0.1562 

   11.7043    11.7193     0.0117 13.6082 13.6111 0.1181 10.6261 10.6497 0.1574 

   11.7172    11.7165     0.0119 13.6836 13.6425 0.1190 10.6243 10.6353 0.1587 

   11.7075    11.7137     0.0121 13.6806 13.6742 0.1200 10.6267 10.6210 0.1600 

   11.6994    11.7109     0.0123 13.7119 13.7063 0.1210 10.5989 10.6067 0.1613 

   11.6995    11.7082     0.0125 13.7475 13.7388 0.1219 10.5967 10.5924 0.1626 

   11.6944    11.7054     0.0126 13.7683 13.7716 0.1229 10.5802 10.5782 0.1638 

   11.6987    11.7027     0.0128 13.8360 13.8047 0.1238 10.5798 10.5639 0.1651 

The mutual inductance  [µH]

[mm]versus Wp

The mutual inductance  [µH]

[mm  ]versus Volume p
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   11.6854    11.6945     0.0135 13.9207 13.9065 0.1267 10.5379 10.5216 0.1690 

   11.6726    11.6918     0.0137 13.9316 13.9411 0.1277 10.5216 10.5075 0.1702 

   11.6733    11.6891     0.0139 14.0097 13.9762 0.1286 10.4986 10.4935 0.1715 

   11.6903    11.6864     0.0141 14.0185 14.0116 0.1296 10.4933 10.4796 0.1728 

   11.6765    11.6838     0.0143 14.0524 14.0474 0.1306 10.4623 10.4657 0.1741 

   11.6708    11.6812     0.0145 14.0865 14.0836 0.1315 10.4673 10.4519 0.1754 

   11.6834    11.6786     0.0147 14.1497 14.1202 0.1325 10.4588 10.4381 0.1766 

   11.6744    11.6760     0.0149 14.2023 14.1572 0.1334 10.4591 10.4244 0.1779 

   11.6774    11.6734     0.0151 14.2343 14.1946 0.1344 10.4241 10.4107 0.1792 

   11.6870    11.6709     0.0153 14.2343 14.2323 0.1354 10.4103 10.3971 0.1805 

   11.6699    11.6684     0.0156 14.2897 14.2706 0.1363 10.3776 10.3836 0.1818 

   11.6786    11.6660     0.0158 14.3442 14.3092 0.1373 10.3719 10.3701 0.1830 

   11.6637    11.6635     0.0160 14.3702 14.3482 0.1382 10.3663 10.3567 0.1843 

   11.6671    11.6611     0.0162 14.4183 14.3877 0.1392 10.3619 10.3434 0.1856 

   11.6741    11.6588     0.0165 14.4328 14.4276 0.1402 10.3643 10.3301 0.1869 

   11.6566    11.6564     0.0167 14.4613 14.4679 0.1411 10.3479 10.3169 0.1882 

   11.6513    11.6542     0.0169 14.5529 14.5086 0.1421 10.3309 10.3038 0.1894 

   11.6453    11.6519     0.0171 14.5743 14.5498 0.1430 10.3297 10.2908 0.1907 

   11.6482    11.6497     0.0174 14.6195 14.5914 0.1440 10.3165 10.2778 0.1920 

   

   11.6469    11.6454     0.0178 14.6874 14.6760 0.1459 10.2896 10.2522 0.1946 

   11.6603    11.6433     0.0181 14.7305 14.7190 0.1469 10.2752 10.2394 0.1958 

11.6308    11.6475      0.0176 14.6328 14.6335 0.1450 10.3082 10.2649 0.1933 

   11.6469    11.6454     0.0178 14.6874 14.6760 0.1459 10.2896 10.2522 0.1946 

   11.6603    11.6433     0.0181 14.7305 14.7190 0.1469 10.2752 10.2394 0.1958 

   11.6462    11.6413     0.0183 14.7779 14.7625 0.1478 10.2804 10.2268 0.1971 

   11.6232    11.6393     0.0185 14.8404 14.8064 0.1488 10.2762 10.2143 0.1984 

   11.6854    11.6999     0.0130 13.8389 13.8383 0.1248 10.5640 10.5498 0.1664 

   11.6818    11.6972     0.0132 13.9126 13.8722 0.1258 10.5445 10.5356 0.1677 

5. CONCLUSION

Detailed electromechanical analyses, including finite-element calcula-
tions, have been performed for hundreds of Tokamak designs including
designs with round, D-shaped, and racetrack-shaped coils. In this pa-
per, we derived analytic expressions for coil sets where the plane of the
coil is tilted at an angle with respect to the radial plane.

The fundamentals of the analysis of mutual inductance presented
in this study are helpful for the design and implementation of
Tokamak reactors. This paper presented analytical equations of mutual
inductance between two ITCs. These equations were solved using
analytical and finite element methods. The MATLAB program was
used for a numerical simulation of the mutual inductance, and the
FEMM software was also employed for a magnetic analysis of two
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ITCs. Comparing the analytical and the FEM results shows that the
obtained errors is less than 0.2043%. Therefore, the proposed equations
are highly reliable.
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