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Abstract—We develop a new adaptive inversion procedure: Data-
adaptive Resolution Inversion (DRI) method, which eliminates the
need of selecting a parameterization prior to inversion. Instead, one
performs a hierarchical search for the correct parameterization while
solving a sequence of inverse problems with an increasing dimension
of parameterization. A parsimonious approach to inverse problems
usually involves the application of the same refinement consistently
over the complete spatial domain. Such an approach may lead
to over-parameterization, subsequently, to unrealistic conductivity
estimates and excessive computational work. With DRI, the new
parameterization at an arbitrary stage of inversion sequence is
allocated such that new degrees of freedom are not necessarily
introduced all over the spatial domain of the problem. The aim
is to allocate new degrees of freedom only where it is warranted
by the available data. Inversion results confirm that DRI is robust
and efficient for multiparameter inversion of multicomponent borehole
electromagnetic measurements.

1. INTRODUCTION

Accurate and reliable determination of hydrocarbon saturation is
of principal importance for decisions regarding the exploration,
development, and production of thinly-laminated sand-shale sequences
typically encountered in deepwater turbidite reservoirs [28]. Thinly
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laminated sand-shale sequences are characterized by macroscopic
electrical anisotropy, which in turn, could be interpreted as
a good indicator of hydrocarbon pay [11]. In the case of
horizontally layered formations with conductivity anisotropy, the
value of conductivity parallel to the bedding plane differs from
the one that is perpendicular to the bedding plane. Media of
the above-described conductivity characteristics are also referred to
as transversely anisotropic (TI or uniaxially anisotropic) conductive
media. Often, high conductivity shale laminae dominate horizontal
conductivity information on magnetic field measurements while
information about vertical conductivity is predominantly determined
by the low conductivity hydrocarbon-bearing sand laminae. In vertical
boreholes penetrating horizontal layers, vertical dipole antennas of
conventional induction logging tools detect signals from eddy currents
that flow parallel to bedding plane. As such, they lack sensitivity to
vertical conductivity, thereby causing underestimation of hydrocarbon
reserves. This problem was identified as early as in 1930’s by [17]
and emphasized by [14]. Conversely, in highly-deviated and horizontal
boreholes, conventional induction logging tools are more sensitive
to the commonly encountered lower vertical conductivity. This
behavior introduces difficulties in identifying marker beds for well-to-
well correlation and for well geosteering.

Modern multicomponent induction logging tools were introduced
by Baker-Hughes [12] and Schlumberger [16] to address the problems
of conventional induction logging measurements in anisotropic rock
formations. Baker-Hughes’ tool measures five magnetic field
components: Hxx, Hyy, Hzz, Hxy, and Hxz. On the other hand,
Schlumberger’s tool acquires measurements of all nine components of
the magnetic field allowing closed-form determination of the azimuthal
angle via a rotation of the tensor field measurements without resorting
to inversion [22].

With the exception of [1], development of inversion algorithms
for triaxial induction logging measurements has been focused
to predominantly one- or, to a lesser extent, two-dimensional
models [3, 5, 13, 15, 20, 22, 25–28].

A central problem when attempting to infer spatial distributions
of conductivity from electromagnetic measurements is to explicitly
honor the intrinsic spatial resolution of the measurements, i.e., the
a-priori spatial parameterization of conductivity. Too low spatial
resolution will result in measurements not being reconciled, while too
high spatial resolution leads to unnecessary computational effort due
to over-parameterization. In turn, over-parameterization, when not
accurately regularized, often leads to increased non-uniqueness in the
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inversion and ultimately causes spatial distributions of conductivity to
be inconsistent with the physics of the measurements. The objective
of this paper is to develop a data-adaptive resolution inversion method
for the problem of multicomponent induction logging. We seek to
circumvent the difficulty of estimating conductivity distributions with
the correct spatial resolution by gradually increasing the resolution
only at spatial locations warranted by the measurements. Thus,
instead of proposing a fixed rigid resolution and subsequently seeking
to invert the corresponding parameter set all at once with all the data
available, we propose to solve a sequence of inversion problems with
monotonically increasing resolution. DRI is related with the multigrid
inversion method [4] in that it starts from the simplest (coarsest in
the multigrid terminology) model and advances towards the most
detailed (finest in the multigrid terminology) one. DRI algorithm by
construction avoids the use of an artificial regularization parameter.
From this viewpoint, DRI is philosophically akin to the trust-region
method of [8], where the regularized solution is found by posing
the regularization as a trust-region subproblem. DRI, on the other
hand, embeds the regularization process to the adaptive refinement
of the model parameterization based on the information content of
the measurement data. Inversion approaches similar to DRI have
been explored for the automatic history matching of fluid production
measurements in the reservoir engineering literature [9]. Inspired by
these ideas, we formulate a new data adaptive algorithm particularly
suitable for inversion problems arising in borehole geophysics.

2. DATA-ADAPTIVE RESOLUTION INVERSION (DRI)
METHOD

2.1. Overview

Conventional pixel-by-pixel inversion techniques attempt to compen-
sate resolution discrepancies in the spatial domain due to over-
parameterization by penalizing deviations from a-priori knowledge
about the sought solution. Bayesian estimation or Tikhonov regular-
ization techniques [18, 19], for example, require the use of regulariza-
tion parameters for this purpose. In many cases, the determination of
regularization parameters is based on highly subjective grounds. DRI,
on the other hand, can be viewed as a sequence of inversions where
the parameterization for each level of estimation is a zonation. The
resolution of the zonation is increased for each step in the sequence,
i.e., progressive parameterization. This process is initiated by esti-
mating a single parameter, namely, the average conductivity for the
entire medium, using an arbitrary initial value. Then, the medium is
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(a)

(b) (c)

Figure 1. (a) A simple two-dimensional inverse problem. (b) Over-
parameterization due to regular hierarchical refinement strategy versus
ideal parameterization for the inverse problem-of-interest. (c) Regular
hierarchical refinement strategy versus adaptive hierarchical refinement
strategy.

split into 2n equal-size subregions, where n is the spatial dimension
of the conductive medium. A parameter is estimated for each subre-
gion with initial values equal to the estimated parameter value for the
entire conductive medium. In an approach that operates with first-
order complexity following the first-step spatial splitting, each of these
subregions can be divided into 2n equal-size new subregions, and the
refinement proceeds recursively with the powers of 2 until the conver-
gence criteria are met to satisfaction. Let us denote the number of
complexity levels by m. Then, the number of parameters to be a esti-
mated in an arbitrary instance of inversion is given by K = 2n (m−1). It
is self-evident that, K will increase rapidly as the sequential refinement
process advances, especially for problems formulated in two- or three-
dimensional spatial domains. In order to control the growth ratio for
the number of parameters from one complexity level to the next while
maintaining conformance to measurements, only a few new parameters
are introduced at each level of the DRI.

2.2. Paradigm of DRI Algorithm on a Spatial Example

Figure 1 illustrates the DRI philosophy on a simple demonstrative
two-dimensional spatial inverse problem adapted from [9]. Ideal
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Figure 2. Example levels of refinement for the adaptive hierarchical
refinement strategy (adapted from [9]). Three levels are shown in
this figure. At the second level, vertical refinement is selected over
horizontal refinement.

parameterization of the model for inversion is unknown while regular
hierarchical refinement becomes too costly very rapidly. An adaptive
hierarchical refinement strategy (Figure 2), as described by [9], can be
devised that requires refinement indicators to guide the refinement
process. At the second level, vertical refinement is selected over
horizontal refinement.

Refinement criteria are developed to identify the focus region at
each DRI level. New degrees of freedom are introduced only within
the confines of this region. The principal philosophy of DRI relies on
the goal of identifying the focus-region of (spatial and/or non-spatial)
inversion model parameters and adapting its resolution to the spatial
sensitivity of the measurements at each iteration level while avoiding
unnecessary refinements.

DRI refinements are solely guided by objective criteria that
stem from the information content of the measurements, specifically
by the spatial sensitivity of the available measurements. In
consequence, DRI eliminates subjective decisions that are artifacts
of the rigid over-parameterization strategy of conventional pixel-by-
pixel or parametric simultaneous inversion techniques. Decisions about
the choice and magnitude of regularization parameters constitute an
important example. By construction, DRI eliminates the need for
artificial regularization parameters by adjusting the model resolution
on the spatial domain based on the information warranted by the
measurements.
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2.3. DRI Algorithm for the Parametric Inversion of
Borehole Geophysical Data

The spatial DRI algorithm described above (for simplicity) is
reformulated to address the parametric inverse problems of borehole
geophysics. For such problems, the inversion process starts with a
simple parametric model. The initial model is constructed using
a set of model parameters with the largest dominance on the
reduction of the objective function. Identification of this set of
model parameters is achieved at the first assessment level, also
called the first complexity assessment-advancement level. Once the
level of model complexity is determined, the inversion phase starts
(complexity level inversion phase). Nonlinear inversion iterations
are advanced until the improvement in the inverted model becomes
insignificant or the reduction of the objective function indicates that
complexity level convergence is attained. This, in turn, triggers
the next complexity assessment-advancement level of the adaptive
inversion. Assessment-advancement level involves the identification
of the most relevant set of new model parameters and their
introduction to the inversion process. Subsequent to each assessment-
advancement level, DRI reverts back to the inversion phase. The data-
adaptive inversion process advances through a number of complexity
assessment-advancement and complexity level inversion phases until
the complexity assessment-advancement phase determines that the
next advancement will be statistically insignificant. Since the model
complexity is continuously adjusted to the information content of the
measurements, by construction the DRI algorithm avoids the use of
artificial regularization parameters. Consequently, DRI eliminates
the uncertainty introduced by the subjective choice of artificial
regularization. This is by no means a claim that the uncertainty in
the inverted model is completely eliminated. In fact, uncertainty is still
prevalent, yet, the uncertainty in the inverted model stems purely from
imperfect observations (measurements) collected at finite locations
and from finite angles within the unknown model. Elimination of
subjective regularization parameters renders the DRI an adequate
tool for uncertainty analysis. At the inversion phase, the DRI solver
minimizes the objective function expressed by a pure data misfit given
by

C(x) = [m− S(x)]TC−1
D [m− S(x)] (1)

and subject to physical value-range constraints on the vector of
model parameters, x. In Equation (1), m denotes the vector of
multicomponent electromagnetic measurements and CD represents the
covariance matrix of measurement errors. The vector of simulated
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measurements is given by S(x). In principle, any optimization method
can be utilized to compute model parameters by minimizing the
objective function of Equation (1) at each level of DRI complexity.
Optimization techniques that require the gradient of the objective
function are less intense in terms of computational effort per iteration.
Techniques that require the computation of a sensitivity matrix
are computationally more demanding compared to gradient-based
optimization techniques but generally entail more rapid convergence.
In practice, the optimal choice of optimizer is problem dependent.
DRI’s focus-region tracking logic makes use of the data sensitivity
matrix to sort through various parameterizations and select the most
suitable ones to proceed further. In this paper, we implement a
sensitivity-matrix-based optimization method to naturally complement
the DRI technique. The DRI optimization engine is implemented using
a least-squares Gauss-Newton minimization algorithm embedded in
a dual finite-difference grid stencil [21]. Mathematical details of the
DRI complexity assessment-advancement phase are documented in the
Appendix A.

3. FORWARD MODEL

Simulation of triaxial induction logging measurements is carried out
using a three-dimensional anisotropic electromagnetic forward model.
The forward model consists of solving Maxwell’s equations in the
frequency domain and assumes a time-harmonic variation of the form
eiωt, where t is time, i =

√−1, ω = 2πf is angular frequency, and f is
linear frequency (Hz). For arbitrary 3D, inhomogeneous, electrically
anisotropic media and assuming SI units, Maxwell’s equations in the
presence of impressed electric current sources are given by

∇×E = −iωµoH, (2)
∇×H = ¯̄σ′E + Jp, (3)

and
∇ ·B = 0, (4)

where E and H are the electric- and magnetic-field vectors, respectively
and B is the magnetic flux density vector. We assume that the medium
under consideration does not exhibit spatial variations of magnetic
permeability, whereupon the magnetic field and flux density are related
by B = µoH, where µo = 4π×10−7 (H/m) is the magnetic permeability
of free space. In Equation (3), Jp is the impressed electrical-source-
current density vector, ¯̄σ′ = ¯̄σ + iω ε¯̄I is the complex conductivity
tensor, ¯̄σ is the ohmic conductivity tensor, ε is dielectric permittivity,
and ¯̄I is the unity dyad.
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Electromagnetic field equations are solved on Yee’s staggered
grid [24] using a finite-difference algorithm described in [10]. In
this implementation, electromagnetic equations are transformed into
a second-order coupled scalar-vector potential formulation prior
to finite-difference discretization. The resulting code accurately
simulates borehole electromagnetic logging measurements acquired
with multicomponent magnetic transmitters and receivers. An
anisotropic conductivity-averaging scheme is implemented following
the guidelines of [23]. Computational efficiency of the forward
modeling algorithm is further enhanced using an optimal geometric
finite-difference gridding technique [6].

4. NUMERICAL EXAMPLE

In a numerical example, we consider inversion of synthetic
multicomponent electromagnetic measurements generated from a
transversely anisotropic invaded (by the mud-filtrate) single-layer
model (Figure 3). A hydrocarbon-saturated sand layer is assumed
to be buried in an isotropic background (shale) with a conductivity of
0.1 S/m. In addition to mud-filtrate invasion, we consider the presence
of a conductive annulus between the invaded and uninvaded zones.
Conductivity values are chosen consistent with the physics of fresh

Figure 3. Example single-layer model for the parametric inversion of
multicomponent induction logging measurements.
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Table 1. Summary of inversion results for the single invaded layer
example. Parameter values that are subject to inversion at a given
DRI level are typed with boldface characters along with parameter
values estimated by GNI.

MODEL MODEL INITIAL DRI L1 DRI L2 DRI L3 DRI L4 DRI L5 GNI TRUE
PARAMETER UNIT

Θ [degree] 55.00 59.36 59.39 59.95 59.69 60.03 56.40 60.00
σht [S/m] 0.100 0.011 0.014 0.015 0.012 0.013 0.019 0.013

ahvt [dimensionless] 1.00 1.00 1.95 2.16 2.47 2.48 1.83 2.50

z o [ft] -4.08 -4.08 -4.08 -4.02 -4.05 -4.02 -3.96 -4.00
    ∆ [ft] 8.16 8.16 8.16 8.00 8.06 8.00 8.04 8.00

 σhinv 0.100 0.100 0.100 0.100 0.052 0.012 0.007 0.010

ahvinv 1.00 1.00 1.00 1.00 1.56 1.48 1.02 1.50

rinv [in] 15.00 15.00 15.00 15.00 8.68 10.13 12.30 10.00

 hann 0.100 0.100 0.100 0.100 0.100 0.023 0.020 0.025

ahvann 1.00 1.00 1.00 1.00 1.00 1.41 1.31 1.50

rann [in] 25.00 25.00 25.00 25.00 25.00 19.50 21.60 20.00

No of inverted parameters: 5             8 11 11 -

No of Gauss-Newton Iterations 
(since the last adaptation): 

-              2 2 4             7              5 22 -

No of Gauss-Newton Iterations (total): -              2 4 15 20 22 -

MODEL MODEL MODEL MODEL MODEL MODEL MODEL MODEL

 σ

[dimensionless]

[dimensionless]

[S/m]

[S/m]

-

z

2 3

8

water-base mud-filtrate invasion into a formation saturated with high-
salinity residual aqueous and movable hydrocarbon phases (see, for
more details, [7]). The true model parameters are displayed in Table 1.

The model parameters subject to inversion are divided into
five classes. Each class contains parameters that are relatively
more closely associated with each other as warranted by the physics
of the electromagnetic induction problem-of-interest. Relatively
more traditional model parameters of induction logging inversion
are distributed among the classes that appear earlier in the
adaptive iterative inversion process. Whereas less common model
parameters that characterize the detailed features of the near-borehole
conductivity field are consolidated to classes that are introduced
subsequently to the inversion process. Definitions of the model
parameters subject to inversion (Table 1 and Figure 3) and their
classification are as follows: Class 1: θ = dip angle of the borehole
penetrating through the rock formation, σht = horizontal conductivity
of the uninvaded rock formation, and ahvt = transverse anisotropy ratio
of the uninvaded rock formation (= σht/σvt, horizontal conductivity
divided by the vertical conductivity of the uninvaded rock formation);
Class 2: zo = vertical location of the formation-top and ∆z = thickness
of the rock formation; Class 3: σhinv = horizontal conductivity of
the mud-filtrate invaded zone, ahvinv = transverse anisotropy ratio of
the mud-filtrate invaded zone (= σhinv/σvinv, horizontal conductivity
divided by the vertical conductivity of the mud-filtrate invaded zone),
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and rinv = radius of the mud-filtrate invaded zone; Class 4: σhann =
horizontal conductivity of the annulus, ahvann = transverse anisotropy
ratio of the annulus (= σhann/σvann, horizontal conductivity divided

L1 L2

L3 L4

L5

Figure 4. Five levels of the adaptive hierarchical parametric
refinement strategy [L1 through L5]. Multicomponent induction
logging inverse problem: single-layer example. Each figure panel
associated with a given level of refinement displays the model
parameters inverted at that particular level.
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by the vertical conductivity of the annulus), and rann = radius of the
annulus. In our implementation, if DRI identifies at least one of the
model parameters within a given class to be of value for including in
the inversion problem, the full-set of parameters (within that class)
are added to the inversion problem. The only exception is Class 1.
While σht and θ are closely associated with each other (characterizing
a simple, homogeneous and isotropic deviated-well problem), ahvt is
added separately to the inversion process (changing the nature of the
simple isotropic problem to an anisotropic one). The forward model
also employs known model parameters whose values remain unchanged
over the course of the inversion (Figure 3): σsh = isotropic background
(shale) conductivity, borehole conductivity, and rbh = borehole radius.

Triaxial induction logging measurements are simulated for a
single-frequency (20 kHz) single-transmitter induction logging tool
with six multicomponent receivers. Measurements are acquired in
an inclined borehole with a dip angle of 60◦, and simulated for 40
logging stations across the−20 ft to +20 ft (true relative vertical depth)
interval. In total, 40× 6× 5 measurements are used for inversion. The
measurements are contaminated with 0.1% Gaussian random noise.
The above-described parametric variant of the DRI is applied to solve
the inverse problem.

The relative progress of adaptive refinements performed by DRI
is shown in the panels of Figure 4. Table 1 describes the level-by-level
inversion results. Adaptive inversion process begins with the iterations
that aim for reconstructing the model parameters σht and θ. Remaining
model parameters are set to their initial-guess values. DRI proposes
the addition of ahvt to the set of inverted model parameters subsequent
to two Gauss-Newton iterations (rendering the complete set of Class 1
parameters active for inversion). Class 2, Class3, and Class 4 model
parameters are stepwise added to the inversion process subsequent
to two, four, and seven iterations after the most recent adaptation,
respectively. The convergence criterion is satisfied after five iterations
subsequent to the L4-to-L5 model transition. Table 1 also documents
the inversion results obtained by applying a weighted and additive-
regularized conventional Gauss-Newton inversion (GNI) technique such
as the one described in [2]. The regularization parameter is selected
as 1.0×10−2. No experimentation was carried out to identify the
optimal value for the regularization parameter. Both DRI and GNI
methods are run until they satisfy a dimensionless misfit criterion. The
iterations cease once the misfit reduces below the noise level, namely,
1.0×10−3. Figure 5 shows the post-inversion (DRI) data fit. Synthetic
measurements and post-inversion simulated electromagnetic data are
displayed for an example receiver location.
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DRI reveals a hierarchy of importance among model parameters
by adaptively assimilating the information content of multicomponent
electromagnetic induction measurements. Uninvaded formation
conductivity and layer geometry characteristics dominate over invaded

(a)

(b)

Figure 5. Post-inversion data fit for an example receiver location.
Imaginary part of the measured and post-inversion magnetic field
are shown for every relevant coupling direction. Note that, for the
transversely anisotropic problem-of-interest, the following holds with
regards to the magnetic field measurements: Hxy = Hyx = Hyz =
Hzy = 0.
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zone and annulus characteristics. DRI identifies a more accurate
inversion result within a fewer number of Gauss-Newton iterations
compared to GNI. Except for the final (L5) phase, all other phases of
the DRI employ fewer than eleven parameters in contrast to the GNI.
Thus, on average, the cost of computing the Gauss-Newton Hessian
matrix is considerably cheaper for DRI over the course of inversion.
Data misfit attained via DRI decreases rapidly between the phases
L1 and L3. The phases L4 and L5 demand additional iterations to
deliver further reductions in the data misfit. Our experience indicates
that DRI is typically three to four times faster than GNI on a given
inversion problem. It is important to emphasize the fact that tests
carried out by feeding various initial models to DRI and GNI lead to
similar results for the problem-of-interest. Therefore, our conclusions
about the auspicious features of DRI hold independent of the initial
model.

5. DISCUSSION

DRI technique completely eliminates the need for an artificial regu-
larization parameter and the inevitable requirement of experimenta-
tion component that stems from it. In our experience, DRI technique
performs particularly well for parametric inversion problems where a
physically based classification of model parameters is possible, such as
the one described above.

It is important to emphasize the fact that the adaptivity criterion
of DRI assumes that the measurement errors abide by the random
distribution. It is currently not known how DRI would perform on
measurement data contaminated with correlated noise. At present,
adaptivity is unidirectional within DRI. The algorithm sequentially
refines the model parameterization. Further research on adaptive
inversion techniques may lead to algorithms where both adaptive
refinement and coarsening are possible. In terms of implementation,
the DRI technique is notably more complex compared to conventional
inversion techniques that rely on a single-scale parameterization.

Although DRI was tested with 20 kHz induction logging data
in this work, it is worthwhile to comment about the impact of
the use of different frequencies on DRI results. Assuming that
the noise level of the measurement data remains unchanged, we
expect that relatively deeper features, e.g., uninvaded formation
conductivity values, could potentially be more accurately recovered
with moderately lower frequency data. The first phases of DRI may
also incur lower computational costs (fewer iterations) to yield the
same level of accuracy that would be obtained if 20 kHz data were
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employed. However, the reduced spatial resolution would almost
certainly negatively influence the inversion of smaller scale near-
borehole features such as invaded and annulus zone properties. It is
possible that relatively more detailed refinement levels are not reached
at all over the course of adaptations when considerably lower frequency
data is used in DRI. On the other hand, use of notably higher frequency
data would greatly increase the non-uniqueness of the inversion of
conductivity features that are away from the borehole. Having stated
that, smaller scale near-borehole features and bed-boundary locations
could potentially be more accurately resolved with moderately higher
frequency induction data. It is our opinion that DRI inversion of
multi-frequency triaxial induction logging measurements can be very
beneficial for the improved accuracy of inversion results and for the
enhanced stability of the inversion process, especially, with increased
levels of noise contaminating the measurement data.

6. CONCLUSION

We formulated and implemented a data-adaptive inversion technique
for the estimation of spatial distributions of conductivity from borehole
electromagnetic field measurements by operating on relatively coarse
scales. For cases where the true conductivity distribution contains
fine-scale variations, DRI is guided to introduce new degrees of
freedom as spatially complex as warranted by the measurements,
thereby eliminating subjective regularization decisions that introduce
artificial biases to the inversion process. The algorithm relies on
progressive spatial domain refinement in conjunction with sequential
parameter estimation. Focus-region identification and tracking criteria
are utilized to prevent over-parameterization. DRI algorithm by
construction avoids the use of artificial regularization parameters.
Inversion results validate the robustness and computational efficiency
of DRI.

For the electromagnetic test problem evaluated in this paper,
DRI shows that uninvaded formation conductivity and layer geometry
parameters have a larger influence on the inversion outcome compared
to model parameters that describe the invaded zone and the annulus.
DRI yields a more accurate inversion result by entailing a fewer number
of iterations in comparison to GNI. Overall, the unit computational
cost of DRI is lower than GNI.
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APPENDIX A. DATA-ADAPTIVE
PARAMETERIZATION

Introduction of new parameters will facilitate reduction of the objective
function, but it will also increase computational cost and, in general,
increase parameter uncertainty. Therefore, the parameterization must
be selected in a proper way to obtain a reliable result.

In order to select the most productive parameterization, it would
be helpful to know the minimum objective function values, minx C,
achievable with each potential parameterization refinement. This
is, however, clearly unattainable because of the high computational
costs associated with performing the corresponding minimizations
numerically.

In order to circumvent such costly computations, the predicted
attainable objective function value, C̃, is introduced. C̃ corresponds to
minx C when S(x) is linear. When using a least-squares formulation,
such as Equation (1), linearization of S(x) will make the objective
function quadratic in x. Conventional techniques for calculating the
minimum of a quadratic function lead to the following analytic
expression:

C̃(τQ) = ∆mT
Q(C−1

D −DQ)∆mQ, (A1)

DQ = C−1
D JQ(JT

QC−1
D JQ)−1JT

QC−1
D , (A2)

where τQ denotes a parameterization containing Q parameters. JQ

denotes the sensitivity matrix for the parameterization τQ. ∆mQ =
m − S(xQ) denotes the current residual. Evaluation of C̃ involves
calculation of the sensitivity matrix for the refined parameterization
at a single point in the model space, as opposed to a full minimization
for evaluating minx C. In order to find the best parameterization τQ

with Q parameters, C̃ for different parameterizations containing Q
parameters are compared. The parameterization with the lowest C̃
value is the best choice with Q parameters (local winner). Local
winners for different numbers of parameters are then compared in
order to find the parameterization to be used in the next step of the
estimation sequence.
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Generally, an increase in the number of the parameters will
decrease the value of C̃. Hence, selecting the parameterization with
the lowest C̃ will introduce as many new parameters as necessary.
Therefore, it is not optimal to have only the smallest C̃ value as the
selection criterion to determine the number of new parameters to be
introduced. A measure of the uncertainty in C̃ is also needed to assess
whether the reduction in C̃ due to the introduction of an increased
number of parameters is significant.

The measurement errors are random, thus, C̃ is also random. The
standard deviation, σ(C̃), can be used as a measure of the uncertainty
in C̃. It can be shown that

σ
{

C̃(τQ)
}

=
[
4E

{
C̃(τQ)

}
− 2(M −Q)

]1/2
, (A3)

where E denotes statistical expectation and M is the number of
(electromagnetic) measurements. E(C̃) will however depend on the
difference between the true model parameters and the estimated model
parameters (conductivity, layer thickness, etc.) at the current stage in
the estimation sequence, and is therefore unknown. Following [9], we
approximate E(C̃) by C̃, leading to

σ
{

C̃(τQ)
} ∼= υ

{
C̃(τQ)

}
=

[
4C̃(τQ)− 2(M −Q)

]1/2
. (A4)

An increase in the number of inverted model parameters will
reduce C̃. However, if C̃(τQ+1) + υ{C̃(τQ)} ≥ C̃(τQ), the reduction
is not considered to be significant. Consequently, τQ is selected as the
new parameterization.

The sequence of estimations is terminated when the value of
the objective function can be explained by random measurement
errors. This situation occurs when C(τQ) is sufficiently close to the
expected value of C at the solution of the inverse problem at hand,
namely, E(Ĉ). Then, the standard deviation σ(Ĉ) emerges as a good
measure of closeness. We choose “sufficiently close” to be one standard
deviation. Then, the estimation sequence is terminated when the
following inequality is satisfied

C(τQ) < E(Ĉ) + σ(Ĉ), (A5)

which can be restated as

C(τQ) < (M −Q) + [2(M −Q)]1/2 . (A6)

Termination will also be triggered whenever the criterion for the
introduction of new parameters advises against introducing more
parameters.
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