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Abstract—An approach based on acoustics and its theoretical
analogies to electromagnetism is used in the present research to
study the detection of the acoustic wave energy radiated by the
thermal random motion of material particles of the brain during
activation or caused by pathology. Pressure and particle velocity are
calculated in analytical mathematical forms for the case of human
brain monitoring, which can be implemented by a prototype passive
acoustic brain monitoring system (PABMOS). A sphere to model
the human head and an internal point source in order to simulate
potential pressure alterations due to intracranial abnormalities or local
functional activations, are used in the theoretical representation of the
present approach. Finally, numerical results for arbitrary positions
of the internal source, concerning the particle velocity (pressure field
distribution) at the surface of the head model which can implicitly be
measured by the suitable piezoelectric sensors, are presented.

1. INTRODUCTION

The propagation of sound is always associated with the medium; sound,
contrary to electromagnetic waves, does not propagate in vacuum.
Sound is generated when the medium is dynamically disturbed, causing
its particles to vibrate around their mean position and changing their
relative displacement and velocity. Such disturbance of the medium
propagates in the form of acoustic waves and affects its pressure,
density and temperature [1, 2].
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In human physiology, arterial conducted heart pulses are coupled
to the brain so that the brain pulses in phase with the heart when the
time lag for signal propagation is taken into account. However, when
the brain functionality is disturbed by injury, disease or is excited by
external stimuli, its consistency changes in such way that the signal
which is sensed at the skull using a sensitive detecting device does
no longer coincides with the arterial pulse wave. This signal arises
from functional activation of respective brain regions (volumes) or
from phenomena such as lack of perfusion in the brain, edema causing
decreased compliance and consequent loss of perfusion, and infarcts
which alter the consistency of the brain tissue and hence its acoustic
properties. This latter effect characterizes the occurrence of brain
tumors as well. Apart from the aforementioned, signal anomalies can
also be seen in intra-operative loss of perfusion in the brain where
circulation can be impaired for periods of time during procedures such
as open-heart surgery. The same principles apply when measuring
alterations of flow patterns in the circulatory system arising from
impediments to flow, such as clots that may occur downstream from
the heart, and can be detected at an artery beyond the clot [3].

Existing clinical systems that are used to assess anomalies such as
brain trauma, stroke and tumors, include computed tomography (CT)
scans, magnetic resonance imaging (MRI) and, in case of brain trauma
monitoring, combinations of these with invasive intra ventricular
catheters (IVC) or subarachnoid bolts to directly measure intracranial
pressure (ICP). There is, however, currently, no way to determine brain
disorder without such equipment, leaving decisions on treatment to be
delayed in the case of stroke until it can be determined whether the
stroke is a bleed or ischemia. In a similar fashion, persons injured at
the scene of an accident must be presumed to be brain injured, even
if the cause of their non-responsiveness arises from the effects of drugs
or alcohol. Another large category of head injuries are those resulting
from falls, particularly in the elderly. Immediate assessment of injury
would be most helpful while waiting more comprehensive diagnosis [3].

The non-invasive diagnostic aids that are in use today
are continuous wave and pulsed Doppler (Duplex), transcranial
Doppler (TCD) and sometimes a combination of magnetic resonance
angiography (MRA) and ultrasound which can be useful diagnostic
tools for stroke in the hands of a specialist. However, often the
accuracy of some of these techniques are technician dependent and are
not available to the emergency medical services personnel at the scene
where transport decisions must be made [3]. The passive acoustic brain
monitoring system could possibly become a solution to all previous
immediate, on-scene, head diagnostic needs due to brain injury or
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disease.
However, another potential interesting aspect of the proposed sys-

tem’s operation is functional imaging. Functional imaging is currently
carried out mainly by functional Magnetic Resonance Imaging (fMRI),
Positron Emission Tomography (PET) or Optical Imaging and indi-
rectly based on analysis of data acquired using Electroencephalography
(EEG) and Magneto encephalography (MEG),. The aim is to reveal
and comprehend how the brain works, in terms of its physiology, func-
tional architecture and dynamics.

At this point it should be noted that recently extensive theoretical
and experimental work has been carried out by our research group in
using microwave radiometry to develop a prototype imaging system
(MiRaIS) [4–7]. The operating principle of the system is based on
the use of an ellipsoidal conductive wall cavity for beamforming and
focusing on the brain areas of interest. One of the most important
advantages of this method is that it operates in an entirely passive and
non-invasive manner. MiRaIS has been used for the past 6 years in
various experiments in order to evaluate its potential as an intracranial
imaging device [4–7]. The MiRaIS system is able to provide real-time
temperature and/or conductivity variation measurements in water
phantoms and animals and potentially in subcutaneous biological
tissues. Importantly, the system has been used in human experiments
in order to explore the possibility of passively measuring brain
activation changes that are possibly attributed to local conductivity
changes. The results indicate the potential value of using focused
microwave radiometry to identify brain activations possibly involved
or affected in operations induced by particular psychophysiological
tasks [5]. If such changes can be detected in the acoustical output signal
of the proposed device they could potentially add useful information
to the aforementioned well standardized techniques as well as to
the information acquired by the MiRaIS. It is obvious from the
above-mentioned that a number of biomedical applications regarding
monitoring, diagnosis and therapy exists ranging from the acoustic
frequency band [8, 9] to microwave techniques (e.g., [10]).

The present paper is mainly focused on the theoretical aspects
of the proposed passive acoustic system presenting a configuration of
a single layered head model sphere and an internal activation sphere
(source) and providing the mathematical formulation for this problem.
Additionally, numerical results corresponding to the acoustic energy
generated, and detected at the surface of the head model are discussed.
The implementation of the prototype acoustic system, that is now
tested, is presented along with the respective measurements elsewhere.
These measurements are carried out in the range of infrasound to sound
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frequencies (1 Hz to approximately 20 kHz) with the use of the suitable
piezoelectric sensors and the appropriate phantoms.

2. MATHEMATICAL ANALYSIS OF ACOUSTIC
RADIATION INDUCED BY A SOURCE POINT INSIDE
A SPHERICAL HEAD MODEL

The theoretical analysis of the present research is based on acoustic
theory and its appropriate correspondence to electromagnetism. When
a source of acoustic energy is located inside a bounded solid object,
acoustic waves are generated causing a pressure field distribution at the
surrounding area in the same way that an electric field distribution
is obtained by chaotic radiation emitted under the condition of
thermodynamic equilibrium of matter with radiation (Max Plank’s
black body theory). In other words, for acoustic waves, the pressure
variation p̄(r, t) replaces the electric field Ē(r, t) [11]. In order to model
the pressure field distribution in the presence of human head, a semi-
analytical technique is presented, based on the use of the dyadic’s
Green’s function theory. By imposing the appropriate boundary
conditions at a finite number of points on the physical interface of
the particular object with air, the unknown coefficients of the dyadic
Green’s function are determined and therefore the pressure field and
the particle velocity is calculated at any arbitrary point of the proposed
configuration.

As discussed before, disturbed blood flow affects brain consistency
and generates acoustic waves that can be used to investigate its
functional characteristics and its abnormal activity. To the direction
of configuring this problem, the human head can be modeled
with a sphere that has acoustic characteristics (sound velocity and
attenuation) related to infrasound and sound frequencies (1 Hz–
20 kHz), and variation in blood flow with an internal source. Assuming
sphere’s radius r = α, the source can be placed at a distance r′ inside
the sphere, oscillating relatively to frequency and creating an internal
activation sphere (IAS). The geometry of the problem is depicted in
Fig. 1.

The aim of this theoretical analysis is to calculate the emitted
acoustic energy in terms of pressure (P ) and particle velocity (u)
on the surface of the model sphere caused by the internal source,
arbitrary located inside the head model. The equations relating these
two measures are presented below [12], where ρ is the density of the
medium, ρ0 its equilibrium density, γ the ratio of the heat capacity at
constant pressure (CP ) to heat capacity at constant volume (CV ) and
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Figure 1. The geometry of the problem.

P0 the equilibrium pressure:

Particle displacement ~ξ(r, t) = ∇P

Particle velocity ~u(r, t) =
∂~ξ(r, t)

∂t

Condensation s = −∂~ξ(r, t)
∂x

=
ρ− ρ0

ρ0
= −∇~ξ(r, t)

Overpressure P = γP0s = −γP0∇~ξ(r, t)

From the relations above and in analogy to electromagnetism the
wave equation is derived, regarding the pressure (P ) which corresponds
to the acoustic waves generated by the internal source. The movement
of the medium particles caused by temperature changes is represented
by the term ~j(r, t) in the next wave equation. C is the speed of sound
inside a (particular) medium:

∇2P − 1
c2

∂2P (r, t)
∂t2

= ~j(r, t) (1)

In order to calculate the pressure and eventually the particle
velocity produced by the pressure alternations inside the sphere model,
at any point of it and therefore at its surface also, Equation (1) has to
be solved. Considering the spherical geometry of the problem, the
internal source as a point source and P (pressure) as the solution
function of Equation (1), the pressure at infinity (free space) and at a
distance r from the centre of the sphere is given respectively from the
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following known mathematical formulations of Green’s function, which
are expressed in spherical polar coordinates [13–16]:

Pω0(r, r′) = Gω0(r, r′) =
e−jk|r−r′|

4π |r − r′| ⇔ Pω0(r, r′)

= Gω0(r, r′) = ik

∞∑

l=0

l∑

m=−l

jl(kr<)h(1)
l (kr>)Y m

l (θ, φ)Y ∗m
l (θ′, φ′) (2a)

and

Pω(r, r′) = Gω(r, r′) =
∞∑

l=0

l∑

m=−l

almjl(kr)Y m
l (θ, φ) (2b)

where alm is the unknown coefficient to be determined, jl(kr) is the
spherical Bessel function, jl(kr<) is the spherical Bessel function for
distances lesser than r, h

(1)
l (kr>) is the spherical first kind Hankel

function for distances greater than r and Y m
l (θ, φ) and Y ∗m

l (θ′, φ′)
are the spherical harmonics. The formulas for Y m

l (θ, φ) and k (wave
number), are the following:

Y m
l (θ, φ) =

√
2l + 1

4π

(l −m)!
(l + m)!

· eimφ · Pm
l (cos θ)

and
k =

ω

c
n

where Pm
l (cos θ) is the Legendre polynomial and ω the circular

frequency.
At the surface of the sphere (r = α), the following boundary

condition must be satisfied

Pωtot(r, r′) = 0 ⇒ Pω0(r, r′) + Pω(r, r′) = 0, (3)

which is transformed by Equation (2) to the next:

ik

∞∑

l=0

l∑

m=−l

jl(kr<)h(1)
l (kr>)Y m

l (θ, φ)Y ∗m
l (θ′, φ′)

+
∞∑

l=0

l∑

m=−l

almjl(kr)Y m
l (θ, φ) = 0

For r = α, we have r< ≡ r′ and r> ≡ α so the previous relation
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becomes:

ik
∞∑

l=0

l∑

m=−l

jl(kr′)h(1)
l (kα)Y m

l (θ, φ)Y ∗m
l (θ′, φ′)

+
∞∑

l=0

l∑

m=−l

almjl(kα)Y m
l (θ, φ) = 0 ⇒

ik · jl(kr′)h(1)
l (kα)Y ∗m

l (θ′, φ′) + almjl(kα) = 0 ⇔

alm = −ik
jl(kr′)
jl(kα)

h
(1)
l (kα)Y ∗m

l (θ′, φ′) (4)

Equation (4) gives the unknown coefficient alm and together with
Equation (2) they can be used to express and calculate the total
pressure PΣ (at the frequency field):

Gωtot(r, r′) = Pωtot(r, r′) = Pω(r, r′) + Pω0(r, r′) ⇔

Gωtot(r, r′) = ik
∞∑

l=0

l∑

m=−l

jl(kr′)

(
h

(1)
l (kr)− h

(1)
l (kα)
jl(kα)

jl(kr)

)

Y m
l (θ, φ)Y ∗m

l (θ′, φ′) (5)
So far boundary conditions have been used on the sphere’s surface

and the internal point source was substituted in equations by the
impulse function. Considering the internal activation volume (small
sphere in Fig. 1) created from the summation of a finite number of point
sources (mesh), a new measure is introduced in the basic equations
(wave equation, etc.), for the problem in question. This is the volume
flow q(r, t) and is defined as follows:

q(r, t) =
inbound volume

unit volume · unit time
The new relations that come up regarding pressure and particle velocity
are the following:

∇P (r, t) = −ρ0
∂~u(r, t)

∂t
(6)

∇~u(r, t) = − 1
ρ0c2

∂P (r, t)
∂t

+ q(r, t) ⇒

∇2P (r, t)− 1
c2

∂2P (r, t)
∂t2

= −ρ0
∂q(r, t)

∂t
(7)

Calculating the Fourier transform of the new wave Equation (7)
for pressure, we have:

∇2Pω(r) +
ω2

c2
Pω(r) = −ρ0jωqω(r′),
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which is the inhomogeneous Helmholtz equation with the next known
solution [15, 17]:

Pω(r) =
∫∫∫

V

(jωρ0)Gω(r, r′)qω(r′)dr′ ⇔

Pω(r) = jωρ0

∫∫∫

V

Gω(r, r′)qω(r′)dr′ (8)

where Gω(r, r′) is the total dyadic Green’s function for the
corresponding region, given by relation (5) of the first part of the
problem analysis.

As the final part of our brain monitoring system is practically a
set of piezoelectric sensors, which substantially measure the particle
velocity of a pressure wave, the latter property is consequently
calculated in the following analysis. The Fourier transform of
Equation (6) is:

∇Pω(r) = −ρ0(jω)~uω(r) ⇔ ~uω(r) = − 1
ρ0jω

∇Pω(r)

Considering changes in pressure and velocity only at the radial
direction r, we finally have:

~uω(r) = − 1
ρ0jω

∂

∂r
Pω(r)

(8)⇔uω(r) = −
∫∫∫

V

(
∂

∂r
Gω(r, r′)

)
qω(r′)dr′

As the particles’ velocity cannot be described deterministically
(stochastic size), we have to estimate its ensemble average:

< uω(r)u∗ω(r) >=∫∫∫

V

(
∂

∂r
Gω(r, r′)

)
qω(r′)dr′

∫∫∫

V

(
∂

∂r
G∗

ω(r, r′′)
)

q∗ω(r′′)dr′′ ⇔

< uω(r)u∗ω(r) >=
1
ρ2
0

∫∫∫

V

(
∂

∂r
Gω(r, r′)

)
ρ0qω(r′)dr′

∫∫∫

V

(
∂

∂r
G∗

ω(r, r′′)
)

ρ0q
∗
ω(r′′)dr′′ ⇔

< uω(r)u∗ω(r) >=
1
ρ2
0

∫∫∫

V

dr′
∫∫∫

V

dr′′ ·
(

∂

∂r
Gω(r, r′)

)
·
(

∂

∂r
G∗

ω(r, r′′)
)

< ρ0qω(r′)ρ0q
∗
ω(r′′) > (9)
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In order to calculate the ensemble average < ρ0qω(r′)ρ0q
∗
ω(r′′) > we

need to focus on the thermal behavior of the problem, defining the
product ρ0qω(r) as follows:

ρ0qω(r) =
inbound mass

unit volume · unit time

ρ0qω(r) = N·(δm)·υθ

leff

Ceff = N ·(δm)
leff

(10)

}
ρ0qω(r) = Ceff · υθ

where N : number of vibrating molecules per unit volume, δm: mass of
every molecule, υθ: kinetic velocity of particles, leff : equivalent length
of Brownian motion that molecules vibrate. Due to the equations
above and as qω(r′) and q∗ω(r′′) are uncorrelated, the wanted average
becomes:

< ρ0qω(r′)ρ0q
∗
ω(r′′) >=< C2

eff υθυ
∗
θ >= δ(r′ − r′′) · C2

eff

+∞∫

υθ=0

υ2
θp(υθ)dυθ

It is known that, the Maxwell-Boltzmann distribution for the particle
speed is

p(υθ) = 4π
( m

2πkT

)3/2
e−

mυ2
θ

2kT υ2
θ

therefore

<ρ0qω(r′)ρ0q
∗
ω(r′′) >=δ(r′ − r′′) · C2

eff

+∞∫

υθ=0

4π
( m

2πkT

)
3/2e−

mυ2
θ

2kT υ4
θdυθ

=δ(r′ − r′′) · C2
eff · I

Calculating the integral I, we set a = m
2kT and make the

variable change t = υ2
θ ⇔ dυθ = dt

2
√

t
. Consequently, I =

4π
(

a
π

)3/2
+∞∫
t=0

e−att2 dt
2
√

t
= 2π

(
a
π

)3/2
+∞∫
t=0

e−att3/2dt and substituting the

known definite integral
+∞∫
x=0

x3/2e−axdt = 3
√

π

4a5/2 [18], we get I =

2π
(

a
π

)3/2 · 3
√

π

4a5/2 = 3kT
m and finally

< ρ0qω(r′)ρ0q
∗
ω(r′′) >= δ(r′ − r′′) · C2

eff ·
3kT

m
.
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Returning to Equation (9), the wanted ensemble average of particle
velocity becomes:

< uω(r)u∗ω(r) >=
1
ρ2
0

∫∫∫

V

dr′
∫∫∫

V

dr′′ ·
(

∂

∂r
Gω(r, r′)

)

·
(

∂

∂r
G∗

ω(r, r′′)
)
· δ(r′ − r′′) · C2

eff ·
3kT

m
⇔

<uω(r)u∗ω(r)>=
1
ρ2
0

∫∫∫

V

dr′·
(

∂

∂r
Gω(r, r′)

)
·
(

∂

∂r
G∗

ω(r, r′)
)
·C2

eff ·
3kT

m
⇔

< uω(r)u∗ω(r) >=
∫∫∫

V

C2
eff ·

3kT

mρ2
0

dr′
∣∣∣∣

∂

∂r
Gω(r, r′)

∣∣∣∣
2

(10)⇔

< uω(r)u∗ω(r) >=
∫∫∫

V

3kT

ml2eff
dr′

∣∣∣∣
∂

∂r
Gω(r, r′)

∣∣∣∣
2

In order to theoretically investigate, the difference in the estimated
field between the normal state and the activation state, at the surface
of the head model, the following Q ratio is estimated. Its numerator
provides the difference of the field value generated at the activation
and resting state, and its denominator the resting state field value
per Kelvin degree. It must be noted here that U ′ is the value of the
field that originates from both the internal source (IAS) and the head
model (HMS), referring both to activation and resting state energy,
while U is the value of the field originating only from the head model,
referring to the resting state energy. As it is shown in the following
equation, the two main reasons that cause the pressure field changes
are the difference in the flow and consequently the local volume change
between the two states, and the local temperature variations.

U ′ − U

U
=

∫∫∫
V activ

3kδT
ml2eff

dr′
∣∣ ∂

∂rGω(r, r′)
∣∣
r=a

∣∣2

∫∫∫
V tot

3kT
ml2eff

dr′
∣∣ ∂

∂rGω(r, r′)
∣∣
r=a

∣∣2 ⇔

Q =
δU

U · δT =

∫∫∫
V activ

dr′
∣∣ ∂

∂rGω(r, r′)
∣∣
r=a

∣∣2

310(kelvin) · ∫∫∫
V tot

dr′
∣∣ ∂

∂rGω(r, r′)
∣∣
r=a

∣∣2
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3. NUMERICAL RESULTS

The Q ratio as described above cannot be evaluated analytically but
only with numerical methods. Therefore, MATLAB was used and R3

space was approximated as a sum of finite volumes. For each finite
volume in the position defined by r′, the value of

∣∣ ∂
∂rGω(r, r′)

∣∣
r=a

∣∣2
is calculated. Afterwards, a summation process takes place for the
volumes of the internal sphere created by the point source and the
sphere head model; hence the numerator and denominator of the Q
expression are calculated:

Q =
δU

U · δT =

Nias∑
i=1

Nias∑
j=1

Nias∑
k=1

∣∣∣ ∂
∂rGω(r, r′i,j,k)

∣∣∣
r=a

∣∣∣
2
(r′i)

2 sin θ′jdr′
ias

dθ′
ias

dϕ′
ias

310·
Nhms∑
i′=1

Nhms∑
j′=1

Nhms∑
k′=1

∣∣∣ ∂
∂rGω

(
r, r′i′,j′,k′

)∣∣∣
r=a

∣∣∣
2(

r′i′
)2sin θ′j′dr′hmsdθ′hmsdϕ′hms

where

∂Gω(r, r′)
∂r

∣∣∣∣
r=a

= ik
∞∑

l=0

l∑

m=−l

(
jl(kr′i)

∂h
(1)
l (kr)
∂r

∣∣∣∣∣
r=a

−jl(kr′i)
jl(kα)

h
(1)
l (kα)

∂jl(kr)
∂r

∣∣∣∣
r=a

)
Y m

l (θ, φ)Y ∗m
l (θ′j , φ

′
k)

for the internal activation sphere and

∂Gω(r, r′)
∂r

∣∣∣∣
r=a

= ik
∞∑

l=0

l∑

m=−l

(
jl(kr′i′)

∂h
(1)
l (kr)
∂r

∣∣∣∣∣
r=a

−jl(kr′i′)
jl(kα)

h
(1)
l (kα)

∂jl(kr)
∂r

∣∣∣∣
r=a

)
Y m

l (θ, φ)Y ∗m
l (θ′j′ , φ

′
k′)

for the head model sphere, assuming that each dimension of the R3

space (r′, θ′, ϕ′) is approximated by Nias and Nhms finite points for
the internal sphere and the head model respectively. In the above
equations, (r′i, θ

′
j , φ

′
k) represent the values of (r′, θ′, ϕ′) at the (i, j, k)th

point of the R3 regarding the internal volume, and (r′i′ , θ
′
j′ , φ

′
k′)

represent the values of (r′, θ′, ϕ′) at the (i′, j′, k′)th point of the R3

regarding the sphere head model, with the ranges of (r′, θ′, ϕ′) →
(0−0.09 m, 0−π, 0−2π). The radius of the head model sphere (HMS)
is 9 cm, and the IAS has 1 cm radius. The average value of sound speed
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Table 1. Q ratio for stable IAS position and different frequencies.

Position of IAS
5.4 cm from HMS

θ = 0
Frequency (Hz) Q (1/Kelvin)

10 1.4688E-06
100 1.4684E-06
500 1.4830E-06
1000 1.5300E-06
5000 1.2912E-05
10000 2.1381E-04
15000 1.1540E-04
20000 4.5310E-04

(a) (b)

Figure 2. Q ratio for different radial IAS positions at 100 Hz and (a)
θ = 0◦, (b) θ = 45◦.

is 1500 m/s for the supposed medium, and the temperature of the head
(model) takes the average value of 37◦C or 310◦K [19, 20].

The results of the computation are depicted in Table 1 and
Figures 2, 3, 4, 5, 6 and 7 where the Q ratio values, from simulations
of different positions of the IAS and different frequencies, are shown.
More specifically in Table 1, Q values are presented for different
frequencies and keeping the position of IAS stable, while in the
following figures they are depicted in particular frequencies for different
IAS positions (in radius and angle). The measurement point is always
at r = α (the field is measured at the surface of the head model) and
at angles θ = 0◦ and ϕ = 0◦. All distances are measured from each
sphere’s center and all angles are calculated from the origin of the
central coordinate system.
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(a) (b)

Figure 3. Q ratio for different radial IAS positions at 1000Hz and
(a) θ = 0◦, (b) θ = 45◦.

(a) (b)

Figure 4. Q ratio for different radial IAS positions at 5000Hz and
(a) θ = 0◦, (b) θ = 45◦.

(a) (b)

Figure 5. Q ratio for different radial IAS positions at 10000 Hz and
(a) θ = 0◦, (b) θ = 45◦.

Clear difference in the estimated field (particle velocity) between
the resting state and the activation state can be observed in the figures
above, a fact which, with the appropriate receiving system (PABMOS),
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(a) (b)

Figure 6. Q ratio for different radial IAS positions at 15000 Hz and
(a) θ = 0◦, (b) θ = 45◦.

(a) (b)

Figure 7. Q ratio for different radial IAS positions at 20000 Hz and
(a) θ = 0◦, (b) θ = 45◦.

can be utilized to distinguish normal state of the brain from activation
ones originating from any abnormality or functional reason. This
detection of the activation state is more evident at higher frequencies of
the acoustic range (1Hz–20 kHz) that is investigated in this research,
as Q takes greater values there (Table 1 and Figs. 2–7).

Moreover, a very important feature of our research is evident from
Figs. 2–7, where it can be seen that the radial alteration of Q ratio is
as physiologically expected. Numerical results for IAS positions close
to the HMS center and moving towards the HMS surface show that
Q is significantly raised, resulting in better detection of an activation
state that exists closer to head surface where a receiver sensor of the
proposed system will be placed.

4. DISCUSSION AND CONCLUSIONS

In this paper, a semi-analytical technique has been presented for
the study of the estimation of the pressure field at any spot of a
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human head and especially at its surface, generated by an acoustic
source inside it. A single layer Human Model Sphere is used as a
human head while the internal source that simulates abnormalities
or functional alterations in pressure field, is modeled with a smaller
Activation Sphere. The proposed method is based on acoustics and
its analogies to electromagnetism, with the use of Green’s function.
Several simulations have been performed to validate the method and
obtain the necessary numerical results, at different frequencies and at
several IAS positions. According to results, the detection of a pulsating
acoustic source inside a head model is feasible at its surface with a
better response at higher acoustic frequencies and for sources placed
closer to the surface.

This research could be useful in practice and lead to the
development of a receiving system which will be able to detect
differences in pressure field (particle velocity particularly) that would
arise from abnormalities or functional causes analyzed in the first
section of this paper. Nevertheless, the practical value of such a
system should be explored through the development of a prototype
which will be used in phantom and later human experiments to initially
assess proof of concept and following investigate its potential clinical
perspective.
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