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Abstract—The authors suggest the generalized method of induced
electromotive forces (EMF) for the investigation of the characteristics
of single and systems of thin impedance vibrators at their arbitrary
excitation and distribution of the surface impedance on the ground of
the made analysis in the proposed paper. The distinctive peculiarity
of this method is the use of the functional distributions, obtained
as a result of the analytical solution of the integral equation for
the current by the asymptotic averaging method before, as the basic
approximations for the current along the impedance vibrator.

1. INTRODUCTION

Many publications are devoted to the investigation of the electrody-
namic characteristics of material bodies of different configurations, on
the surface of which impedance boundary conditions are set. The in-
vestigations of impedance thin vibrators and the systems from them,
which had and have wide application in antenna-waveguide engineer-
ing (see, for example, [1–18]) take a special place among these pub-
lications. We should like to note, that new practical applications of
vibrator structures are often based on their location in complex elec-
trodynamic environment, which requires taking into account inhomo-
geneity of medium, boundaries of electrodynamic volumes, presence of
vibrators with changing values of surface impedance and so on.

Direct numerical methods in all their variety are usually applied
for mathematical analysis of functional characteristics of the devices,
the combined components of which are thin impedance vibrators.
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We should note without the analysis of concrete realizations of these
methods here, that they suppose minimization of residual of the
function, dependent of the difference between precise and approximate
solutions, in order that these two solutions differ from each other as
less as possible, due to their essence. Really, identical transformation
of the residual into zero at the problem numerical solution is not
possible principally. So, independent of the choice of the method and
the kind of basic functions, preciseness of the calculations in absolute
majority of cases here is defined with the help of the analysis of inner
convergence of the algorithms and (or) on the basis of comparison
of the numerical results, obtained by different methods (including the
experimental ones). At this, achievement of the required preciseness of
the solution stipulates the necessity of the use of a rather large number
of basic functions and thus of large volume of computer resources.
From the other hand, the approximate analytical methods of the
solution of the corresponding boundary problems of electrodynamics
provide the set preciseness of the solution at minimal volume of the
used computer resources. However, as it was shown in [18], it is
necessary to obtain higher approximations (along the problem small
parameter), except the first one, in order to increase preciseness of
the calculated results in some case, for example, at calculation of
the input characteristics of the radiating vibrator, at the solution of
integral equations relative to the current in impedance vibrators by
approximate analytical methods because of imperfection of the model
of excitation. It leads to rather bulk formulas of small application in
practical use. The finite expressions for the current are complicated
sufficiently already in the first approximation at the analysis of the
system of some impedance vibrators too. That is, the possibilities of
analytical approaches are only for the cases of some model problems
of the theory of impedance vibrators, and they turn out to be limited.
Hence, an actual problem, arising before the investigators, is the
development of numerical-analytical methods, which can combine in
themselves the advantages of both analytical and numerical solutions.

The generalized method of induced EMF is proposed for the
calculation of the electrodynamic characteristics of single vibrators
and systems of vibrators at their arbitrary excitation and distribution
of surface impedance in this paper. Efficiency of such an approach
is described in the monograph of the authors [19] at the analysis
of slot holes of coupling of electrodynamic volumes with the help
of the method of induced magnetomotive forces. The essence of
generalization of a well-known method of induced EMF here is the use
of a new kind of basic functional distributions of a complete region,
obtained as a result of preliminary analytical solution of key problems
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for the current in impedance vibrators by the asymptotic averaging
method. Preciseness of the proposed method can be estimated with the
help of the results of general investigations of the variational stability
of the vibrator antenna calculated characteristics by the method of
induced EMF, represented in [20]. For example, one can state on the
basis of the results from [20], that deviation of the set current function
from the real value on the magnitude of the first order of smallness leads
to the magnitude of the second order of smallness in the definition of
the vibrator input resistance. The latter is explained by that, that the
vibrator input resistance for the method of induced EMF is a stationary
parameter, because the first variation of the input resistance becomes
zero at the precise set of the current distribution function. The aim of
this paper is the description of the methodological bases of application
of the generalized method of induced EMF for the investigation of the
electrodynamic characteristics of thin impedance vibrators and also
the ground of reliability and correctness of such an approach.

2. PROBLEM FORMULATION AND SOLUTION IN A
GENERAL FORM

We shall use the results of the paper [18] in the very part, where the
integral equation for the current has been solved by the asymptotic
averaging method, as the problem key solution of the current definition
in the impedance vibrator antenna. We should like to remind, that
this analytical solution has been made in the frames of classical “thin-
wire approximation”, that is, in consideration of taking into account
only the current longitudinal component along the vibrator axis and
in neglect of its transverse component, including the neighborhood of
the ends of its arms and on the ends of real radiating constructions.

Both the exciting field of impressed sources and the internal
impedance per unit length zi of the vibrator, being a rectilinear circular
cylinder of the radius r and of the length 2L (Figure 1), can have two
components — symmetrical (the index “s”) and antisymmetrical (the
index “a”) relative to its geometrical centre: E0s(s) = Es

0s(s)+Ea
0s(s),

zi(s) = zs
i (s)+za

i (s) in a general case. At this, naturally, the current in
the vibrator will also consist of two components: J(s) = Js(s) + Ja(s)
(at boundary conditions J(±L) = 0 [1,2]), and the initial equation
concerning the current will have the following form [18]:

(
d2

ds2
+ k2

1

) L∫

−L

[
Js

(
s′

)
+ Ja

(
s′

)]
Gs

(
s, s′

)
ds′

= −iωε1 {[Es
0s(s) + Ea

0s(s)]− [zs
i (s) + za

i (s)] [Js(s) + Ja(s)]} . (1)
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Figure 1. The problem geometry and the symbols used.

Here E0s(s) is the projection of the field of impressed sources on

the vibrator axis, Gs(s, s′) = e−ik1

√
(s−s′)2+r2√

(s−s′)2+r2
, s and s′ are the local

coordinates, coupled with the axis and the surface of the vibrator,
correspondingly, k1 = k′1 − ik′′1 = k

√
ε1µ1, k = 2π/λ, λ is the

wavelength in free space, ε1 and µ1 are the permittivity and the
permeability of the environment, ω = 2πf is the circular frequency,
f is the frequency, measured in Hertz.

To solve the Equation (1), it is expedient to represent it in the
form of the system of two coupled integral equations, concerning
to the unknown currents Js(s) and Ja(s), the first one of which is
symmetrical, and the other — antisymmetrical relatively to the s
variable: 




(
d2

ds2 +k2
1

) L∫
−L

Js(s′)Gs(s, s′)ds′

= −iωε1 {Es
0s(s)−[zs

i (s)J
s(s)+za

i (s)Ja(s)]} ,
(

d2

ds2 +k2
1

) L∫
−L

Ja(s′)Gs(s, s′)ds′

= −iωε1 {Ea
0s(s)−[zs

i (s)J
a(s)+za

i (s)Js(s)]} .

(2)

We represent the currents in the vibrator in the form of the product
of the unknown complex amplitudes Js,a

n on the set functional
distributions fs,a

n (s′) (n = 0, 1) further:

Js,a(s′) = Js,a
0 fs,a

0 (s′) + Js,a
1 fs,a

1 (s′), f s,a
n (±L) = 0. (3)
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Let us multiply the left and right parts of the first equation in (2) on
the weight function fs

n(s) and the second one — on fa
n(s) successively

due to the general scheme of the solution of the equations system (2)
by the method of induced EMF [20]. We obtain the algebraic equations
system of the fourth order after integration of the obtained expressions
along the vibrator length:




Js
0ZsΣ

00 +Js
1ZsΣ

01 +Ja
0

˜̃Zsa
00 + Ja

1
˜̃Zsa
01 =−(iω/2k)Es

0,

Js
0ZsΣ

10 + Js
1ZsΣ

11 + Ja
0

˜̃Zsa
10 + Ja

1
˜̃Zsa
11 = −(iω/2k)Es

1,

Ja
0 ZaΣ

00 + Ja
1 ZaΣ

01 + Js
0

˜̃Zas
00 + Js

1
˜̃Zas
01 = −(iω/2k)Ea

0 ,

Ja
0 ZaΣ

10 + Ja
1 ZaΣ

11 + Js
0

˜̃Zas
10 + Js

1
˜̃Zas
11 = −(iω/2k)Ea

1 .

(4)

The following symbols (m = 0, 1; n = 0, 1) are accepted in (4):

Zs,a
mn =

1
2k



−

dfs,a
m (s)
ds

As,a
n (s)

∣∣∣∣
L

−L

+

L∫

−L

[
d2f s,a

m (s)
ds2

+k2
1f

s,a
m (s)

]
As,a

n (s)ds



,

As,a
n (s) =

L∫

−L

fs,a
n (s′)Gs(s, s′)ds′,

Z̃s,a
mn = − iω

2k

L∫

−L

f s,a
m (s)f s,a

n (s)zs
i (s)ds,

Z(s,a)Σ
mn = Zs,a

mn + Z̃s,a
mn,

˜̃Z
{saas}
mn = − iω

2k

L∫

−L

f
{sa}
m (s)f

{as}
n (s)za

i (s)ds,

Es,a
m =

L∫

−L

fs,a
m (s)Es,a

0s (s)ds.

(5)

Let us consider some particular solutions of the equations system (4).
1. The vibrator with the impedance, constant along its length:

zs
i (s) = const, za

i (s) = 0. Then the equations system (4) is divided
into two independent systems of equations, concerning to the unknown
Js

n and Ja
n, correspondingly:

{
Js

0ZsΣ
00 +Js

1ZsΣ
01 =−(iω/2k)Es

0,

Js
0ZsΣ

10 +Js
1ZsΣ

11 =−(iω/2k)Es
1,

{
Ja

0 ZaΣ
00 +Ja

1 ZaΣ
01 =−(iω/2k)Ea

0 ,

Ja
0 ZaΣ

10 +Ja
1 ZaΣ

11 =−(iω/2k)Ea
1 ,

(6)
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and the expression for the current has the form J(s) = Js(s) + Ja(s),

Js,a(s) = − iωε1

2k

[
Es,a

0 Z
(s,a)Σ
11 −Es,a

1 Z
(s,a)Σ
01

Z
(s,a)Σ
00 Z

(s,a)Σ
11 − Z

(s,a)Σ
10 Z

(s,a)Σ
01

fs,a
0 (s)

+
Es,a

1 Z
(s,a)Σ
00 −Es,a

0 Z
(s,a)Σ
10

Z
(s,a)Σ
00 Z

(s,a)Σ
11 − Z

(s,a)Σ
10 Z

(s,a)Σ
01

fs,a
1 (s)

]
. (7)

2. The field of impressed sources has only the symmetrical
component Ea

0s(s) = 0. It is natural to suppose in this case, that it
is sufficient to use only the first addendum — Ja(s) = Ja

0 fa
0 (s) in the

antisymmetrical component of the current in the vibrator (3). At this
the equations system (4) transits into the coupled equations system of
the third order:





Js
0ZsΣ

00 + Js
1ZsΣ

01 + Ja
0

˜̃Zsa
00 = −(iω/2k)Es

0,

Js
0ZsΣ

10 + Js
1ZsΣ

11 + Ja
0

˜̃Zsa
10 = −(iω/2k)Es

1,

Ja
0 ZaΣ

00 + Js
0

˜̃Zas
00 + Js

1
˜̃Zas
01 = 0,

(8)

and the symmetrical and the antisymmetrical components of the
current will be defined by the following expressions:

Js(s) = − iωε1

2k

[
Es

0Z
saΣ
11 − Es

1Z
saΣ
01

ZsaΣ
00 ZsaΣ

11 − ZsaΣ
10 ZsaΣ

01

f s
0 (s)

+
Es

1Z
saΣ
00 −Es

0Z
saΣ
10

ZsaΣ
00 ZsaΣ

11 − ZsaΣ
10 ZsaΣ

01

fs
1 (s)

]
, (9a)

Ja(s) = − iωε1

2k

Es
0Z

asΣ
00 + Es

1Z
asΣ
01

ZsaΣ
00 ZsaΣ

11 − ZsaΣ
10 ZsaΣ

01

fa
0 (s). (9b)

The symbols are accepted in the formulas (9):

ZsaΣ
00 = ZsΣ

00 −

(
˜̃Zsa
00

)2

ZaΣ
00

, ZsaΣ
01 = ZsΣ

01 −
˜̃Zsa
00

˜̃Zas
01

ZaΣ
00

,

ZsaΣ
10 = ZsΣ

10 −
˜̃Zas
00

˜̃Zsa
10

ZaΣ
00

, ZsaΣ
11 = ZsΣ

11 −
˜̃Zsa
10

˜̃Zas
01

ZaΣ
00

,

ZasΣ
00 =

ZsΣ
10

˜̃Zas
01 − ZsΣ

11
˜̃Zas
00

ZaΣ
00

, ZasΣ
01 =

ZsΣ
01

˜̃Zas
00 − ZsΣ

00
˜̃Zas
01

ZaΣ
00

.

(10)

3. The vibrator excitation is symmetrical (Ea
0s(s) = 0), and its
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electrical length is close to half-wave (0.4 ≤ (2L/λ) ≤ 0.6):

J(s) = − iωε1

2k
Es

0


ZaΣ

00 f s
0 (s)− ˜̃Zsa

00fa
0 (s)

ZsΣ
00 ZaΣ

00 −
(

˜̃Zsa
00

)2


 . (11)

Thus the obtained formulas allow to obtain the current in the
single impedance vibrator under the condition of a correct set of
the basic functional distributions fs,a

n (s′) (n = 0, 1). Certainly, the
choice of the fs,a

n (s′) functions, obtained in the analytical solutions
of the same problem of current excitation in the vibrator with the
already set degree of approximation is more natural. So, the functional
dependence, obtained in the solution of the first approximation of the
method of iterations along the small parameter [18], has been used
as the basic function at the development of the classical method of
induced EMF for perfectly conducting vibrators. We suggest to use
the functional distributions, obtained in the solutions of the vibrator
problem with the help of the asymptotic averaging method previously
as fs,a

n (s′) to analyze the impedance vibrators in our case. Let us
consider some variants of the vibrator excitation and the distribution
of impedance along its length in details further.

3. IMPEDANCE VIBRATOR WITH THE ARBITRARY
EXCITATION POINT

Let the vibrator with the impedance, constant along its length (zs
i (s) =

const, za
i (s) = 0), be excited in the s = −sδ point by the voltage

generator V0, as it is shown in Figure 1. Then

E0s(s) = V0δ(s + sδ) = Es
0s(s) + Ea

0s(s),

Es
0s(s) =

V0

2
[δ(s + sδ) + δ(s− sδ)] ,

Ea
0s(s) =

V0

2
[δ(s + sδ)− δ(s− sδ)] ,

(12)

The current in the vibrator will equal due to (7) in this case
J(s) = Js(s) + Ja(s),

Js,a(s) = − iωε1

2k
V0

[
Ẽs,a

0 Z
(s,a)Σ
11 − Ẽs,a

1 Z
(s,a)Σ
01

Z
(s,a)Σ
00 Z

(s,a)Σ
11 − Z

(s,a)Σ
10 Z

(s,a)Σ
01

f s,a
0 (s)

+
Ẽs,a

1 Z
(s,a)Σ
00 − Ẽs,a

0 Z
(s,a)Σ
10

Z
(s,a)Σ
00 Z

(s,a)Σ
11 − Z

(s,a)Σ
10 Z

(s,a)Σ
01

f s,a
1 (s)

]
. (13)
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Let us choose the functions, which are obtained at the substitution
of the expressions for the field of impressed sources (12) into the general
solution of the equation for the current by the averaging method as
fs,a
0 (s) [18]:

fs
0 (s) = cos k̃1sδ sin k̃1L cos k̃1s

− (1/2) cos k̃1L
(
sin k̃1|s− sδ|+ sin k̃1|s + sδ|

)
,

fa
0 (s) = sin k̃1sδ cos k̃1L sin k̃1s

+ (1/2) sin k̃1L
(
sin k̃1|s− sδ| − sin k̃1|s + sδ|

)
,

(14)

where k̃1 = k1 − iZ̄S

√
ε1/µ1

2r ln(2L/r) , Z̄S = R̄S + iX̄S = 2πrzi/Z0 is the
distributed surface impedance, normalized on the wave impedance
of free space Z0 = 120π Ohm. The expression for the function of
the current distribution in the scattering impedance vibrator is used
as the fs

1 (s) function [18], and the formula, obtained in [21] at the
investigation of the properties of the integral Equation (1) in the case,
when zi = 0, is used for fa

1 (s):

f s
1 (s) = cos k̃1s− cos k̃1L, (15a)

fa
1 (s) = sin k1s− (s/L) sin k1L. (15b)

Substituting the expressions (14) and (15) into the ratios (5)
now, we obtain all coefficients in the formula for the current (13)
(m = 0, 1; n = 0, 1):

Zs
0n =

k̃1

k

[
cos k̃1sδ As

n(L)−cos k̃1LAs
n (sδ)

]
+

(
k2

1−k̃2
1

)

2k

L∫

−L

f s
0 (s)As

n(s)ds,

Zs
1n =

k̃1

k
sin k̃1L As

n(L)

− 1
2k


k2

1 cos k̃1L

L∫

−L

As
n(s)ds−

(
k2

1−k̃2
1

) L∫

−L

cos k̃1sA
s
n(s)ds


 ,

Za
0n =−k̃1

k

[
sin k̃1sδ Aa

n(L)−sin k̃1LAa
n(sδ)

]

+

(
k2

1−k̃2
1

)

2k

L∫

−L

fa
0 (s)Aa

n(s)ds,
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Za
1n =

k1

k

(
sin k1L

k1L
− cos k1L

)
Aa

n(L)− k2
1

2kL
sin k1L

L∫

−L

Aa
n(s)sds,

Z̃s,a
mn =

Z̄S

ir

L∫

−L

f s,a
m (s)f s,a

n (s)ds,

Ẽs
0 =cos k̃1sδ sin k̃1 (L− |sδ|) , Ẽs

1 = cos k̃1sδ − cos k̃1L,

Ẽa
0 =− sin k̃1 |sδ| sin k̃1 (L− |sδ|) , Ẽa

1 = sin k1sδ − (sδ/L) sin k1L.

The expressions for the Zin = Rin + iXin input impedance and the
Yin = Gin + iBin input admittance have the form in this case:

Zin[Ohm] =
60i/ε1

Js
0f s

0 (sδ) + Js
1fs

1 (sδ) + Ja
0 fa

0 (sδ) + Ja
1 fa

1 (sδ)
,

Yin[millimhos] =
103

Zin
.

(16)

The dependences of the input admittance real and imaginary parts
(at ε1 = µ1 = 1) of the perfectly conducting vibrator, excited in the
centre, from its electrical length (Figure 2) and also for two cases of
the surface impedance realization (Figures 3, 4, the experimental data
from [4] and [9], correspondingly) have been calculated in order to
check rightness of the obtained approximate expression for the current
(13). The experimental data from [22] (the circles, f = 663 MHz)
and the calculated values, obtained by the method of moments at the
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Figure 2. The input admittance of the perfectly conducting vibrator
in dependence from its electrical length at f = 663 MHz, r/λ =
0.007022, sδ = 0: 1 — calculation (the functions (14) and (15)), 2
— calculation (the functions (14), (15) and (18)), 3 — calculation (the
functions (17), N = 24), 4 — the experimental data [22].
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Figure 3. The input admittance of the metallic conductor of the
radius ri = 0.3175 cm, covered by the dielectrical (ε = 9.0) shell of
the radius r = 0.635 cm in dependence from its electrical length at
f = 600MHz: 1 — calculation (the functions (14) and (15)), 2 — the
experimental data [4].
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Figure 4. The input admittance of the metallic conductor of the
radius ri = 0.5175 cm, covered by the ferrite (µ = 4.7) shell of the
radius r = 0.6 cm in dependence from the frequency at 2L = 30.0 cm:
1 — calculation (the functions (14) and (15)), 2 — the experimental
data [9].

current approximation by the full region trigonometrical functions are
dotted in Figure 2

J(s) =
N∑

n=1

Jn sin
nπ(L + s)

2L
, (17)

what is more, it is necessary to increase a number of functions in
the formula (17) at the increase of the vibrator electrical length to
achieve suitable accuracy. The comparison of the calculated and
the experimental curves in Figures 2–4 between each other allows
to make the conclusion about adequacy of the chosen approximating
functions for the current (14) and (15) to real physical process up to the
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Figure 5. The input admittance of the perfectly conducting vibrator
in dependence from its electrical length at L/r = 75, sδ/L = 0.25:
1— calculation (the functions (14) and (15)), 2 — calculation (the
functions (17), N = 24).

(2L/λ) ∼= 1.4 vibrator electrical lengths. It is also proved by the plots
in Figure 5, where the input admittance dependences of the perfectly
conducting vibrator from 2L/λ are represented at the shift of the point
of excitation from the vibrator centre. Moreover, it is quite sufficient
to add two functions, obtained at the investigation of the Equation (1)
kernel by a natural way [22], in the expressions (3) for the electrically
long (1.4 < (2L/λ) ∼= 2.5) vibrators (the corresponding curves are also
represented in Figure 2):

fs
2 (s) = cos

k1s

2
− cos

k1L

2
, fa

2 (s) = sin
k1s

2
− sin

k1L

2
. (18)

Thus the generalized method of the induced EMF with the use of
a minimal number of adequate approximating functions of the current
distributions permits to calculate input characteristics of the vibrators
with the electrical length to (2L/λ) ≤ 2.5 (this ratio is also performed
at sδ 6= 0) even at a non-perfect model of the vibrator excitation in
the form of the point source.

It is known [22], that the model of description of the excitation
source, which, as a rule, does not allow to take into account available
constructions of real devices of excitation is “the narrowest place”
in the vibrator problems. However, as it is seen in the case in
question, the generalized method of induced EMF with the use of
minimal quantity of adequate approximating functions of the current
distribution permits to calculate the input characteristics of the
vibrators with the electrical length (2L/λ) ≤ 2.5 (this ratio is also
performed at sδ 6= 0) rather precisely even at a non-perfect model of
excitation of the vibrator as the point source.
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If a vibrator is located in rather dense material medium, then
large magnitudes of values of the surface impedance are required
for sufficient change of its electrodynamic characteristics. So, it is
necessary to cover the perfectly conducting vibrator of the radius ri

by the magnetodielectric shell of the radius r with some ε and large
values of the permeability µ to obtain, for example, such values of
the surface impedance of an inductive kind due to the formula [23]:
Z̄S = i

√
µ1/ε1krµ ln(r/ri). Let us note, that the represented formula

for the surface impedance is just at the fulfillment of the condition [3]
|(k√εµr)2 ln(k

√
εµri)| ¿ 1, which is always performed in the cases in

question.
Figure 6 gives the calculated dependences of the input impedance

of the symmetrical (sδ = 0) vibrator, located in free space, at
r/ri = 3 and µ = 100 in comparison with the experimental data
(the circles) from [2] in a wide band of frequencies. These plots
prove compatibility of the set problem solution, obtained by the
generalized method of induced EMF, with real physical process for
impedance vibrators, realized at the large values of µ practically. The
dependences of the input characteristics from the electrical length
of the perfectly conducting (the circles are the experimental data
from [22]) and impedance asymmetrical vibrators (monopoles), located
in the material mediums with different degrees of absorption: k′′1/k′1 =
0.07 and k′′1/k′1 = 0.592 (∆ = λ/λ1, λ1 is the wavelength in medium,
f = 28.0 MHz), are represented in Figures 7, 8. The parameters of the
mediums are given in Table 1. As it is seen from the plots, the increase
of the magnitudes of the surface impedance value of an inductive
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Figure 6. The input impedance of the metallic conductor of the radius
ri = 0.007m, covered by the magnetodielectrical (µ = 100, ε = 10)
shell of the radius r = 0.021m in dependence from the frequency at
2L = 2.0m: 1 — the calculation (the functions (14) and (15)), 2 —
the experimental data [2].
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Figure 7. The input admittance of the perfectly conducting and
impedance (the metallic cylinder with a ferrite shell) vibrators at
k′′1/k′1 = 0.07, r/λ1 = 0.00265, ri = r/2, ∆ = 8.96: 1 — Z̄S = 0,
2 — µ = 10, 3 — µ = 50, 4 — µ = 100, 5 — the experimental
data [22] for Z̄S = 0.
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Figure 8. The input admittance of the perfectly conducting and
impedance (the metallic cylinder with a ferrite shell) vibrators at
k′′1/k′1 = 0.592, r/λ1 = 0.0037, ri = r/2, ∆ = 12.54: 1 — Z̄S = 0,
2 — µ = 10, 3 — µ = 50, 4 — µ = 100, 5 — the experimental data
[22] for Z̄S = 0.

kind allows to apply the impedance vibrators of a considerably less
geometrical length in comparison with perfectly conducting vibrators
in practice. This is a rather considerable factor, when making
the process of non-destructive probing of different material mediums
in order to define their electrophysical parameters [22]. We also
note, that the resonant length of the vibrators (defined by the ratio
Bin = 0) becomes rather small for making true measurements at
the frequency increase, the probing is made on. It is expedient
to use the vibrators with the distributed impedance of a capacitive
kind, for example, metallic-dielectrical vibrators [23] in this case (see
Figures 9, 10). Obviously, everything, written above, is just for the
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Figure 9. The input admittance of the perfectly conducting and
impedance vibrators at k′′1/k′1 = 0.07, r/λ1 = 0.00265, ∆ = 8.96: 1
— Z̄S = 0, 2 — Z̄S = −i0.002, 3 — Z̄S = −i0.003, 4 — Z̄S = −i0.004,
5 — Z̄S = −i0.005, 6 — the experimental data [22] for Z̄S = 0.

Figure 10. The input admittance of the perfectly conducting and
impedance vibrators at k′′1/k′1 = 0.592, r/λ1 = 0.0037, ∆ = 12.54: 1
— Z̄S = 0, 2 — Z̄S = −i0.002, 3 — Z̄S = −i0.003, 4 — Z̄S = −i0.004,
5 — Z̄S = −i0.005, 6 — the experimental data [22] for Z̄S = 0.

impedance vibrators with the arbitrary point of excitation, located in
material mediums, too.

4. VIBRATOR WITH ASYMMETRICAL SURFACE
IMPEDANCE ALONG ITS LENGTH IN FREE SPACE

The vibrators with the surface impedance, variable along their
length, allow to widen the range of the electrodynamic characteristics
change of antennas of fixed geometrical sizes. The investigations,
made in [5, 6, 24–27], are devoted to the vibrators with the variable
impedance, distributed symmetrically relatively to the vibrator centre.
To our minds, the vibrators with the asymmetrically distributed
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impedance along their length represent indisputable interest from a
practical point of view. The problem about the electromagnetic waves
radiation by the thin vibrator with symmetrical and antisymmetrical
components of the surface impedance relatively to its centre, where the
point source of excitation is located, has been solved by the generalized
method of the induced EMF in this section.

Let the vibrator, the length of which is close to the half-wave one
(0.4 ≤ (2L/λ) ≤ 0.6), be excited in the centre (sδ = 0 in Figure 1) by
the hypothetical generator of voltage V0: Es

0s(s) = V0δ(s), Ea
0s(s) =

0. Then the current symmetrical component can be approximated
by the function fs(s) = sin k̃(L − |s|), where k̃ = k − iπzav

i
Z0 ln(2L/r) ,

zav
i = 1

2L

L∫
−L

zi(s)ds is the mean value of the internal impedance per

unit length of the vibrator, rather precisely. We use the following
expression for the current antisymmetrical component [27]: fa(s) =
sin 2ks − 2 sin ks cos kL, and we represent the zs,a

i (s) functions in the
form of zs,a

i (s) = zs,a
i φs,a(s).

Let us consider the following simple functions of the impedance
distribution (which are realized rather easily in practice) as an
example: φs(s) = 1 — the distribution, constant along the vibrator,
φa(s) = signs = (|s|/s) — the step-function alternating distribution.
Substituting fs,a(s) and φs,a(s) into the expressions (5) and (11), we
obtain the formula for the current in the vibrator with these laws of
impedance distribution (the indices “0” and “00” in (11) are omitted
and we put in ε1 = µ1 = 1):

J(s) = − iω

2k
V0 sin k̃L

[
(Za + Z̃a) sin k̃(L− |s|)− ˜̃Zsa(sin 2ks− 2 sin ks cos kL)

(Zs + Z̃s)(Za + Z̃a)− ( ˜̃Zsa)2

]
, (19)

where

Zs =
k̃

k
[As(L)− cos k̃LAs(0)] +

k2 − k̃2

2k

L∫

−L

f s(s)As(s)ds,

Za = 2 sin2 kLAa(L)− 3
2
k

L∫

−L

sin 2ks Aa(s)ds,

Z̃s =
Z̄s

S

i2k̃r
(2k̃L− sin 2k̃L),
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Z̃a =
Z̄s

S

ikr

(
3kL− sin 4kL

12
− 7

3
sin 2kL + 2kL cos 2kL

)
,

˜̃Zsa =
2Z

a
s

ik̃r

(
2k2 sin k̃L−kk̃ sin 2kL

4k2−k̃2
− 2 cos kL

k2 sin k̃L−kk̃ sin kL

k2−k̃2

)
.

As it is known, one of the main factors, defining the range of
the symmetrical vibrators use in antenna practice, is the possibility
of the agreement of its input resistance with the wave resistance of
the feeding feeder line. The required agreement can be made for
any ratio 2L/λ at the use of additional elements of tuning at the
operation on the fixed wavelength. The surface impedance can be
used successfully as such an effective “element of tuning”, as it is
shown in [16] for the case of the constant impedance, especially,
when it is distributed along the vibrator length in a definite kind.
We illustrate this possibility by the results of numerical calculations
of the electrodynamic characteristics of the thin vibrators, having
symmetrical excitation and asymmetrical distribution of the surface
impedance. Figure 11 represents the dependences of the reflection
coefficient module |S11| =

∣∣∣Zin−W
Zin+W

∣∣∣ from the value of the imaginary

part of the symmetrical component of the surface impedance X̄s
S for

different values of the wave resistance W ([Ohm], in abbreviated form
Ω on graphs) of the feeding feeder and the vibrator electrical lengths
2L/λ at Z̄a

S = 0, here and further R̄s,a
S = 0.0, λ=10.0 cm, r/λ=0.0033.

As it is seen, the X̄s
S value at which the reflection coefficient is minimal,

that is the vibrator is tuned into resonance, exists for each combination
of the values 2L/λ and W .

The reflection coefficient (and the voltage standing wave ratio
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VSWR = 1+|S11|
1−|S11| , correspondingly) also attains the values, which are

smaller than the perfectly conducting vibrator has, as it follows from
the plots in Figures 12, 13, at availability of the antisymmetrical
component of the surface impedance X̄a

S in the vibrator for definite
combinations of X̄s

S and X̄a
S (what is more, they are different for

different 2L/λ). Thus availability of different electrical length of the
variable impedance of this or another kind (X̄S < 0 — the capacitive
impedance, X̄S > 0 — the inductive impedance) in the vibrators allows
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Figure 13. The dependences VSWR from the vibrator electrical
length with the constant and variable surface impedance.

to tune them into the resonance with rather small values of the VSWR
in the feeding feeders with the set wave resistance.

We note in the conclusion that the numerical results for simple
laws of the change of the symmetrical and antisymmetrical components
of the surface impedance along the vibrator length are given in this
section. The problem obtained solution is suitable for any functional
dependences of the impedance change, what creates wide possibilities
for realization of the required characteristics of vibrator antennas in
real problems, which are arisen for investigators by practice. At this,
as it follows from Section 3, it is necessary to add the functions (15)
and (18) into the current distribution for the increase of accuracy of
the calculations and also in the case of electrically long vibrators.

5. SYSTEM OF IMPEDANCE VIBRATORS IN FREE
SPACE

Let us consider the system, consisting of N of the parallel impedance
vibrators, located in free space. We introduce numeration of the
vibrators and designate the length and the radius of the vibrator with
the number n via 2Ln and rn, correspondingly, and the corresponding
coordinates of the vibrator centre in the Decart’s coordinate system —
via zn, xn, yn.

The projection of the E0sn(sn) impressed sources electrical field on
the vibrator axis with the number n (n = 1, 2 . . . N) can be represented
in the form of the sum of two components: symmetrical Es

0sn
(sn) and

antisymmetrical Ea
0sn

(sn) relatively to the vibrator geometrical centre
(sn is the local coordinate along the vibrator axis with the number n):
E0sn(sn) = Es

0sn
(sn) + Ea

0sn
(sn) as in the case of the single vibrator

(see section 2). Satisfying the requirements of the impedance boundary
condition for the electrical field on the surfaces of each of the vibrators,
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we obtain the integral-differential equations system relatively to the
currents of the vibrators Jn(sn) in the form of (m = 1, 2 . . . N):

N∑

n=1

(
d2

ds2
m

+ k2

) Ln∫

−Ln

Jn(s′n)Gsm(sm, s′n) ds′n

= −iω[Es
0sm

(sm) + Ea
0sm

(sm)] + iωzim(sm)Jm(sm), (20)
where zim(sm) is the internal impedance per unit length of the vibrator
with the number m, changing along its length in a general case.

Because the impressed sources field is represented in the form of
two components, the currents of each vibrator will also consist of two
functions — symmetrical and antisymmetrical relatively to the centres
of the vibrators — Jn(sn) = Js

n(sn) + Ja
n(sn). Let us introduce the

currents components in the vibrators in the form of the product of
the Js,a

nq unknown complex amplitudes and the set scalar functions of
distribution f s,a

nq (sn) (q = 0, 1 . . . Q) farther:

Js,a
n (s) =

Q∑

q=0

Js,a
nq fs,a

nq (sn), fs,a
nq (±Ln) = 0. (21)

Then the equations system (20) can be written in the form:

N∑

n=1

Q∑

q=0

(
d2

ds2
m

+k2

) Ln∫

−Ln

[
Js

nqf
s
nq(s

′
n)+Ja

nqf
a
nq(s

′
n)

]
Gsm(sm, s′n) ds′n

−iωzim(sm)
Q∑

p=0

[
Js

mqf
s
mq(sm) + Ja

mqf
a
mq(sm)

]

=−iω[Es
0sm

(sm) + Ea
0sm

(sm)]. (22)
We multiply the left and the right parts of the Equations (22)

on f s
mp(sm) and fa

mp(sm) (p = 0, 1 . . . Q) alternately and integrate
them along the vibrators lengths due to the generalized method of
the induced EMF. As a result, we obtain the system of the algebraic
equations relatively to the Js

nq and Ja
nq currents unknown amplitudes:





N∑
n=1

Q∑
q=0

[
Js

nq

(
Zss

mn,pq+δmnZ̃ss
m,pq

)
+Ja

nq

(
Zsa

mn,pq+δmnZ̃sa
m,pq

)]

=− iω
2kEs

0 mp,

N∑
n=1

Q∑
q=0

[
Js

nq

(
Zas

mn,pq+δmnZ̃as
m,pq

)
+Ja

nq

(
Zaa

mn,pq+δmnZ̃aa
m,pq

)]

=− iω
2kEa

0 mp.

(23)
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The following symbols are accepted in (23):

Z

{ss
aa
sa
as

}

mn,pq =
1
2k

Lm∫

−Lm

f

{s
a
s
a

}

mp (sm)




(
d2

ds2
m

+ k2

) Ln∫

−Ln

f

{s
a
a
s

}

nq (s′n)Gsm(sm, s′n)ds′n


dsm,

Z̃

{ss
aa
sa
as

}

m,pq = − iω

2k

Lm∫

−Lm

f

{s
a
s
a

}

mp (sm)f

{s
a
s
a

}

mq (sm)zi m(sm)dsm,

Es,a
0 mp =

Lm∫

−Lm

fs,a
mpE

s,a
0sm

(sm)dsm, δmn =
{

1 at m = n,
0 at m 6= n .

Let us consider the Yagi-Uda array, named after its inventors [28] and
representing itself a linear system of the similar oriented vibrators, the
axes of which are perpendicular to the line of their location, applied in
practice widely [29, 30], in details further. Let us locate the vibrators
in space so, that their central points will be on the {0z} axis of the
Decart’s coordinate system, and the longitudinal axes of the vibrators
will be oriented parallel to the {0x} axis (Figure 14). The vibrator
with the n = 1 number is active, with the n = 2 number is a reflector,
and the rest vibrators (n = 3, 4 . . . N) are directors. We consider, that
the surface impedance of each of the vibrators is constant along its
length, that is, zin(sn) = zin = const. The active vibrator (n = 1) is
excited in the central point (s1 = 0) from the δ-generator of harmonic
oscillations with the amplitude of voltage V0. Thus the projection
of the impressed sources electrical field on the longitudinal axis of
the first vibrator has only a symmetrical component relatively to its
center: E0s1(s1) = Es

0s1
(s1) = V0δ(s1) and the field E0sn(sn) = 0 at

n = 2, 3 . . . N .
As the system is symmetrical relatively to the {y0z} plane, then

the currents of each vibrator will have only symmetrical components:

Jn(sn) = Js
n(sn) =

Q∑
q=0

Js
nqf

s
nq(sn) and the equations system (23) is
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Figure 14. The configuration of the Yagi-Uda antenna.

simplified sufficiently:
N∑

n=1

Q∑

q=0

Js
nq

(
Zs

mn,pq+δmnZ̃s
m,pq

)
=− i

60
Es

01pδm1, m=1, 2 . . . N ;

p=0, 1 . . . Q. (24)

Here

Zs
mn,pq =

1
2k

Lm∫

−Lm

Ln∫

−Ln

f s
mp(sm)f s

nq(s
′
n)G̃sm(sm, s′n)ds′ndsm,

Z̃s
m,pq =

Z̄Sm

irm

Lm∫

−Lm

fs
mp(sm)fs

mq(sm)dsm, Z̄Sm =
rmzim

60
,

Es
0 1p = V0f

s
1p(0), G̃sm(sm, s′n) =

(
d2

ds2
m

+ k2

)
G(sm, s′n),

G(sm, s′n) =
e−ikR(sm,s′n)

R(sm, s′n)
, R(sm, s′n) =

√
(sm − s′n)2 + z2

mn,

zmn = rm at m = n and zmn = (zm − zn) at m 6= n.

Let us make the following identical transformations for the convenience
of calculations:

G̃(sm, s′n) =
G(sm, s′n)

R4

{
(1 + ikR)

(
2R2 − 3z2

mn

)
+ k2z2

mnR2
}

.

The distributed surface impedance is a complex value Z̄Sn =
R̄Sn +iX̄Sn in a general case. We obtain the impedance of an inductive
kind, which, as it is shown in [23], can be represented in the form of
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X̄Sn = krnCLn at X̄Sn > 0 and the impedance of a capacitive kind with
its possible representation X̄Sn = −CCn/(krn) — at X̄Sn < 0, where
the CLn and CCn constants are defined by the vibrator geometrical
sizes and electrophysical parameters of the material, it is made of.

We shall approximate the currents of the active vibrator (with the
n = 1 number) by two functions due to the results of investigation
of the characteristics of the single impedance vibrators, given in
Sections 3, 4

fs
n0(sn) = sin k̃(Ln − |sn|), fs

n1(sn) = cos k̃sn − cos k̃Ln, (25)

and the currents of the passive vibrators (n = 2, 3 . . . N) — by the
functions:

fs
n1(sn) = cos k̃sn − cos k̃Ln, (26a)

fs
n2(sn) = cos

ksn

2
− cos

kLn

2
. (26b)

If the length of a passive vibrator is close to λ/2, then it is possible to
use only one function fs

n1(sn) at approximation of its current.
The reflector of the antenna must be created so, that the current,

occurring in it, will lead the current of the active vibrator along the
phase, and the current of the nearest director (n = 3) will lag along
the phase in respect to the current of the active vibrator in order to
amplify energy flux in one direction and to attenuate it in an opposite
one. It is also necessary, that the current of the director 4 will lag
along the phase in respect to the current of the director 3, the current
in the director 5 will lag along the phase in respect to the current of
the director 4 and so on.

The analysis shows, that it is necessary, that the complete
impedance of the reflector, concerning the current antinode, has a
positive (inductive) reactive component, and the complete impedance
of the directors has a negative (capacitive) reactive component to
obtain the phases indicated ratio. One can obtain a suitable reactive
component of the vibrator impedance by the corresponding fitting of
the vibrator length and (or) its surface impedance value (Figure 15).

The calculated distributions of the currents of the vibrators in
comparison with the experimental data [30] for the array, consisting of
two elements — the active and passive vibrators (2L1 = 2L2 = λ,
r1 = r2 = 0.007022λ), located at the distance ∆z = 0.25λ from
each other, are given in Figure 16 in order to prove adequacy of the
proposed mathematical model to real physical process. It is necessary
to approximate the currents for such a length of the passive vibrators by
two functions (26), at this one observes a rather satisfactory agreement
of the calculated and experimental data.
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(a) (b)

(c)

Figure 15. The active (a) and reactive (b) parts of the vibrator input
impedance, and also the vibrator current phase in the feeding point
(c) in dependence from the vibrator electrical length and the value of
the surface impedance reactive part at r = 0.01λ, λ = 100.0mm.

The use of the impedance vibrators in the Yagi-Uda antenna
allows to increase the matching of the antenna with the feeding feeder.
The change of the electrical length of the active vibrator with the
corresponding change of X̄S simultaneously gives the opportunity to
vary the value of the active part of the input impedance Rin in wide
ranges so, that at this the reactive part of the input resistance stays
equal to null. At this the directed characteristics of the antenna
radiation (directive gain D, the level of the side lobes) do not decrease.
Figure 17 represents the dependance of the coefficients of reflection in
the feeding feeder with different wave resistances from the wavelength
for the array, consisting of 3 vibrators — an active vibrator, a
reflector and a director. At this 2L2 = 50.0mm, 2L3 = 38.0mm,
r1,2,3 = 1.0 mm, the distance between the vibrators ∆z = 25.0mm
(z3 = −z2 = 25.0mm). The surface impedances of the reflector and
the director equal to null, and the value of the surface impedance of
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Figure 16. The currents distribution in the array, consisting of two
vibrators, at ∆z = 0.25λ: 1 — the calculation (the functions (25) and
(26a)), 2 — the calculation (the functions (17), N = 20), 3 — the
experimental data [30], 4 — the calculation (the functions (26a) and
(26b)).
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Figure 17. The reflection coefficients dependences in the feeding
feeder of the Yagi-Uda arrays with the impedance active vibrator from
the wavelength for the feeders with different wave resistance W .

the active vibrator and its length are fitted so, that the antenna input
impedance is active and equals to the wave resistance W of the feeder
(50, 75 or 110 Ohm) on the set wavelength (λ = 100.0mm in this
case). The parameters, corresponding to the system in question, are
represented in Table 1.

We note that, if the decrease of the value of the active vibrator
input impedance real part is observed at the tuning of the Yagi-Uda
antenna, then application of the capacitive impedance (and at this
longer vibrators) permits to increase the Rin value. The tuning of
the antenna on the set wavelength or the retuning of the antenna on
another wavelength is also possible by means of the surface impedance
change.
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Table 1. The parameters of the Yagi-Uda arrays with the impedance
active vibrator.

No. 2L1, mm X̄S1 CC1 × 103 Rin, Ohm D

1. 43.8 0.0 0.0 46.6 6.4

2. 45.75 −0.0145 0.911 50.0 6.4

3. 56.9 −0.07075 4.445 75.0 6.5

4. 70.0 −0.106 6.66 110.0 6.6

Table 2. The parameters of the Yagi-Uda arrays from N = 3 elements.

No. 2Ln, mm X̄Sn CCn × 103 CLn Rin, Ohm D

1.

44.85

50.0

39.0

0.0

-

-

-

-

-

-

43.37 6.36

2. 50.0

−0.0303

0.0

−0.09

1.9

0.0

5.655

-

-

-

52.62 6.5

3. 35.0

0.091

0.122

0.054

-

-

-

1.448

1.942

0.859

26.2 6.46

4. 65.0

−0.084

−0.053

−0.016

5.28

3.3

0.01

-

-

-

84.6 6.78

5.

44.7

35.0

35.0

0.0

0.122

0.054

-

-

-

0.0

1.942

0.859

42.03 6.44

The required currents phases of the vibrators in the array to
provide with the axial radiation can be obtained by fitting the suitable
value of the surface impedance of each of the vibrators of the array
at the unchangeable length of the vibrators. Figure 18(a) gives
radiation patterns (|FE |) of the arrays, consisting of three vibrators
(z2 = 0.25λ, z3 = 0.2λ, r1,2,3 = 1.0mm, λ = 100.0mm): 1 — the
surface impedances of all vibrators equal to null; 2 — the lengths of all
vibrators equal to 2Ln = 0.5λ; 3 — the lengths of all vibrators equal
to 2Ln = 0.35λ; 4 — the lengths of all vibrators equal to 2Ln = 0.65λ;
5 — the length of the reflector and the length of the director equal
to 2L2,3 = 0.35λ. The values of the vibrators surface impedances,
providing a minimal level of the back lobe of |FE |, the values of the
input resistances and D of the arrays are represented in Table 2 for
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Figure 18. (a) |FE |, (b) D and (c), (d) the coefficients of reflection
in the feeding feeder of the Yagi-Uda arrays from N = 3 elements.

these cases. The energetic characteristics and the characteristics of
directivity of these arrays in dependence from the wavelength are
represented in Figures 18(b), (c), (d).

As it is seen from the plots, application of the vibrators with
the inductive impedance (a variant 3) in the Yagi-Uda array allows
to decrease the vibrators sizes, but at this the value of the input
resistance Rin decreases, which can be increased by the length increase
of either only the active vibrator (a variant 5) or at the length increase
of all vibrators with simultaneous increase of the capacitive impedance
values (the variants 2 and 4). The increase of the antenna band
properties is observed at the use of longer vibrators with capacitive
impedance. One would note, that it is possible to change the direction
of the antenna radiation (a function of the reflector is performed by
the director, and of the director — by the reflector), having changed
the surface impedances values of passive radiators suitably.

Figure 19 give the band characteristics of the arrays, consisting of
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Figure 19. D and the |S11| coefficients of reflection in the feeding
feeder of the Yagi-Uda arrays from N = 10 elements.

Table 3. The parameters of the Yaga-Uda arrays from N = 10
elements.

No.

2L1, mm

2L2, mm

2L3−10, mm

X̄S1

X̄S2

X̄S3−10

Rin, Ohm D

1.

43.6

50.0

39.6

0.0 40.76 22.2

2. 43.6

0.0

0.038

−0.0394

51.5 22.1

3. 39.6

0.0335

0.07

0.0

34.4 22.2

4. 50.0

−0.0415

0.0

−0.086

52.6 22.4

N = 10 elements (the distance between the vibrators ∆z = 0.25λ and
their radiuses r1−10 = 0.01λ) at λ = 100.0mm as an example of the
use of the distributed surface impedance for the arrays with a large
quantity of vibrators. The lengths of the vibrators and the values of
their surface impedances, chosen from the condition of attainment of
a maximal D, are represented in Table 3.
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6. CONCLUSION

The methodological grounds of application of the generalized method
of induced EMF to investigate the electrodynamic characteristics of
thin impedance vibrators are represented in the paper. The distinctive
peculiarity of the method, proposed by the authors, is the use of the
approximating functions (two and more), resulted from the integral
equation solution for the current by the asymptotic averaging method,
in the current distribution along the impedance vibrator. The ground
of rightness and correctness of such an approach is represented in the
format of comparative analysis with the known published calculated
and experimental results. One would note, that the new conception of
the generalized method of induced EMF, keeping all known advantages
of numerical-analytical methods in comparison with direct numerical
methods, extends to the cases of the vibrator with the impedance,
variable along its length, and the impedance vibrators systems rather
simply. Thus the proposed generalized method of induced EMF
allows to widen the boundaries of numerical-analytical investigations of
practically significant problems of the impedance vibrators application
sufficiently, and it is a natural next step in the development of the
general fundamental theory of thin vibrators.
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