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Abstract—Although MUSIC (MUltiple SIgnal Classification)-type
algorithm has shown feasibilities as a non-iterative imaging technique
of thin penetrable electromagnetic inclusion from its far-field multi-
static response (MSR) matrix, it induces a poor result whenever one
tries to obtain such inclusion of both dielectric and magnetic contrast
with respect to the embedding homogeneous space R2 case. In this
paper, we develop an improved non-iterative imaging algorithm based
on the modeling of multi-frequency MSR matrix according to a rigorous
asymptotic expansion of the scattering amplitude. Numerical examples
exhibit that presented algorithm performs satisfactorily for single and
multiple thin inclusions, even with a fair amount of random noise.

1. INTRODUCTION

Recent progress towards inverse problem is highly remarkable due
to the developments of the computing system environment. One
of the many interests in inverse problem is the non-destructive
evaluation of electromagnetic inhomogeneities embedded in known
media using high/low frequency time-harmonic electromagnetic
propagation arising in physics, medical science, material engineering,
etc. Related works can be found in [1–5, 8, 10–15, 20, 21, 23, 27–
30] and the references therein. Throughout the literature, various
algorithms for reconstructing an unknown object have been suggested,
most being based on Newton-type iteration schemes. Yet, for
successful application, one needs a good initial guess, close enough
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to the unknown object. Without it, one might suffer from large
computational costs with the risk of non-convergence also. Moreover,
iterative schemes require not only suitable regularization terms
depending upon the specific problem at hand but also complex
calculation of Fréchet derivatives at each iteration step.

In order to overcome such difficulties, alternative non-iterative
imaging algorithm has been suggested. Among them, MUSIC
(MUltiple SIgnal Classification)-type algorithm is successfully applied
to the imaging of penetrable, electromagnetically thin inclusions as
well as one of the perfectly conducting ones at a fixed single frequency.
From the results in [24, 25], it has been shown that this algorithm is
fast, effective and robust. However, in the imaging of thin inclusion of
both dielectric and magnetic contrast with respect to the embedding
homogeneous space R2 case, one obtains a poor result so that an
improvement is required. Recently, an effective and robust multi-
frequency algorithm has been proposed so as to find the location of
small perfectly conducting cracks [3] and dielectric thin inclusions
within a homogeneous half-space [23], but a suitable algorithm for
extended inclusions of both dielectric and magnetic contrast is still
expected.

The purpose of this paper is to develop a non-iterative imaging
algorithm which is effective to retrieve electromagnetically thin
penetrable inclusions of dielectric and magnetic contrast with respect
to the embedding homogeneous space R2. It is based on the fact
that the Multi-Static Response (MSR) matrix can be modeled via
a rigorously derived asymptotic expansion formula of the scattering
amplitude in the presence of such inclusions. A number of numerical
simulations will then illustrate how the proposed imaging algorithm
operated at several frequencies behaves and enhances the imaging
performance.

This paper is structured as follows. In Section 2, we briefly
discuss the two-dimensional direct scattering problem and introduce
the asymptotic expansion formula for the scattering amplitude.
In Section 3, non-iterative imaging algorithm is sketched, and
corresponding numerical examples are shown in Section 4. Section 5
contains a brief conclusion. A brief discussion of statistical hypothesis
testing is given in the appendix.

2. DIRECT SCATTERING PROBLEM

Let us consider two-dimensional electromagnetic scattering from a thin,
curve-like homogeneous inclusion within a homogeneous space R2. The
latter contains an inclusion denoted by Γ which is localized in the
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neighborhood of a curve σ. That is,

Γ = {x + ηn(x) : x ∈ σ, η ∈ (−h, h)} ,

where the supporting σ is a simple, smooth curve in R2. n(x) is the unit
normal to σ at x, and h is a strictly positive constant which specifies
the thickness of the inclusion (small with respect to the wavelength λ).

Constitutive materials are fully characterized by their dielectric
permittivity and magnetic permeability at a given frequency. Let
0 < ε0 < +∞ and 0 < µ0 < +∞ denote the permittivity and
permeability of the embedding space R2, and 0 < ε < +∞ and
0 < µ < +∞ the ones of the inclusion Γ. Then, the piecewise constant
dielectric permittivity and magnetic permeability can be written as

ε(x) =
{

ε for x ∈ Γ
ε0 for x ∈ R2\Γ̄ and µ(x) =

{
µ for x ∈ Γ
µ0 for x ∈ R2\Γ̄,

respectively. If there is no inclusion, i.e., in the homogeneous space,
µ(x) and ε(x) are equal to µ0 and ε0 respectively.

At strictly positive operation frequency ω (wavenumber k0 =
ω
√

ε0µ0), let u(x) be the time-harmonic total field which satisfies the
Helmholtz equation in the presence of thin inclusion:

∇ ·
(

1
µ(x)

∇u(x)
)

+ ω2ε(x)u(x) = 0 in R2.

Let u0(x) be the solution to the Helmholtz equation in the absence
of such inclusion. Then, as usual, the total field u divides itself into
the incident field u0 and scattered field us, u = u0 + us. Notice that
this unknown scattered field us(x) satisfies the Sommerfeld radiation
condition

lim
|x|→∞

√
|x|

(
∂us(x)
∂ |x| − ik0us(x)

)
= 0

uniformly in all directions x̂ = x
|x| .

The following expressions are needed to introduce the asymptotic
expansion as done next.

Definition 2.1 For every x ∈ σ, let τ(x) and n(x) be unit vectors that
are respectively tangent with and normal to σ at x. The symmetric
matrix A(x) is as such [6, 7]:

• A(x) has eigenvectors τ(x) and n(x),

• The eigenvalue corresponding to τ(x) is 2
(

1
µ − 1

µ0

)
,

• The eigenvalue corresponding to n(x) is 2
(

1
µ0
− µ

µ2
0

)
.
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Now, let us specialize u0 to incident plane waves

u0(x) = eik0θ·x for x ∈ R2

and far fields in free space where θ = (θx, θy) is a two-dimensional
vector on the unit circle S1 in R2, i.e., θ satisfies θ · θ = 1. Let
{ŷj}N

j=1 ⊂ S1 be a discrete finite set of observation directions and
{θl}N

l=1 ⊂ S1 be the same number of incident directions. By combining
the results of [5–7], one is able to obtain the following asymptotic
expansion: for y ∈ R2\Γ̄,

u(y) = u0(y) + us(y) = u0(y) + huσ(y) + o(h) (1)

where the correction term uσ is given by

uσ(y) =
∫

σ

[
∇u0(x) · A(x) · ∇xG(x, y) + ω2(ε− ε0)u0(x)G(x, y)

]
dσ(x)

, and

G(x, y) = − i

4
H1

0 (k0 |x− y|)
is the two-dimensional time harmonic Green function.

The scattering amplitude is defined as a function K(ŷ, θ) which
satisfies

us(y) =
eik0|y|
√
|y| K(ŷ, θ) + o

(
1√
|y|

)

as |y| −→ ∞ uniformly on ŷ = y/|y| and θ ∈ S1. From the asymptotic
behavior of G and a simple calculation, one easily derives:

G(x, y) =
1 + i

4
√

k0π

eik0|y|
√
|y| e

−ik0
y
|y| ·x + o

(
1√
|y|

)

∇xG(x, y) =
1 + i

4
√

k0π

eik0|y|
√
|y|

(
−ik0

y

|y|
)

e
−ik0

y
|y| ·x + o

(
1√
|y|

) (2)

as |y| −→ ∞. By combining (1) and (2), the asymptotic formula for
the scattering amplitude follows as

K(ŷ, θ)=h
k2

0(1+i)
4
√

k0π

∫

σ

(
ε−ε0√
ε0µ0

−ŷ ·A(x)·θ
)

eik0(θ−ŷ)·xdσ(x)+o(h), (3)

where o(h) is uniform in x ∈ σ and ŷ, θ ∈ S1.
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3. NON-ITERATIVE MULTI-FREQUENCY IMAGING
ALGORITHM

In this section, we apply the asymptotic formula for the scattering
amplitude (3) so as to build up the imaging algorithm. To do so,
we use the eigenvalue structure of the Multi-Static Response (MSR)
matrix K = (Kjl), whose element Kjl is the amplitude collected at
observation number j for the incident wave numbered l.

Let us assume that for a given frequency ω, the thin inclusion is
divided into M different segments of size of order λ

2 . Having in mind
the Rayleigh resolution limit from far-field data, any detail less than
one-half of the wavelength cannot be retrieved, and only one point, say
xm for m = 1, 2, . . . , M , at each segment is expected to contribute to
the image space of the response matrix K [2, 18, 24, 25].

For simplicity, let us remove the residue term o(h) from (3). Then,
for each ŷj = −θj , the jl−th element of the MSR matrix Kjl ∈ C,
j, l = 1, 2, . . . , N , is
Kjl = K(ŷj , θl)|ŷj=−θj

= h
k2

0(1 + i)
4
√

k0π

∫

σ

(
ε− ε0√

ε0µ0
+ θj · A(x) · θl

)
eik0(θj+θl)·xdσ(x)

≈ h
k2

0(1 + i)
4
√

k0π

|σ|
M

M∑

m=1

[
ε− ε0√

ε0µ0
+ 2

(
1
µ
− 1

µ0

)
θj · τ(xm)θl · τ(xm)

+ 2
(

1
µ0
− µ

µ2
0

)
θj · n(xm)θl · n(xm)

]
eik0(θj+θl)·xm ,

where |σ| denotes the length of σ.
Notice that MSR matrix K can be decomposed as follows:

K = DEDT . (4)

Here, the matrix E ∈ R3M×3M is a diagonal matrix with component

E = h
k2

0(1 + i)
4
√

k0π

|σ|
M

(
Eε 0
0 Eµ

)
,

where

Eε = M ×M diagonal matrix with components
ε− ε0√

ε0µ0
,

Eµ = 2M × 2M diagonal matrix with 2× 2 blocks
 2

(
1
µ − 1

µ0

)
0

0 2
(

1
µ0
− µ

µ2
0

)
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and the matrix D ∈ CN×3M can be written as follows(
D1

ε D2
ε . . . DM

ε D1
µ D2

µ . . . D2M
µ

)

where

Dm
ε =

(
eik0θ1·xm , eik0θ2·xm , . . . , eik0θN ·xm

)T
,

D2(m−1)+s
µ =

(
θ1 · ξs(xm)eik0θ1·xm , . . . , θN · ξs(xm)eik0θN ·xm

)T

with

ξs(xm) :=
{

τ(xm) if s = 1
n(xm) if s = 2.

Let us notice that with the representation (4), K is symmetric but
not Hermitian (a Hermitian matrix could be formed as KK̄). Since
K is not self-adjoint, a Singular Value Decomposition (SVD) has to
be used instead of the eigenvalue decomposition [9]. Let us perform
this decomposition of matrix K, and let M be the number of nonzero
singular values for the given ω. Then, K can be represented as follows:

K = U(ω)S(ω)V̄T (ω) ≈
M∑

m=1

um(ω)sm(ω)v̄T
m(ω),

where sm(ω) are the singular values. um(ω) and vm(ω) are the left and
right singular vectors of K for m = 1, 2, . . . , M .

Based on the above singular value decomposition, the imaging
algorithm is developed as follows. For c ∈ R3\ {0}, let us define a
vector

d(x;ω) =
(
c · (1, θ1)eik0θ1·x, c · (1, θ2)eik0θ2·x, . . . , c · (1, θN )eik0θN ·x

)T

(5)
and corresponding normalized vector d̂(x;ω) = d(x;ω)

||d(x;ω)|| . Then

um(ω) ∼ eiγ1
m d̂(xm;ω) and v̄m(ω) ∼ eiγ2

m d̂(xm;ω) (6)

for some γ1
m and γ2

m, m = 1, 2, . . . ,M [3, 17]. Since the first M
columns of the matrix U(ω) and V(ω), {u1(ω), u2(ω), . . . , uM (ω)} and
{v1(ω), v2(ω), . . . , vM (ω)}, are orthonormal, one can easily find that

〈d̂(x; ω), um(ω)〉 6= 0 and 〈d̂(x; ω), v̄m(ω)〉 6= 0 if x = xm

〈d̂(x; ω), um(ω)〉 ≈ 0 and 〈d̂(x; ω), v̄m(ω)〉 ≈ 0 if x 6= xm

(7)

for m = 1, 2, . . . , M , where 〈a, b〉 = ā · b.
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Thus, we can construct an image function at given frequency ω
as:

WS(x) =
M∑

m=1

|〈d̂(x;ω), um(ω)〉〈d̂(x;ω), v̄m(ω)〉|. (8)

Based on the observation (7), the map of WS(x) should exhibit peaks
of magnitude of 1 at location x = xm for m = 1, 2, . . . ,M , and of small
magnitude at x ∈ R2\Γ̄.

Unfortunately, image function (8) at single frequency offers an
image with poor resolution [3, 23] (also see Figure 4). In order to
improve the imaging performance, we suggest a normalized image
function at several frequencies {ωf : f = 1, 2, . . . , F} as

W(x) =
1
F

F∑

f=1

Mf∑

m=1

|〈d̂(x; ωf ), um(ωf )〉〈d̂(x; ωf ), v̄m(ωf )〉|. (9)

where Mf is the number of nonzero singular values of MSR matrix
at ωf for f = 1, 2, . . . , F . Then, similarly with the (8), the map
of W(x) is expected to exhibit peaks of magnitude of 1 at location
xm for m = 1, 2, . . . , Mf and of small magnitude at x ∈ R2\Γ̄. A
suitable number of Mf for each frequency ωf can be found via careful
thresholding, see [24, 25] for instance.

It is worth mentioning that (9) is an improved version of an
important Kirchhoff migration:

WKIR(x) = |〈d(x; ω),Kd(x; ω)〉|

=
N∑

m=1

sm(ω)|〈d̂(x; ω), um(ω)〉〈d̂(x; ω), v̄m(ω)〉|. (10)

Formula (9) uses only proper singular vectors corresponding to the
supporting curve σ, so it is expected that peaks of magnitude of 1
will be concentrated along the σ, accurately. Moreover, from the
fact that the singular values of K are highly influenced by random
noise, imaging via (10) should yield a poor result when the measured
data are polluted with it. However, (9) does not contain the singular
values, i.e., it will allow a more accurate result in the presence of
random noise. Finally, based on the statistical hypothesis testing [3],
multiple frequencies should guarantee the imaging performance via
higher signal-to-noise ratio (SNR). For reader’s convenience, we briefly
state it in the appendix. Comparisons of imaging results will be
exhibited in the next section (see Figures 3 and 4).

By virtue of [25], we briefly introduce a MUSIC-type image
function at a single frequency ω. Let us define a corresponding
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projection onto the null (or noise) subspace

Pnoise(d(x; ω)) =
∑

m>M

um(ω)ūT
m(ω)d(x; ω).

Then an image of xm, m = 1, 2, . . . , M , follows from computing

WMUSIC(x) =
1

||Pnoise(d(x; ω))|| . (11)

The resulting plot of this estimator (11) is expected to exhibit large
peaks at the sought xm.

4. NUMERICAL EXAMPLES

In this section, numerical examples are illustrated for demonstrating
the effectiveness of imaging algorithm. For that purpose, two σj

characteristics of the thin inclusion Γj are chosen for illustration:

σ1 =
{
(z − 0.2,−0.5z2 + 0.4) : z ∈ [−0.5, 0.5]

}

σ2 =
{
(z + 0.2, z3 + z2 − 0.5) : z ∈ [−0.5, 0.5]

}

Throughout this section, let us denote by εj and µj the permittivities
and permeabilities of Γj , respectively. The thickness h of the Γj is set
to 0.015. Parameters ε0 and µ0 are chosen as 1. The applied frequency
is ωf = 2π

λf
; here λf , f = 1, 2, . . . , 20, is the given wavelength. In this

paper, frequencies ωf are equi-distributed within the interval [ω1, ω20].
As for the illumination and observation directions θl ∈ S1, they are
selected as

θl =
(

cos
2πl

N
, sin

2πl

N

)
for l = 1, 2, . . . , N.

Let us emphasize that the data set of the MSR matrix K is
generated by Finite Element Method (FEM) via a very fine meshes†.
Then, a white Gaussian noise with 20 dB signal-to-noise ratio (SNR)
is added to the unperturbed data in order to show the robustness of
the proposed algorithm. For obtaining the number of nonzero singular
values Mf at each frequency ωf , a 0.01-threshold scheme (choosing
first j singular values sj(ωf ) such that sj(ωf )

s1(ωf ) ≥ 0.01) is adopted. A
more detailed discussion of thresholding can be found in [24, 25]. The
search domain Ω is defined as Ω = [−1, 1] × [−1, 1]. As for the step
† Alternatively, one can employ an asymptotic formulation involving the solution of a
second-kind Fredholm integral equation along the supporting curve [22]. See [25] for
corresponding results.
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size of the search points x ∈ Ω, it is taken of the order of 0.04. The
vector c of (5) is chosen c = (1, 0, 1) (see [25, Section 4] for a detailed
discussion).

Let us consider the imaging of Γ1. MSR matrix K is collected for
N = 36 and frequencies ωf ∈ [ 2π

0.5 , 2π
0.2 ]. Map of W(x) and WMUSIC(x)

are displayed in Figure 1. Although WMUSIC(x) offers an acceptable
but not so good result, the proposed algorithm gives a good result so
that one can successfully recognize Γ1.

In Figure 2, a thin inclusion of complex shape Γ2 is illustrated.
MSR matrix K is collected for N = 40 and frequencies ωf ∈ [ 2π

0.4 , 2π
0.2 ].

Similarly with the previous imaging of Γ1, the proposed algorithm gives
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Figure 1. Map of W(x) and WMUSIC(x) for Γ1. (a) Map of W(x).
(b) Map of WMUSIC(x) at ω = 2π

0.5 .
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Figure 2. Map of W(x) and WMUSIC(x) for Γ2. (a) Map of W(x).
(b) Map of WMUSIC(x) at ω = 2π

0.4 .
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Figure 3. Map of WKIR(x) for Γ1 and Γ2. (a) Map of WKIR(x) at
ω = 2π

0.5 . (b) Map of WKIR(x) at ω = 2π
0.4 .
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Figure 4. (Influence of applied frequency) Map of W(x) for different
number of applied frequencies F when the thin inclusion is Γ2. (a)
Map of W(x) for F = 1. (b) Map of W(x) for F = 3. (c) Map of W(x)
for F = 5. (d) Map of W(x) for F = 10.
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a good result, but a poorer resolution is achieved via WMUSIC(x).
Figure 3 shows the imaging result via Kirchhoff migration (10).

Although it offers a good result against the MUSIC-type one, it cannot
retrieve the shape of such inclusions successfully.

Figure 4 displays the role of number of applied frequencies under
the same test configuration of Γ2. By comparing Figures 4(a)–4(d),
one can easily observe that multiple frequencies enhance the imaging
performance. There is one point to observe at this stage. Figures 4(b)
and 4(c) contain a number of weak replicas and an isolated point of
large magnitude, respectively. In order to eliminate them, based on
the statistical hypothesis testing, one must apply a large number of
different frequencies. Throughout various numerical test, we observed
that if one applied more than F = 10 different frequencies, an image
with good resolution would appear.

The proposed algorithm could be applied directly to the multiple
well-separated thin inclusions with the same thickness h. For that
purpose, let us consider the multiple inclusion ΓMulti = Γ1 ∪ Γ2. MSR
matrix K is collected for N = 42 and frequencies ωf ∈ [ 2π

0.3 , 2π
0.2 ], and

corresponding results are shown in Figures 5 and 6. Similarly with
the single inclusion cases (see Figures 1 and 2) although MUSIC-type
algorithm offers a bad result, the proposed algorithm yields a good
result for multiple inclusions case. It is interesting to observe that if an
inclusion has a much smaller value of permittivity and/or permeability
than the other, it appears to have much smaller magnitude than the
other one (see Figure 6).

Now, we end this section with the following example. Throughout
some results in [4, 23], it has been observed that MUSIC-type
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Figure 5. Map of W(x) and WMUSIC(x) for ΓMulti with ε1 = µ1 = 5
and ε2 = µ2 = 5. (a) Map of W(x). (b) Map of WMUSIC(x) at ω = 2π

0.3 .
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Figure 6. Map of W(x) and WMUSIC(x) for ΓMulti with ε1 = µ1 = 10
and ε2 = µ2 = 5. (a) Map of W(x). (b) Map of WMUSIC(x) at ω = 2π
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Figure 7. Map of W(x) for Γ1 and Γ2 under the limited range of
incident and observation directions. (a) Map of W(x). (b) Map of
W(x).

algorithm yields poorer results under the limited range of incident and
observation directions. However, the proposed imaging algorithm is
available for only a limited range of incident and observation directions.
For example, let us choose the limited illumination and observation
directions π

4 ≤ θl ≤ 3π
4 . Corresponding result for Γ1 and Γ2 appears in

Figure 7. By comparing with Figure 1, one can easily observe that
a thin inclusion of a simple supporting curve σ1 is well retrieved.
However, compared with Figure 2, poor results appear when the
inclusion is of complex shape. It is interesting to observe that the
location of the end-points of Γ2 is well identified, which means that
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connected by a straight line, it should be a good initial guess for an
iterative solution algorithm.

5. CONCLUSION

A multi-frequency based non-iterative algorithm has been investigated
for imaging thin, electromagnetically penetrable curve-like inclusions
embedded in a homogeneous space R2. Results show that this approach
works as well for both dielectric and magnetic contrast with respect
to the embedding space so that such results of low computational
cost could provide initial guesses of the traditional Newton-type based
algorithm or of a level-set evolution [1, 15, 26].

In this paper, we consider the imaging in the presence of random
noise. The development of a fast and robust imaging algorithm in the
presence of random inclusions will be a forthcoming work. Finally, we
have been considering a two-dimensional problem. The strategy which
is suggested, e.g., mathematical treatment of the asymptotic formula,
imaging algorithm, etc., could be extended to the three-dimensional
problem.

APPENDIX A. STATISTICAL HYPOTHESIS TESTING

In this appendix, we briefly introduce the statistical hypothesis testing.
We suggest [3, 16, 19] for a more detailed description. Let us assume
that measured MSR matrix in the presence of single thin inclusion Γ
is polluted by Additive White Gaussian Noise (AWGN):

Kmeas = Kasym + δW,

where the elements of matrix Kasym is given by (3), δ > 0 being a
real number and W being a complex, circularly symmetric Gaussian
random vector

W = Wreal + iWimag

with Wreal and Wimag having identically independently distributed
entries distributed according to the standard normal distribution.

As in the standard statistical hypothesis testing, we postulate two
hypotheses and derive a decision rule for deciding between them based
on our imaging function. We denote by H0 the null hypothesis to be
tested against the alternative hypothesis HA:

• The null hypothesis H0: there is no inclusion,
• The alternative hypothesis HA: there is an inclusion.
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Let us denote by α the false-alarm rate:
α = P[accept HA|H0 is true]

and by 1− β the success of the test (probability of detection):
1− β = P[accept HA|HA is true],

where P[A|B] denotes the probability of A under the condition B.
Given the data the decision rule for accepting H0 or not can be derived
from the Neyman-Pearson lemma which asserts that for a prescribed
false alarm rate α the most powerful test corresponds to accepting HA

for the likelihood ratio of HA to H0 exceeding a threshold determined
by α.

We first consider measurements at a single frequency ω. We choose
as the test static function:

W(x) =
M∑

m=1

|〈d̂(x; ω), um(ω)〉〈d̂(x; ω), v̄m(ω)〉|.

We observe that under the null hypothesis H0:
W(x) ∼ N (0, δ),

while under the alternative hypothesis HA:
W(x) ∼ N (ζ(x), δ)

for

ζ(x) :=
M∑

m=1

|〈d̂(x;ω), um(ω)〉〈d̂(x; ω), v̄m(ω)〉|,

where N (ζ, δ2) denotes the normal distribution with mean ζ and
standard deviation δ. By the Neyman-Pearson lemma, the decision
rule of accepting HA if and only if W(x) > η maximizes the probability
of detection for a given false alarm rate α with the threshold

η = δΦ−1(1− α),
where Φ is the Gauss error function. Moreover, since the imaging
function is Gaussian with standard deviation δ under the null
hypothesis H0, this definition of η means that the probability of
accepting HA given that H0 is true is α. By virtue of [16, 19], the
power of the test is given by

1− β = 1− Φ
(

η − ζ(x)
δ

)
.

Let E[X] and Var[X] be the expected value and variance of X,
respectively, then 1− β can be expressed in terms of the SNR

SNR(x) =
E[W(x)]

Var[W(x)]
=

(
ζ(x)

δ

)2

,
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as

1− β = 1− Φ
(

Φ−1(1− α)− ζ(x)
δ

)
= Φ

(√
SNR(x)− Φ−1(1− α)

)

since Φ(x) = 1 − Φ(−x). Notice that ζ(x) and SNR(x) achieve the
maximum at x = xm so that the detection power 1 − β also achieves
the maximum at x = xm for m = 1, 2, . . . M .

When one chooses the imaging function (9) at multiple frequencies
ωf for f = 1, 2, . . . , F , by a straightforward generalization of the
arguments, the detection power 1− βF is

1− βF = Φ
(√

F × SNR(x)− Φ−1(1− α)
)
≥ 1− β.

Therefore, we can deduce that the multiple frequencies enhance the
imaging performance via higher SNR.
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