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Abstract—Time Reversal Multiple Signal Classification (TR-MUSIC)
method is studied and adapted for the detection and localization
of multiple targets behind the wall in this paper. TR-MUSIC
does not involve the FDTD solver for the implementation of the
backpropagation of the time reversed field and is very computational
efficient. The Green’s function vectors for the computation of the
TR-MUSIC pseudo-spectrum is efficiently evaluated with the saddle
point method for a homogeneous wall. By employing the null space of
the multistatic response matrix, simultaneous localization of multiple
targets behind the wall can be achieved by TR-MUSIC method.
Numerical results are presented to show the effectiveness of through-
the-wall imaging (TWI) with TR-MUSIC method.

1. INTRODUCTION

The capability of electromagnetic wave to penetrate through the
building walls has made through-the-wall imaging (TWI) of increasing
importance in many civilian and military applications. The detection
and localization of targets behind the wall is particularly useful
in such applications as tracking of hostages and suspects inside
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buildings, surveillance and reconnaissance, law enforcement, and
various earthquake and avalanche rescue missions, to name a few [1–6].

For TWI, one needs not only to know if there is any target
behind the wall but also where the target is located. Previously,
several effective TWI algorithms have been proposed to address this
problem. A non-coherent approach based on the trilateration technique
is proposed for the localization of targets behind the wall in [7].
The delay-and-sum beamforming algorithm is proposed in [4] for the
coherent processing of the measured data for TWI. The delay-and-
sum beamforming algorithm incorporates the time delay, associated
with the wave traveling through the wall, into the beamformer and
is preferable for many real time imaging applications due to its fast
computation speed. In order to build an accurate EM model, the
Contrast Source Inversion (CSI) method is employed for TWI in [6]
which is based on optimization and needs to be solved iteratively thus
making it very time consuming. Linear inverse scattering algorithms
based on the first order Born approximation that exploit the layered
medium Green’s function for TWI are studied in [1, 3, 5], resulting in
a good compromise between the imaging accuracy and efficiency. In
this paper, we focus on TWI within the framework of time reversal
(TR) imaging. In particular, the Time Reversal Multiple Signal
Classification (TR-MUSIC) method is employed for target detection
and localization behind the wall.

Time reversal (TR) was first proposed in acoustics in [8, 9]. It
has a range of applications, including acoustic imaging, nondestructive
evaluation, destruction of tumors and kidney stones and underwater
communication, etc [8–10]. Over the past decade, there has
been increasing interest in applying time reversal techniques to
electromagnetic waves for radar imaging, wireless communication,
medical imaging and subsurface target detection [11–16]. The concept
of TR is based on the invariance of the wave equation in lossless and
stationary medium, i.e., if E (r, t) is the solution to the wave equation
in (1), E (r,−t) is also the solution.

∇2E (r, t)− µε
∂2

∂t2
E (r, t) = 0 (1)

According to the wave equation, the reverse of the field in time
domain (or phase conjugation in frequency domain) would precisely
retrace the path of the original wave back to the source where it
is excited. E (r, t) is the divergent wave which we usually call
scattered field while E (r,−t) is the convergent wave which will focus
on the source with physical or computational TR process. The
physical TR of electromagnetic wave has been successfully validated
experimentally in [15]. Due to the cost and complexity of physical TR,
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computational TR is usually employed for radar imaging applications.
TR imaging (TRI), decomposition of reverse time operator (D.O.R.T)
and time reversal multiple signal classification (TR-MUSIC) are the
three main computational TR imaging methods applied in radar
imaging. TRI is the most direct and intuitional method for target
localization. The procedure of standard TRI can be briefly summarized
as follows [8, 9, 19]: first, radar transmits time domain signal to
illuminate the unknown target; secondly, the scattered field from the
target is measured by an array of receivers; thirdly, the received data is
time reversed (or phase conjugated in frequency domain) and sent back
to the same probing media from each receiver location; finally, the time
reversed wave from different receivers converges towards the target
and focuses at the target’s position. The TRI for electromagnetic
wave was first applied for freespace imaging and later for seismic
imaging and landmine detection. In [17, 18] TRI is applied for TWI
and good imaging results can be achieved by implementing TRI
in Finite-Difference Time-Domain (FDTD) for different walls. Due
to the backpropagation of the reversed field in TRI, the imaging
resolution is still constrained to the diffraction limit. Meanwhile, the
FDTD solver is employed for the time domain implementation of time
reversal, the imaging process is very time consuming and the optimal
focusing time should be determined by some strategy [20]. In the
case of multiple scatterers TRI focuses more strongly on the dominant
scatterer and masks the weaker scatters. As the standard TRI is
iterated, final focused imaging result of only the strongest scatterer can
only be achieved. Standard TR iteration does not allow focusing on
weaker scatterers unless time-gating is applied. The D.O.R.T method
overcomes this problem by exploiting the signal space of the multistatic
response matrix and selectively focuses on different targets via different
eigenvectors [12, 13, 21]. The D.O.R.T has been successfully applied
for freespace and subsurface imaging, as well as medical imaging.
Selective focusing on different target by D.O.R.T can be achieved for
multiple scatterers. However, imaging quality degrades in the case
of poorly-resolved targets. For an efficient dealing with this problem
and also improving the imaging efficiency, the TR-MUSIC algorithm
which exploits the null space of the multistatic response matrix was
first proposed by Devaney in [22]. TR-MUSIC does not involve
the FDTD solver for the implementation of the backpropagation of
the time reversed field and thus is computationally very efficient.
Simultaneously high resolution imaging of multiple scatterers with a
high resolution can also be achieved with TR-MUSIC. TR-MUSIC was
firstly proposed in acoustics and later applied in electromagnetic [22–
26]. Most of the related works were originally focused on freespace
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imaging and later on subsurface imaging. However, many practical
applications, both military and commercial, are in the scenarios with
target hidden behind an inaccessible obstacle, such as in through wall
target detection and localization scenarios. Therefore, it is beneficial
to carry out the analysis and extend the TR-MUSIC method in this
case. In this paper, the TR-MUSIC method is applied for an efficient
localization of multiple targets behind the wall by employing the
layered medium Green’s function for a homogeneous wall.

The organization of the remainder of this paper is as follows: in
Section 2 TWI with TR-MUSIC is proposed and discussed. Formulas
for TWI with TR-MUSIC are given in Section 2.1. An efficient
evaluation of layered medium Green’s function with the saddle point
method is presented in Section 2.2. Several examples of targets
localization behind the wall are presented in Section 3. And finally
some conclusions and remarks are drawn in Section 4.

2. TWI WITH TR-MUSIC METHOD

Figure 1 shows a typical two dimensional scenario for multistatic radar
TWI. We consider a uniform linear array of N elements centered at the
position Rj at a distance of ZS in front of the wall, where, j = 1, 2, . . .,
N,Rj = (Xj,Zj). The transceiver antenna elements are placed with an
inter-element spacing ∆x. Region I and III are freespace and Region II
is the wall with complex dielectric constant εr and thickness d. A set
of M point targets are located at position rm in an inaccessible region
behind the wall, where m = 1, 2, . . . ,M , rm = (xm,zm), M < N .

Figure 1. Measurement configuration of the multi-static radar TWI.
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2.1. TR-MUSIC TWI

Assume each transceiver illuminate the targets with unit amplitude
excitation. By employing the point target model and ignoring the
multiple scattering effect between the targets, the received signal at
the l-th antenna element is given by

vl (ω) =
N∑

j=1

M∑

m=1

G (Rl, rm, ω) τmG (rm, Rj , ω) (2)

where τm is the scattering strength of the m-th target, G is the layered
medium Green’s function for the homogeneous wall.

To image the target TR-MUSIC exploits the multistatic response
matrix K, whose element Kij is defined as the scattered field detected
at the i-th receiver due to the excitation of the j-th transmitter, can
be derived as [22, 23]

K =
M∑

m=1

τmgmgT
m (3)

where gm (ω) = [G (R1, rm, ω) G (R2, rm, ω) , · · · , G (RN , rm, ω)]T .
According to the reciprocity principle Kij = Kji, the N ×

N multistatic response matrix is a symmetrical matrix. Both
the D.O.R.T and TR-MUSIC are based on the singular value
decomposition (SVD) of the K matrix:

K = UΣV H =
N∑

j=1

σjujv
H
j (4)

where σj , uj and vj are the j-th singular value and the j-th
column vector of the orthonormal matrices U and V , respectively.
By performing SVD of the response matrix, the space C of the
measurement data can be decomposed into the direct sum of signal
subspace S and null subspace B: C = S ⊕ B. S is spanned by the
principal eigenvectors corresponds to the nonzero eigenvalues and B is
spanned by the eigenvectors having zero eigenvalues, i.e.,

S = Span {uj , σj > 0}⊥B = Span {uj , σj = 0} (5)

It has been demonstrated that the background Green’s function
vectors {gm (ω) ,m = 1, 2 . . . , M} forms a basis for the signal space
S [22, 23]. Then from Eq. (5) one can get:

uH
j gm = 0, σj = 0 (6)
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Suppose there are L none-zero eigenvalues of the response matrix,
the locations of the scatterers can then be determined from the time-
reversal MUSIC pseudo-spectrum,

pMUSIC (rp) =
1

N∑
i=L+1

|〈u∗i , gp〉|2
(7)

The inner product 〈u∗i , gp〉 = 0 when rp matches with the true location
of the target and it shows a peak at the target location.

Both D.O.R.T and TR-MUSIC are based on the SVD of the
response matrix. However, D.O.R.T exploits the signal space and
TR-MUSIC exploits the null space. In the case of poorly-resolved
targets, the signal space eigenvectors becomes linear combination of the
background Green’s function vectors. Backpropagation of such non-
independent eigenvectors creates overlapped wavefronts and causes
image degradation in D.O.R.T. However, in TR-MUSIC, regardless
of the well-resolvedness criteria, the null space is always orthogonal to
the signal space resulting in a much higher resolution imaging result
than D.O.R.T method even for poorly-resolved targets.

2.2. Evaluation of the Layered Medium Green’s Function

For the calculation of the time-reversal MUSIC pseudo-spectrum in
Eq. (7) an efficient evaluation of the layered medium Green’s function
for the TWI is required. For the three layered medium shown in Fig. 1,
we denote the wave numbers in Region I and III as k1 and in region
II as k2, k1 = 2πf/c, k2 = k1

√
εr, c is the speed of light and f is

the working frequency. For the homogeneous wall shown in Fig. 1, the
spectrum form of the layered medium Green’s function can be written
as [25]:

G(Rl, rm, ω)=
j

4π

∫ ∞

−∞
dkxT (kx)

exp(jkx(Xl−xm)+jk1z(Zl−zm−d))
k1z

(8)
where T is the transmission coefficient for the three-layered medium,
in particular [27],

T (kx) =

(
1−R2

12

)
exp (jk2zd)

1−R2
12 exp (j2k2zd)

, R12 =
k1z − k2z

k1z + k2z

k1z =
√

k2
1 − k2

x, k2z =
√

k2
2 − k2

x

(9)

By substituting Eq. (9) into Eq. (8), the layered medium Green’s
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function can be expressed as:

G(Rl, rm, ω)=
j

4π

∫ ∞

−∞
dkx

(
1−R2

12

)
(
1−R2

12 exp(−j2k2zz1)
)
k1z

· exp(−jk2zz1+jkx(Xl−xm)+jk1z(Zl−zm+z1)) (10)

As is shown in Fig. 1, z1 is the position of the back of the wall in
the z direction. For TWI an efficient evaluation of the above integral
is required for the real time processing of the data. During the long
computation time of the Sommerfeld-type integral in (10), the moving
of the target may cause smearing of the image and displacement of
the target. In this paper, the saddle point method is employed for the
asymptotic evaluation of the integral in Eq. (10). For the simplification
of Eq. (10) we denote

F (kx) =

(
1−R2

12

)
(
1−R2

12 exp(−j2k2zz1)
)
k1z

(11)

Φ (kx) = −k2zz1 + kx (Xl − xm) + k1z (Zl − zm + z1) (12)

Then Eq. (10) can be simplified as

G (Rl, rm, ω) =
j

4π

∫ ∞

−∞
dkxF (kx) exp (jΦ(kx)) (13)

The stationary phase point can be determined from Φ′ (kx) = 0,
which gives the following equation:

kx

k2z
z1 − kx

k1z
(Zl − zm + z1) + |Xl − xm| = 0 (14)

The solution of the above equation is the stationary phase point
kx0. Using the Taylor series expansion the phase item can be written
as

Φ (kx) ∼= Φ(kx0) +
1
2
Φ′′ (kx0) (kx − kx0)

2 (15)

where Φ′′ = k2
2z1

k3
2z
− k2

2(Zl−zm+z1)

k3
1z

.
Assuming that ϕ (x) is a high oscillating function, the following

form integral can be efficiently approximated with saddle point method
as [27]:

I =
∫ ∞

−∞
F (x)e−jϕ(x)dx =

√
2π

j |Φ′′ (x0)|F (x0) e−jϕ(x0) (16)

where the x0 is the stationary phase point. By employing the saddle
point method, the layered medium Green’s function in Eq. (13) can be
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derived as

G(Rl, rm, ω) =
j

4π
F (kx0) exp(jΦ(kx0))

∫ ∞

−∞
dkx

exp
(

j
1
2
Φ′′(kx0)(kx − kx0)2

)

=
j

4
F (kx0) exp (jΦ(kx0))

√
2

π |Φ′′ (kx0)|e
jπ/4 (17)

Finally, the Green’s function vector the calculation of time-reversal
MUSIC pseudo-spectrum in Eq. (7) can be derived as

gp = [G (R1, rp, ω) G (R2, rp, ω) , . . . , G (RN , rp, ω)]T (18)

3. SIMULATION RESULTS

In order to show the effectiveness of TR-MUSIC method as applied to
TWI problems, some numerical simulation results are presented in this
section. The calculation of the background Green’s function vectors
is essential for the TR-MUSIC application to TWI. In order to show
the effectiveness of efficient evaluation of the layered medium Green’s
function, we first present some results for the calculation of Green’s
function. By setting Region II in Fig. 1 to be freespace, the layered
medium Green’s function reduces to the freespace case, i.e., εr = 1.
Fig. 2 plots the Green’s function vector in Eq. (18) using the numerical
evaluation of Sommerfield integral in (13) and the saddle point method
solution in Eq. (17). For the convenience of comparison the theoretical
freespace Green’s function (in the form of Hankel function) is also

(a) Real part (b) Imaginary part

Figure 2. Freespace Green’s function calculation result.
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preseented in Fig. 2. The operating frequency is 3 GHz, rp = (0,−1m),
Zi = 0.5m and Xi is uniformly distributed from −1m to 1m with a
step 0.05 m, i = 1, 2, . . . , N . From the real and imaginary part of the
Green’s function shown in Fig. 2 we could see that the result evaluated
with the saddle point method agrees very well with the theoretical and
Sommerfield integral results.

Figure 3 is the Green’s function for a homogeneous wall whose
parameters are εr = 6, σ = 0.01 S/m and d = 0.2 m. The other
parameters are the same as previous simulation. From the real and
imaginary parts of the layered medium Green’s function in Fig. 3 we
could see that the result evaluated using Eq. (17) agrees very well with
the numerical Sommerfield integral result. However, the computation
time for the Sommerfield integral is 3.041 s while the saddle point
method takes only 0.016 s. The efficient evaluation of the layered

(a) Real part (b) Imaginary part

Figure 3. Layered medium Green’s function calculation result.

Figure 4. TR-MUSIC through-wall localization of two well-resolved
targets: (a) TR-MUSIC pseudo-spectrum; (b) mesh plot of the TR-
MUSIC pseudo-spectrum.
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medium Green’s function is indeed very useful for real time TWI.
With the efficient evaluation of the background medium Green’s

function, the time-reversal MUSIC pseudo-spectrum can be calculated
for each image pixel and the peaks of the pseudo-spectrum indicate the
locations of the targets. In order to show the effectiveness of TWI with
TR-MUSIC, the imaging result of two well-resolved targets is presented
in Fig. 4. The two targets are located at (−0.3m, −0.8m) and
(0.4m, −1.1m). The operating frequency is 3GHz; the transceivers are
uniformly distributed from −1m to 1 m with a step 0.05 m at a distance
of 0.3 m from the front wall. The dielectric constant, conductivity and
thickness of the wall are εr = 6, σ = 0.01 S/m and d = 0.2m. From the

Figure 5. Eigenvalues of the multistatic response matrix of two well
resolved point targets.

Figure 6. TR-MUSIC through-wall localization of four closely space
targets: (a) TR-MUSIC pseudo-spectrum; (b) mesh plot of the TR-
MUSIC pseudo-spectrum.
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pseudo-spectrum plotted in Fig. 4 we could see that TR-MUSIC gives
a very good simultaneous localization of the two targets with much
higher resolution than either TRI or D.O.R.T method. Fig. 5 is the
eigenvalues of the multistatic response matrix in Eq. (3). From this
figure we could find that for the two point targets there are only two
non-zeros eigenvalues for the response matrix, each one is associated
with one target. In order to show the performance of TR-MUSCI for
the localization of poorly-resolved targets, the imaging result of four
closely space point targets is presented in Fig. 6. The operational
conditions are the same as previous simulation except that the four
point targets are located at (−0.2m, −2m), (−0.1m, −1.9m), (0,
−1.9m) and (0.2, −2m), respectively. For the closely spaced targets we
could see that TR-MUSIC still gives very good localization for all the
targets. Fig. 7 plots the eigenvalues of the multistatic response matrix
for the four point targets. From this figure we could see that for the
four point targets in this simulation there are four significant non-zeros
eigenvalues for the response matrix. Through backpropagation of the
eigenvectors associated with each non-zeros eigenvalues the D.O.R.T
selectively focuses on each target. However, TR-MUSIC exploits the
null space and achieves simultaneous localization of all the targets with
much higher resolution.

The above simulations are carried out for the point target
localization. In the final example the imaging result of two PEC square
objects are presented. The two PEC square targets whose size are 0.2 m
by 0.2 m are centered at (−0.3m, −2m) and (0.1 m, −2m). The other
conditions remain the same as previous simulation. The localization of
spatial extended targets can be achieved by properly setting a break
point in the singular curves of the multistatic response matrix. For

Figure 7. Eigenvalues of the
multistatic response matrix of
four closely spaced point targets.

Figure 8. Eigenvalues of the
multistatic response matrix of two
PEC squares.
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Figure 9. TR-MUSIC through-wall localization of two PEC squares.

the two PEC squares in this simulation, the singular values are plotted
in Fig. 8. For the calculation of the TR-MUSIC pseudo-spectrum in
Eq. (7) the break point is chosen as L = 6 where the seventh eigenvalues
significantly drops to zero. By using the eigenvectors correspond to
the eigenvalues after the break point, the imaging result of the two
PEC squares is shown in Fig. 9. From this figure we could see that
for spatially extended targets TR-MUSIC could still well localized the
two targets.

4. CONCLUSION

Previously, the TRI and D.O.R.T method have been successfully
applied for freespace and subsurface imaging. Many practical
applications, however, consists of scenarios with target hidden behind
obstacles or visually opaque materials, such as through wall target
detection and localization. In this paper, the TR-MUSIC method
is extended for these applications. TR-MUSIC does not involve the
FDTD solver for the implementation of the backpropagation of the
time reversed field and is very computational efficient. The Green’s
function vectors for the computation of the TR-MUSIC pseudo-
spectrum is efficiently evaluated with the saddle point method for a
homogeneous wall. By employing the null space of the multistatic
response matrix, simultaneous localization of multiple targets behind
the wall can be achieved by TR-MUSIC method. Presented numerical
results clearly demonstrate the effectiveness of the TR-MUSIC method
in TWI applications.
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