
Progress In Electromagnetics Research M, Vol. 13, 121–131, 2010

FULL-WAVE ANALYSIS OF DIELECTRIC RECTANGU-
LAR WAVEGUIDES

J. Sharma

Electronics and Communication Department
Northern India Engineering College
Shastri park, New Delhi,110053, India

A. De

Electronics and Communication Department
Delhi College of Engineering
Delhi University
Bawana Road, Delhi 110042, India

Abstract—In this paper, the characteristic equations of the Ey
mn and

Ex
mn modes of the dielectric rectangular waveguide have been derived

using the mode matching technique. No assumptions have been taken
in the derivations which have been straight forwardly done. Two ratios
have been introduced in the characteristic equations and the new set of
characteristic equations thus obtained are then plotted and graphical
solutions are obtained for the propagation parameters assuming certain
numerical values for the introduced ratios. The results have then been
compared to those obtained by Marcatilli and Goell for rectangular
dielectric waveguides. The comparisons depicts a good agreement in
the three methods at frequencies well above cut-off.

1. INTRODUCTION

A waveguide is a hollow structure in which waves can propagate
without any distortion or attenuation along the invariance direction
of the guide. Such waves are generally dispersive and their dispersion
relation can be obtained by solving self-adjoint eigenvalue problems.
The guide is said to be closed if it is transversally bounded, if the
cross section is unbounded, one has an open waveguide, for the open
waveguide the presence of a continuum of radiating modes which are
not guided waves makes all the questions more difficult.
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Since dielectric waveguides of rectangular cross section have
no closed-form solution, an exact analytic solution does not exist
for the case of wave propagation along a dielectric waveguide of
rectangular shape. Eigen-modes of the waveguide have to be found
either numerically or using approximate techniques. Theoretical
studies on geometrically simple optical and microwave dielectric
waveguides have been presented in the past using approximate or
numerical methods. The need for approximate techniques to solve
the problem associated with rectangular or more general shaped
dielectric structures is apparent. Two most common approximate
techniques are the Marcatili approach [1] and the circular harmonic
point matching technique [2]. Other notable approximate techniques
by Schlosser and Unger [3], using rectangular harmonics, by Eyges
et al., using the extended boundary condition method [4], and by Shaw
et al. [5], using a variational approach have not been much used due
to their computational complexity. The approximate methods are
represented by an analytical approximation introduced by Marcatili
and by the effective index method. The numerical techniques such
as the variational methods [6–8], finite element methods [9–13] and
integral equation methods [14–16] have been extensively used. These
methods have been exclusively applied to two-dimensional problems
with most of the existing techniques performing a fine discretization
of the cross section. Such discretization introduces many unknowns
and strong numerical instabilities. Consequently, an extension of
these methods to three-dimensional problems faces many practical
limitations and requires special care. The main disadvantages of them
are the time and computing resources limitations and impossibility for
an analytical analysis of the solution. Of all the methods for analyzing
dielectric waveguides which have been well addressed in the literature,
the most commonly used is the mode-matching technique [17–20].
With this technique, the transverse plane of the waveguide is divided
into different regions such that in each region canonical eigenfunctions
can be used to represent the electromagnetic fields. The eigenvalue
problem is constructed by enforcing the boundary conditions at the
interface of each region.

In this paper, mode matching has been done at all the air dielectric
interfaces and thus the characteristic equations have been derived.
With the introduction of two ratios the characteristic equations have
then been solved graphically to obtain the values of the propagation
constant. The results have been compared to those obtained by
Marcatili and Goell and a good agreement at high frequencies has
been obtained.
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2. BOUND MODE ANALYSIS

The rectangular dielectric waveguide provides confinement of fields in
two dimensions as compared with the slab guide which can confine
the fields only in one dimension. The two-dimensional confinement is
necessary not only to guide electromagnetic energy from one point to
the other but to a great extent while interconnecting circuit elements.
In a rectangular dielectric waveguide, there can exist two independent
families of modes One is designated as Ex

mn modes having most of its
electric field polarized in the x-direction, and the other is designated
as Ey

mn modes, having most of its electric field in the y-direction. The
subscripts n and m represent, the number of extrema along the x and
y directions respectively of the field components for this mode. Ey, Ex,
Ez, Hx, and Hz, with Hy = 0 are the components of the Ey

mn modes
and Ex, Ez, Hx, Hy, and Hz, with Ey = 0 are the components of the
Ex

mn modes [21].
At very high frequencies the loss factor tends to that for plane

waves in the dielectric because of the strong field concentration in
the rod. At low frequencies losses are small because the fields are
only weakly concentrated in the rod. For this reason the usage of rod
waveguides at very low frequencies is not practical.

Ey
mn and Ex

mn as well as hybrid modes can be supported by the
guide. The wave guidance takes place by the total internal reflection at
the side walls. The solutions to the rectangular dielectric guide problem
can be derived by assuming guided mode propagation (well above cut
off) along the dielectric, and exponential decay of fields transverse to
the dielectric surface. Thus in the region of confinement, (inside the
guide) due to reflections there will be standing wave patterns and when
the field goes out of the boundary of the guide, then in the absence of
reflection, the field moves away from the guide exponentially i.e. there
is an exponential decay of fields transverse to the dielectric surface.
The fields are assumed to be approximately (co)sinusoidally distributed
inside the waveguide and decaying exponentially outside. That is, we
express the field components, as follows:

Assuming propagation along z-axis and in the view of above
discussion the wave function can be written as either

ψeven = A cosux cosu1ye−jkzz |x| ≤ a |y| ≤ b (inside the guide)

= Be−vx cosu1ye−jkzz |x| ≥ a |y| ≤ b (outside the guide)

= C cosuxe−v1ye−jkzz |x| ≤ a |y| ≥ b (outside the guide) (1)

The parameters u and u1 are the transverse propagation constants
inside the dielectric guide and v and v1 are the attenuation constants
outside the guide.
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or,

ψodd = A sinux sinu1ye−jkzz |x| ≤ a |y| ≤ b

= Be−vx sinu1ye−jkzz |x| ≥ a |y| ≤ b

= C sinuxe−v1ye−jkzz |x| ≤ a |y| ≥ b (2)

The regions x > a and y > b have been neglected as fields are very
very weak at the corners, this has been done in all the approximate
methods [1, 2, 21].

Applying wave equation to Equation (1) the separation parameter
equations in each region become

u2 + u2
1 + k2

z = k2
d = ω2 ∈d µd (inside the guide) (3)

−v2−v2
1+k2

z =2k2
0−k2

d =2ω2 ∈0 µ0−ω2 ∈d µd (outside the guide) (4)

Taking the case of ψeven, i.e., ψ an even function of x & y explicitly
and then similarly for ψodd we proceed in analyzing the rectangular
dielectric waveguide. The approach is the mode matching at dielectric
interfaces in the transverse directions using appropriate boundary
Conditions.

2.1. Characteristic Equations for Ey
mn Modes

The field components for the TM to y modes are [22]

Ex =
1
ŷ

δ2ψ

δxδy
Ey =

1
ŷ

(
δ2

δ2y
+ k2

)
ψ Ez =

1
ŷ

(
δ2ψ

δyδz

)
(5)

Hx = −δψ

δz
Hy = 0 Hz =

δψ

δx
(6)

where ŷ = jωεd corresponding to ψ as an even function of both x and
y, the field components inside the guide become

Ex =
1
ŷ
(+Auu1 sinux sinu1ye−jkzz)

Ey =
1
ŷ
(A cosux cosu1ye−jkzz)(k2

d − u2
1)

Ez = +
1
ŷ
(Au1jkz cosux sinu1ye−jkzz)

Hx = (+jkzA cosux cosu1ye−jkzz)

Hy = 0 Hz = −Au sinux cosu1ye−jkzz

(7)

Similarly, outside the guide, as the field is symmetric with respect to
x = 0 and y = 0 the components are
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For x ≥ a y ≤ b:

Ex =
1
ŷ0

(+Bvv1e
−vx sinuy

1e
−jkzz)

Ey =
−1
ŷ0

(k2
0 − u2

1)B(e−vx cosuy
1e
−jkzz)

Ez =
1
ŷ0

(+Bjkzu1e
−vx cosu1ye−jkzz)

Hx = (Bjkze
−vx cosu1ye−jkzz)

Hy = 0 Hz = −Bve−vx cosu1ye−jkzz

(8)

For x ≤ a y ≥ b:

Ex =
1
ŷ0

(+Cuv1 sinuxe−v1ye−jkzz)

Ey =
1
ŷ0

C(k2
0 − v2

1)(cosuxe−v1ye−jkzz)

Ez =
1
ŷ0

(Cjkzv1 cosuxe−v1ye−jkzz)

Hx = (Cjkz cosuxe−v1ye−jkzz)

Hy = 0 Hz = −Cu1 sinuxe−v1ye−jkzz

(9)

Referring to Figure 1, at the interface x = a in the y-z plane, the
tangential components of E & H should be continuous (Ez, Ey, Hz,
Hy). As Hy = 0, let us match the strongest field components, thus
taking the continuity of Ey & Hz we have from Equations (7) and (8)

−1
ŷ0

(k2
0−u2

1)B(e−va cosuy
1e
−jkzz) =

1
ŷ
(A cosua cosu1ye−jkzz)(k2

d−u2
1) (10)

−Bve−va cosu1ye−jkzz = −Au sinua cosu1ye−jkzz (11)

The above set of equations reduces to
−1
∈0

(k2
0−u2

1)B(e−va cosuy
1e
−jkzz)=

1
∈d

(A cosua cosu1ye−jkzz)(k2
d−u2

1)(12)

−Bve−va cosu1ye−jkzz =−Au sinua cosu1ye−jkzz (13)

Dividing (13) by (12) gives

u tanua =
∈0 (k2

d − u2
1)

∈d (k2
0 − u2

1)
v or ua tanua =

∈ 0(k2
d − u2

1)
∈ d(k2

0 − u2
1)

va (14)
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Figure 1. The x = a interface. Figure 2. The y = b interface.

Similarly, applying the continuity condition of E & H(Ez,Hx) at y = b
interface (Figure 2) by using (7) and (9), we get

+
1
ŷ
(Au1jkz cosux sinu1be

−jkzz) =
1
ŷ0

(Cjkzv1 cosuxe−v1be−jkzz) (15)

& (+jkzA cosux cosu1be
−jkzz) = (Cjkz cosuxe−v1be−jkzz) (16)

Dividing (15) by (16), we get

u1 tanu1b =
∈ d

∈0
v1 or u1b tanu1b =

∈ d

∈0
v1b (17)

Equations (14) and (17) coupled with Equations (3) & (4) give the
characteristic equations for determining kz of the even Ey

mn modes.
Similarly, for the wave function ψ as an odd function of x & y

both, Evaluating the field components tangential to the air-dielectric
interface at x = a gives

For x ≥ a y ≤ b:

Ey =
−1
ŷ0

(k2
0 − u2

1)B(e−va sinuy
1e
−jkzz) Hz = −Bve−va sinu1ye−jkzz

(18)
Imposing the continuity of these fields at the interface, we get

1
ŷ
(A sinua sinu1ye−jkzz)(k2

d−u2
1) =

−1
ŷ0

(k2
0 −u2

1)B(e−va sinu1ye−jkzz)

(19)
& Au cosua sinu1ye−jkzz = −Bve−va sinu1ye−jkzz (20)

Dividing (20) by (19) we get

u cotua =
−v(k2

d − u2
1) ∈0

(k2
0 − u2

1) ∈d
or ua cotua =

−v(k2
d − u2

1) ∈0 a

(k2
0 − u2

1) ∈d
(21)

Similarly for the y = b interface
u1b cotu1b = −v1(∈d / ∈0) (22)

Equations (21) and (22) are the characteristic equations for the odd
Ey

mn modes.
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2.2. Characteristic Equations for Ex
mn Modes

When the Ey
mn mode is changed to Ex

mn, the field components are given
by

Ex =
−δψ

δz
Hx =

1
ẑ

(
δ2ψ

δyδx

)

Ey = 0 Hy =
1
ẑ

(
δ2

δy2
+ k2

)
ψ

Ez =
δψ

δx
Hz =

1
ẑ

(
δ2ψ

δyδz

)
(23)

Proceeding in the manner similar to done for the Ex
mn mode we

get the characteristic equations as
for ψeven

ua tanua = va & u1b tanu1b =
(k2

d − u2
1)

(k2
0 + v2

1)
v1b (24)

for ψodd

−ua cotua = va & − u1b cotu1b =
(k2

d − u2
1)

(k2
0 + v2

1)
v1b (25)

The u and u1 and v and v1 still satisfy Equation (3) and (4). The even
wave functions generating these Ex

mn modes are those of Equation (1)
and the odd wave functions generating the Ex

mn modes are those of
Equation (2).

2.3. Determination of Kz at any Frequency above Cut-off

Let us take the case for the Ey
mn mode propagation considering even

wave functions.The four equations that are governing the propagation
are:

u2 + u2
1 + k2

z = k2
d = ω2µd ∈d (26)

−v2 − v2
1 + k2

z = 2k2
0 − k2

d = 2ω2 ∈0 µ0 − ω2 ∈d µd (27)

ua tanua =
∈0 (k2

d − u2
1)

∈d (k2
0 − u2

1)
va (28)

u1b tanu1b =
∈d

∈0
v1b (29)

Equations (28) and (29) can be rewritten as

tan
(
ua−mπ

2

)
=
∈d (k2

0−u2
1)u

∈0 (k2
d−u2

1)v
and tan

(
u1b−nπ

2

)
=
∈0 u1

∈d v1
(30)
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where m and n are arbitrary integers characterizing the order of the
propagating mode.

To obtain the propagation constant we have a set of four
transcendental Equations (26)–(29) and five unknowns (u, u1, v, v1, kz).
In order to obtain solutions we introduce two ratios c1 and c2 such that

c1 = u/u1 and c2 = v/v1 (31)
Using (31), Equations (26)–(29) reduce to

u2
1 + (c1u1)2 + k2

z = k2
d = ω2µd ∈d (32)

−v2
1 − (c2v1)2 + k2

z = 2k2
0 − k2

d = 2ω2 ∈0 µ0 − ω2 ∈d µd (33)

c1u1a tan c1u1a =
∈0 (k2

d − u2
1)

∈d (k2
0 − u2

1)
c2v2a (34)

(u1)b tan(u1)b =
∈0

∈d
v1b (35)

From the above equations the values of v1 can be obtained as

v1 =

√
k2

d − k2
0 − u2

1

(
1 + c2

1

)

(1 + c2
2)

(36)

v1 =
∈d (k2

0 − u2
1)u1c1

∈0 (k2
d − u2

1)c2
tan (u1c1a) (37)

v1 =
∈0

∈d
u1 tan (u1c1a) (38)

For given values of c1 and c2, the above equations can be solved
graphically. To obtain the values of u1 and v1 Equation (37) represents
a modified tan function and Equation (36) represents an ellipse. A
crossing of the two curves in the upper half of the graph is a solution,
i.e., a surface wave. The dominant mode corresponds to the point
where the ellipse crosses the first modified tan function and the
solutions for the higher order modes are at the crossing of ellipse with
the next modified tan functions as depicted in the Figure 3.

Similarly when Equations (36) and (38) are plotted in the u-v
plane, the crossing of the two curves provides solution for u (u1/c1)
and v (v1/c2). knowing the values of the four transverse propagation
constants, the propagation constant along z direction, i.e., Kz can be
evaluated as

kz =
√

2k2
d − k2

0 + v2
1 + v2 =

√
k2

d − u2
1 − u2 (39)

The case where c1 = c2 = 0 the Equations (32) to (35) reduce to that
for the dielectric slab guide where direct solution for kz can be obtained
graphically. The graphical solution of the Ex

mn modes can be obtained
in a similar manner.
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Figure 3. Plot of v1 versus u1.

Figure 4. Normalized propagation constant (kz/k0) versus frequency
(GHz).

3. NUMERICAL RESULTS AND DISCUSSION

The comparison of results of the calculations of the propagation
factor kz/k0 using the graphical method introduced in this paper to
Marcatili’s and Goell’s methods for a silicon dielectric waveguide with
0.5× 1.0mm2 cross section, Ey

11 mode have been depicted in Figure 3.
The values of c1 and c2 have been optimized empirically at c1 = (f/63)
and c2 = c1 ∗ 40 where f is the operating frequency in Giga hertz. It
can be seen from Figure 4 that in spite of its simplicity the graphical
method works quite well for high frequencies that is when the wave is
well guided the results agree very well with the Marcatili’s and Goell’s
method. At lower frequencies near cut-off, accurate calculations are
more complicated.
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4. CONCLUSION

This paper introduces a new method of solving the propagation
constant for the bound modes in the Dielectric Rectangular
Waveguides. This method provides a graphical solution of the
characteristic equations obtained for a specific mode family (Ex

mn or
Ey

mn) which have been obtained by complete mode matching at the
interfaces of the guide without using any approximations. As the
characteristic equations are general the graphical solutions can be
obtained for a Dielectric Rectangular Waveguide of any dimension,
for single mode or multimode operations with a careful choice of the
values of of c1 and c2.
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