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Abstract—Models of covariant linear electromagnetic constitutive
relations are formulated that have wide applicability to the
computation of susceptibility tensors for dispersive and inhomogeneous
media. A perturbative framework is used to derive a linear constitutive
relation for a globally neutral plasma enabling one to describe in this
context a generalized Landau damping mechanism for non-stationary
inhomogeneous plasma states.

1. INTRODUCTION

Constitutive relations are widely used when describing the behaviour of
electromagnetic fields in continuous media. Although their domain of
applicability is often determined experimentally, causality and locality
play important roles in their theoretical foundations. Limitations arise
due to the inherent non-linearity contained in the classical equations
describing the coupling between the motion of individual particles or
continuous charge distributions and a self-consistent electromagnetic
field. For small disturbances perturbative linearization techniques
are available and approximation schemes exist for calculating effective
susceptibility tensors that arise from these constitutive relations. The
effective constitutive relations that result from such schemes often rely
for their validity on assumptions such as material homogeneity and
non-relativistic perturbations about stationary configurations. This
letter addresses some of the issues that arise when some of these
assumptions are relaxed and the degree to which concepts such as
Landau damping can be generalized for relativistic inhomogeneous
plasmas [1–3].
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The macroscopic Maxwell equations can be written as the exterior
system

dF = 0, ε0d ? G = − ? J̃ (1)

where F is the Maxwell 2-form, G = ε0F +Π the excitation 2-form and
J the source current vector on a spacetime M , in terms of the Hodge
map ? and metric dual J̃ associated with the spacetime metric g. In
this form certain 4-current sources −d ? Π are included in G with the
remaining 4-currents denoted by J . A covariant constitutive model
provides functional relations between G (or Π) and F and between
J and F . Relative to any unit future-pointing timelike observer
vector field U on M , the forms F and G define the frame dependent
electromagnetic 1-forms eU = iU F , bU = iU ? F , dU = iUG and
hU = iU ? G so that F = Ũ ∧ eU − ?(Ũ ∧ bU ) and likewise for G.

If one restricts to causal linear responses a natural covariant
constitutive relation is given by the non-local expression

Π[F ]ab(x) =
1
4

∫

y∈J−(x)
χabcd(x, y)Fed(y)dycdef (2)

where χabcd(x, y) is a two-point susceptibility kernel. The events x
and y are given in arbitrary coordinates with summation over Latin
indices from 0 to 3 and dycdef = dyc ∧ dyd ∧ dye ∧ dyf . The causal
structure has been imposed by requiring that χabcd(x, y) = 0 if y does
not lie in the past light cone, J−(x), of x. This constitutive relation
can be used to model media which are spatially inhomogeneous and
temporally non-stationary and is meaningful in spacetimes containing
gravitation.

To facilitate the discussion and the use of two-point tensors
introduce two copies of M , denoted MX and MY , with generic points
x ∈ MX and y ∈ MY coordinated by (x0, . . . , x3) and (y0, . . . , y3)
respectively. The values χabcd(x, y) denote the coordinate components
of the 4-form field χ over the product manifold MX×MY in the induced
coordinates (x0, . . . , x3, y0, . . . , y3):

χ =
1
4
χabcd dxa ∧ dxb ∧ dyc ∧ dyd. (3)

In terms of χ and the projection pY : MX ×MY → MY , pY (x, y) = y
Equation (2) can be written

Π[F ] =
∫

MY

χ ∧ p?
Y F. (4)

The tensor χ has 36 independent components since dxab and dycd are
antisymmetric so χabcd = −χbacd = −χabdc.
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A special case of (2) arises in Minkowski spacetime. Being
parallelizable it admits a family of translation maps Az : M → M, x 7→
Az(x) = x+z for all events x in M . This induces the translation maps
Bz : MX × MY → MX × MY , Bz(x, y) = (x + z, y + z). Imposing
this translational symmetry on χ, i.e., B?

zχ = χ, Equation (2) can be
written

ΠI[F ]ab(x) =
∫

y∈J−(x)
Xabcd(x− y)Fef (y)dycdef (5)

where Xabcd(x − y) = χabcd(x, y) = χabcd(x + z, y + z) for any
z. Since ΠI[A?

zF ] = A?
zΠI[F ] this relation describes spatially

homogeneous and temporally stationary media and remains non-local
in both space and time. Such a medium exhibits both spatial and
temporal dispersion as follows: Minkowski spacetime admits preferred
global Lorentzian coordinate systems, (x0, x1, x2, x3), with associated
cobases (dx0, dx1, dx2, dx3) in which the components of the metric are
diag (−1, 1, 1, 1). If one defines for any scalar φ the Fourier transform

φ̂(k) =
∫

M
e−ik·x φ(x) dx0123

with respect to such a coordinate system then Π̂I[F ]ab(k) =
X̂abcd(k)F̂ef (k)εcdef in terms of the standard constant alternating
symbol εcdef . Such a relation can give rise to dispersion in media.

If the bulk 4-velocity of a non-accelerating medium is V , with
constant components in the above coordinate system, i.e., ∇V = 0, a
particular model for X in (5) is given by

ΠIa [F ]ab(x) =
∫

y∈J−(x)
P(x− y)

(
iV F ∧ Ṽ

)
ab

(y)dy0123

− ?X

∫

y∈J−(x)
M(x− y)

(
iV ?Y F ∧ Ṽ

)
ab

(y)dy0123 (6)

where P and M are polarization and magnetization susceptibility
scalars respectively. The Fourier transform of (6) yields the
simple constitutive relations for a spatially and temporally dispersive
homogeneous isotropic medium: d̂V

a (k) = (ε0 + P̂(k))êV
a (k) and

ĥV
a (k) = (µ−1

0 + M̂(k))b̂V
a (k). If V is not inertial (∇V 6= 0) then

(6) is not a special case of (5) and its Fourier transform, although local
in k, is not of the form above.

For media that lack spatial dispersion the history of the medium
may give rise to temporal dispersion alone. This can be expressed
geometrically in terms of tensor transport along the integral curves
Cx : R → M of the 4-velocity field V of the medium. If these
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curves are each parameterized by proper time τ let Φτ̂
τ (x) be a map

that transports tensors at Cx(τ) to tensors at Cx(τ̂) along each
integral curve of V . Natural choices of transport maps include Lie,
parallel (with respect to some spacetime connection ∇) and Fermi-
Walker transport. Different choices of Φτ̂

τ (x) correspond to different
electromagnetic responses of the medium to the disposition of the
integral curves of V in the spacetime history of the medium. If
Y (z) denotes a tensor field mapping 2-forms at z to 2-forms at z,
a constitutive relation for a spatially inhomogeneous medium may be
written

ΠII[F ](Cx(τ)) =
∫ τ

−∞
Y Φ(τ, τ̂ , x)

(
Φτ

τ̂ (x)
(
F (Cx(τ̂))

))
dτ̂ (7)

where Y Φ(τ, τ̂ , x) = Φτ
τ−τ̂ (x)

(
Y (Cx(τ − τ̂))

)
is a tensor at Cx(τ). This

is another special case of (2). Since

ΠII

[
FΦ

] (
Cx(τ̂)

)
= Φτ̂

τ (x)
(
ΠII[F ]

(
Cx(τ)

))

where FΦ(Cx(τ̂)) = Φτ̂
τ (x)

(
F (Cx(τ))

)
the medium is said to be

stationary with respect to the transport map and hence V and (7)
is valid in any spacetime. This generalizes the notion of a temporally
stationary medium in a spacetime with timelike Killing vectors. The
temporal dispersive properties of the medium are best defined with
respect to a modified Fourier transform that remains valid in a general
spacetime and employs the transport map along the family of curves
describing the history of the medium. For any tensor field α and curve
Cx define, at the event Cx(0), the tensor:

α(ω, x) =
∫ ∞

−∞
e−iωτΦ0

τ (x)
(
α(Cx(τ))

)
dτ.

Then constitutive relation ΠII[F ](ω, x) = Y (ω, x)
(
F (ω, x)

)
describes

an anisotropic, spatially inhomogeneous but temporally dispersive
medium.

If V is geodesic (i.e., ∇V V = 0) and Φτ
τ̂ (x) describes parallel

transport then a particular model for Y in (7) is given by

ΠIIa [F ](Cx(τ)) =
∫ τ

−∞
P (τ−τ̂ , x)

(
Φτ

τ̂ (x)
(
iV F∧Ṽ

)
(Cx(τ̂))

)
dτ̂

−?

∫ τ

−∞
M (τ−τ̂ , x)

(
Φτ

τ̂ (x)
(
iV ?F∧Ṽ

)
(Cx(τ̂))

)
dτ̂ (8)

where P and M are spatially inhomogeneous polarization and
magnetization susceptibility scalars respectively. This describes non-
magneto-electric, spatially inhomogeneous but temporally dispersive
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media with constitutive relations dV (ω, x) = (ε0 + P(ω, x))eV (ω, x)
and hV (ω, x) = (µ−1

0 +M(ω, x))bV (ω, x).
The historic covariant constitutive relations proposed by

Minkowski belong to a class of local linear relations on spacetime of
the form

ΠIII[F ](x) = Z(x)
(
F (x)

)
(9)

where the tensor Z(x) maps 2-forms at events x to 2-forms at x.
These constitutive relations are often used or derived for the premetric
formulation of electromagnetism [4, 5]. They are also used in the
eikonal approximation or with the assumption that only one frequency
is involved [6].

For a medium with bulk 4-velocity field V this tensor may be
chosen so that dV (x) = (ε0 + P(x))eV (x) and hV (x) = (µ−1

0 +
M(x))bV (x) valid for inhomogeneous and non-stationary isotropic
media in an arbitrary spacetime. However in a Minkowski background
their Fourier transforms for non-constant P and M yield non-
local constitutive relations among the Fourier components of the
electromagnetic fields so do not describe normal dispersive continua.

The different constitutive relations (5)–(9) above are applicable
to the phenomenological description of linear media that exhibit
temporal and/or spatial dispersion but rely on some knowledge of the
electromagnetic response of systems in either inertial or co-moving
reference frames. However such relations do not encompass the
effective susceptibility that arises when one applies a perturbative
analysis to processes involving non-stationary, spatially inhomogeneous
plasmas [7–10]. Such processes are not uncommon in astrophysical
applications or in regimes where instabilities arise [11–13] from
inhomogeneities such as those in laser-plasma systems. In these
situations the microscopic Maxwell system for a neutral plasma, dF =
0, ε0d?F = −?J̃ , can be coupled with equations for the charged sources
J in order to effect a linearization. Since d ? J̃ = 0 it is convenient to
write ?J̃ = −d ? Π and ε0F = G−Π, to cast the system into the form
used above for neutral polarizable media. Writing Π as a functional
of F in the form (2), enables one to derive an effective constitutive
relation for a globally neutral plasma.

2. THE COVARIANT SUSCEPTIBILITY KERNEL FOR
A NON-STATIONARY, SPATIALLY INHOMOGENEOUS
PLASMA

Consider a macroscopically neutral plasma composed of particles
labelled by the species index bαe, mass mbαe and charge qbαe, described
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dynamically by the coupled relativistic (collisionless) Maxwell-Vlasov
equations for F and the one-particle probability distributions f bαe(x, v)
in an arbitrary (background) gravitational field:

W bαe(f bαe) = 0, (10)

dF = 0 and ε0d ? F = − ? J̃ (11)

with the total current 1-form J̃(x) = gabJ
b(x)dxa given by

Jb(x) = −
∑
bαe

qbαe
∫

vb| det g|1/2

v0
f bαe(x, v)dv123 (12)

and Liouville vector field W bαe

W bαe(x, v) = va ∂

∂xa
+

(
−Γν

ef (x)vevf +
qbαe

mbαe
Fef (x)gνevf

)
∂

∂vν
(13)

with summation over Greek indices from 1 to 3. The function
v0(x, v1, v2, v3) is a solution of vavbgab(x) = −1.

A linear constitutive relation arises from a perturbation of this
system about a background (zeroth-order) spatially inhomogeneous
and temporally non-stationary solution, F0(x), f bαe0 (x, v). The standard
perturbation expansion about such a solution yields a linear system
for f1 and F1 in terms of f0 and F0 that can be solved in principle by
the method of characteristics [14]. This yields a first order system of
integro-differential equations for F1:

dF1 = 0, d ? F1 = −d ? Π1[F1] (14)

where Π1 is a linear functional depending on f0 and the solutions to
the zeroth-order Lorentz force equations

∇ĊbαeĊ
bαe =

qbαe

mbαe
ĩĊbαeF0 (15)

after elimination of f1. This gives rise to a class of solutions χ1 to (4)
where Π, χ are replaced by Π1, χ1 respectively.

If one employs standard inertial coordinates in a Minkowski
spacetime and a zeroth-order electromagnetic field F0 = 0, in
zeroth-order all particles move along straight line time-like geodesics
independent of bαe and

χbαe1 (x, y)=
qbαe2

mbαe

f bαe0 (y, û)
4û0τ̂2

gµcûbεcbih

(
2dx0µ+εdσjkεµνσûν ûddxjk

)∧dyih

where τ̂(x, y) = (−g(x − y, x − y))1/2 and û(x, y) = (x− y)/τ̂(x, y)
which is manifestly not a function of x− y alone.
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3. LANGMUIR MODES

The general solution to the second equation in (14) is given by
ε0 ?F1 = −?Π1[F1]+dβ where β is an arbitrary 1-form. We define the
generalized Langmuir sector to contain particular solutions satisfying

ε0F1 = −Π1[F1]. (16)

This then reduces to the standard perturbative solution describing
longitudinal plasma oscillations about a stationary f0 in a spatially
homogeneous plasma.

3.1. A Stationary, Spatially Inhomogeneous Plasma in
Minkowski Spacetime

In [15] Bernstein, Greene and Kruskal (BGK) gave a set of
solutions to the non-relativistic 1-dimensional stationary Maxwell-
Vlasov equation for a number of species. There has been much
debate in the literature [16] as to whether Landau damping leads to
a stationary BGK solution [17]. This has been challenged by new
simulations [18, 19]. Looking at the perturbations of the BGK solutions
may give new insight into this debate.

In 1-dimension the non-relativistic Maxwell-Vlasov system may
be written for a particle distribution f bαe0 (x, v) and a electric potential
φ0(x)

v
∂f bαe0

∂x
− qbαe

mbαe

∂φ0

∂x

∂f bαe0

∂v
= 0 (17)

ε0
∂2φ0

∂x2
= −

∑
bαe

qbαe
∫ ∞

−∞
f bαe0 (x, v)dv (18)

A class of solution for (17) are given by

f bαe0 (x, v) = f̂ bαe0

(
1
2
mbαev2 + qbαeφ0(x)

)
(19)

In [15], two methods are given to solve (18), either by prescribing f̂ bαe0

for all species bαe and hence solving for φ0 or by prescribing φ0 and f̂ bαe0
for all except one species and solving for that species.

We may use the susceptibility kernel to derive the equation to
the perturbed Maxwell-Vlasov about a BGK mode. Since the BGK
solutions are stationary we can look for perturbations which are at a
fixed frequency: F1 = Eω(x)e−iωtdt ∧ dx. This solves (16) if Eω(x)
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satisfies the integral equation

Eω(x) =−
∑
bαe

qbαe2

ε0mbαe

∫ 0

τ=−∞
dτ

∫ ∞

v=−∞
dvf̂ bαe0

(
1
2
mbαev2+qbαeφ0(x)

)

×e−iωτEω(ŷbαe)
∂ŷbαe

∂v
(20)

where ŷbαe(t, x, v) is the solution to Lorentz force equation

∂2ŷbαe

∂t2
(t, x, v) =

qbαe

mbαe

dφ0

dx

(
ŷbαe(t, x, v)

)
with initial conditions

ŷbαe(0, x, v) = x and
∂ŷbαe

∂t
(0, x, v) = v

The class of unperturbed BGK solutions (f̂ bαe0 , φ0) such that there exist
solutions to (20) is an open question. Except for the homogeneous case,
it may be necessary to look for numerical solutions.

3.2. A Neutral Non-stationary, Spatially Inhomogeneous
Plasma in Minkowski Spacetime

Consider the situation where F0 = 0 and planar inhomogeneities arise
from the following zeroth-order non-stationary spatially inhomoge-
neous solution to the Maxwell-Vlasov system: (10)–(13)

f
bele
0

(
t, ξ, x2, x3, u, v2, v3

)
= f

bione
0

(
t, ξ, x2, x3, u, v2, v3

)

= h

(
ξ − uξ

(1 + u2)1/2
, u

)
δ
(
v2

)
δ
(
v3

)
. (21)

If

h(ξ, u) = nbione(ξ)Abione(ξ) exp

(
−mbione(1 + u2)1/2

kBT bione(ξ)

)

where Abione(ξ) normalizes (21), then f bione initially at t = 0 represents
a distribution of ions where, at each spatial point ξ, the velocities
belong to the 1-dimensional Maxwell-Jüttner distribution, but where
the temperature T bione(ξ) and the number density of ions nbione(ξ),
depend on position. It follows from (21) that f bele also initially
represents a position dependent Maxwell-Jüttner distribution where
nbele(ξ) = nbione(ξ) and T bele(ξ) = T bione(ξ)mbele/mbione. After the initial
moment, the ions and electrons drift according to (21) and velocities
do not remain in the Maxwell-Jüttner distributions. Alternatively (21)
might describe a plasma composed of particles and anti-particles.

In the theory of a homogeneous plasma one has the solution
F1 = dt∧dξÊ(ω, κ)e−iωt+iκξ provided ω and κ satisfy a transcendental
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dispersion relation. This relation contains an integral that is
potentially singular. The Landau prescription circumvents this
singularity by complexifying ω and defining an analytic continuation
for the integral in the complex ω plane. In an inhomogeneous
plasma there is no such time harmonic solution or associated algebraic
dispersion relation between ω and κ. We therefore propose solving (16)
with a longitudinal field F1 represented as

F1(t, ξ) = dt ∧ dξ

∫ ∞

ω=−∞
dω

∫ ∞

κ=−∞
dκ Ê(ω, κ)e−iωt+iκξ.

In this case, the Landau dispersion relation is replaced by an integral
equation for Ê(ω, κ). This equation contains a double integral that
requires analytic continuation in the complex ω plane for its definition.
If one restricts to modes with real κ there are now two singular branch
points in the ω plane at ω = ±|κ|. To define an analytic continuation
from the upper-half ω plane the associated cuts are disposed along
the half-lines {ω = −|κ| − iλ, λ > 0} and {ω = |κ| − iλ, λ > 0} (see
figure).

Im (ω)

−|κ|

(κ  − ω )2 2 1/2 > 0

|κ|

ω -    - plane

Re (ω)

br
an

ch
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ut

br
an
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 c
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The integral equation for Ê(ω, κ) is now given by

Ê(ω, κ) =
Q0

2π

∫ ∞

−∞
P (ω, κ, κ̂) dκ̂

if Im(ω) > 0 or |Re(ω)| > |κ|,
Ê(ω, κ) =

Q0

2π

∫ ∞

−∞
P (ω, κ, κ̂) dκ̂− iQ0

∫ ∞

−∞
R(ω, κ, κ̂) dκ̂

if Im(ω) < 0 and |Re(ω)| ≤ |κ|,

(22)
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Ê(ω, κ) =
Q0

2π

∫ ∞

−∞
P (ω, κ, κ̂) dκ̂− iQ0

2

∫ ∞

−∞
R(ω, κ, κ̂) dκ̂

if Im(ω) = 0 and |Re(ω)| < |κ|
where Q0 =

∑
bαe q

bαe2/ε0m
bαe, the principal value integral is given by

P (ω, κ, κ̂)=
∫ |κ−κ̂|

−|κ−κ̂|

Ê (ω+κ′, κ̂)(κ−κ̂)
(ωκ− ωκ̂− κ′κ)2

ĥ

(
κ−κ̂,

κ′
(
(κ−κ̂)2−κ′2

)1/2

)
dκ′

and the residue by

R(ω, κ, κ̂) =
|κ− κ̂|
κ|κ|

∂Ê

∂ω

(
ωκ̂

κ
, κ̂

)
ĥ

(
κ− κ̂,

sκsκ−κ̂ω

(κ2 − ω2)1/2

)

− κ

(κ2 − ω2)3/2
Ê

(
ωκ̂

κ
, κ̂

)
∂ĥ

∂u

(
κ− κ̂,

sκsκ−κ̂ω

(κ2 − ω2)1/2

)
.

Here sκ = κ/|κ| and ĥ(κ, u) =
∫∞
s=−∞ e−iκsh(s, u)ds. The square root

(κ2 − ω2)1/2 is defined so that for ω ∈ R, |ω| < |κ| and with the branch
cuts given in the figure then (κ2 − ω2)1/2 > 0.

For real κ these integral equations can be analyzed numerically [20]
in the different domains in the ω plane and wave instability is
associated with solutions for which Im(ω) > 0. Although the nature
of Landau damping (Im(ω) < 0) in the presence of inhomogeneities
is clearly more complicated that analogous damping in homogeneous
plasmas, the results above indicate how the mechanism depends on the
nature of the initial state and analytic continuation in the complex ω
plane.

4. CONCLUSION

Hitherto the analysis of Landau damping in inhomogeneous or non-
stationary plasmas has relied mainly on numerical analysis of the
Maxwell-Vlasov system. This is often computationally expensive and
time consuming. Motivated by our introduction of the covariant
constitutive relations (4), we have reduced this system to the numerical
analysis of a particular class of integral Equations (20) and (22).

In case 3.1, we have applied our new technique to a perturbation
of the BGK system. The resulting analysis generalizes the notion of
Landau damping to spatially inhomogeneous but stationary plasmas.
In case 3.2, we have been able to interpret the wave-plasma interaction
for a spatially inhomogeneous and non-stationary plasma in terms of
the analytic structure of the kernel in the integral Equation (22). This
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generalizes the approach adopted by Landau in his description of the
interaction for homogeneous stationary plasmas.

In both cases, a numerical analysis of these integral equations
may offer a more efficient means to elucidate characteristics of the
wave-plasma interaction for plasmas which may be non-stationary or
spatially inhomogeneous.
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