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Abstract—The impedance matching problem in the presence of
signal and noise coupling in compact MIMO arrays is addressed. By
maximizing an upper bound of the ergodic capacity for an N × N
MIMO system with signal and noise coupling at the receiver in high
signal-to-noise ratio (SNR) scheme, a set of equations is formulated
to find the optimal matching circuit. A closed-form result for the
optimum matching circuit is given. For two-element arrays, we show
numerically that significant performance improvement can be achieved
by introducing the optimal matching.

1. INTRODUCTION

The use of multiple-input multiple-output (MIMO) system is known
to improve the capacity and reliability of wireless communication
links. However, correlation of signals at different antenna elements can
considerably decrease the capacity of a MIMO system. In particular,
the integration of MIMO technique into compact devices can reduce
the signal correlation by distorting the radiation patterns of each
element [1, 2]. However, it also induces a mismatch between the
antennas and their corresponding source and load impedances [3],
which is detrimental to the capacity performance.

Several works have examined the impact on channel capacity
due to signal mutual coupling [4, 5]. Other works have employed
matching circuit to control the reception characteristics. The optimal
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performance can be achieved if a coupled matching circuit is utilized [2].
Nevertheless, it is not easy to integrate this solution into MIMO
systems as multiple circuit components have to be interconnected
across the antenna ports. As a result, a suboptimal and simple
uncoupled (or individual port) matching circuit is recently studied [6].
However, all these works assume statistically independent port noise.

Recent works address the subject of noise coupling. In [7], a
realistic noise model for the receiver amplifier is introduced. The
model is used to compute the noise covariance matrix and the channel
capacity of a MIMO system. They demonstrate that matching for
minimum noise figure is superior to matching for maximum power
transfer. [8] also derives the matching circuit optimized for output
SNR maximization of a beamformer. The impact of thermal noise
and amplifier noise is included in determining the channel capacity of
compact MIMO systems in [9, 10], respectively. When thermal noise
dominates, matching circuit offers no improvement in capacity.

In this paper, we present a circuit model for a noisy MIMO receiver
which includes arbitrary signal and noise coupling. After obtaining the
MIMO capacity with spatially correlated noise, the optimum matching
circuit for capacity maximization in high SNR regime is derived by
extending the ideas in [8]. Numerical simulations are presented to
validate the accuracy of our analysis.

A note on notation: We use boldface to denote matrices and
vectors, the superscripts T , * and H represent matrix transpose,
complex conjugate, conjugate transpose, respectively. The notations
tr(X), E[X], det(X) and [X]ij , denote the trace, expectation,
determinant and the (i, j)-th element of the matrix X, respectively.
respectively. where E[·] is the expectation. The notations Re{·} and
Im{·} are used to denote the real and imaginary part of a complex
number/matrix, respectively. IN is an N × N identity matrix. For
Hermitian matrices the notation X ≥ 0 implies that X is positive
semidefinite.

2. SYSTEM MODEL

2.1. MIMO Circuit Model

Consider a frequency-flat MIMO system with N transmitting and N
receiving antennas. In this paper, we focus mutual coupling effect on
the receive end. The receiver architecture is given in Fig. 1. When
the antennas are open circuited, the signals impinging on the antennas
produce an open circuit voltage voc,i across the input port of the ith
antenna. The voltages can then be represented by Thevenin equivalent
circuit voltage sources, voc= [voc,1,. . . ,voc,N ]T , whereas the Thevenin
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Figure 1. Receiver model.

equivalent impedance matrix ZR= RR+ jXR ∈ CN×N is the mutual
impedance matrix of the receive antennas. voc can be expressed by

voc =

√
P

N
Hx + vE (1)

where x∈ CN is the transmitted signal; P is the total energy at
the transmitter over one symbol period; H∈ CN×N is the channel
matrix, assumed to be spatially correlated Rayleigh fading. Using
the well established Kronecker model [11], the propagation channel is
represented by

H = Ψ1/2Hw (2)

where Ψ is the receive correlation matrix, Hw ∈ CN×N containing
i.i.d CN (0,1) elements. vE=[ve,1,. . . ,ve,N ]T denotes the external noise
received by the antennas. Applying the generalized Nyquist’s thermal
noise theorem [12], the external noise covariance matrix is given by

NE = E
{
vEvH

E

}
= 4kBTRR (3)

where k is the Boltzman’s constant, T is the standard noise
temperature, and B is the instantaneous bandwidth of observation
in Hz.

The antennas are connected to a 2N -port matching network, with
N ports on the antenna side and N ports on the amplifier side. Any
two terminals of a network can be reduced to one voltage source in
series with one impedance. The voltage that appears across these
two terminals is the Thevenin voltage. The Thevenin equivalent
impedance is the impedance between two terminals with all sources
disabled. Extending the Thevenin’s theorem to the 2N -port system,
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Figure 2. Circuit model to compute Z ′M .

the antennas plus matching circuit shown in Fig. 2 can be represented
by a Thevenin equivalent circuit with equivalent Thevenin impedance
Z′M . The port equations for the circuit shown in Fig. 2 are as follows

v1 = −ZRi1 (4)
v1 = ZM11i1 + ZM12i2 (5)
v2 = ZM21i1 + ZM22i2 (6)

Using (4)–(6), we can express v2 as a function of I2, i.e., v2 = Z′M i2,
and

Z′M = −MZM12 + ZM22 (7)

where M = ZM21(ZR+ZM11)−1.
The matching circuit is in turn connected to the amplifiers. An

amplifier is usually represented by a simple noise circuit cascaded with
a noise-free circuit [13, 14]. For the MIMO network in Fig. 1, the input
impedance looking into the amplifiers with terminations can be written
as Zin = diag{zin,1, . . . , zin,N}, where

zin,i = z11,i − z12,iz21,i

zL,i + z22,i
(8)

And the relation between the current iin= [iin,1,. . . , iin,N ]T and the
voltage across the load can be derived using the port equations as
follows:

vL = Z21iin + Z22iL (9)
vL = −ZLiL (10)

Combinig (9) and (10), vL = [vL,1, . . . , vL,N ]T is given by

vL = CLiin, CL = ZL (ZL + Z22)
−1 Z21 (11)

where ZL= diag{zL1,. . . , zLN} and Zij= diag{zij,1,. . . , zij,N}, i, j=
1 or 2. We assume that different amplifiers are not correlated with
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Figure 3. A SISO receiver model.

each other. The noise generated by the amplifiers is characterized by
two correlated voltage and noise sources, va= [va1,. . . ,vaN ]T and ia=
[ia1,. . . ,iaN ]T , respectively. The variances of these sources and their
correlation are given by

E
{
vavH

a

}

4KTB
= Rn (12)

E
{
iaiHa

}

4KTB
= Gn (13)

E
{
vaiHa

}

4KTB
= Sn (14)

where Rn = diag{rn1, . . . , rnN}, Gn = diag{gn1, . . . , gnN}, Sn =
diag{yn1rn1, . . . , ynNrnN}, and rni, gni and yni are the noise resistance,
conductance and admittance of ith amplifier, respectively.

An important metric associated with an amplifier is noise figure,
F , defined by the ratio of total output noise power to the noise power
due to the input noise only, when a source impedance is connected
to the input port. From this definition, the noise figure of a SISO
receiver when a source impedance zs = rs + jxs is connected to
the input port, as shown in Fig. 3 can be shown as Fi = 1 +(
rni + gni |zs|2 + y∗nirniz

∗
s + ynirnizs

)
/rS . To derive the zs = zopt,i

such that Fi achieves its minimum value Fi,min, we set the partial
derivatives of Fi with respect to rs and xs to zero:

∂Fi

∂rs
=

∂Fi

∂xs
= 0 (15)

Thus the equations to be solved for ropt and xopt are as follows

gnixs − yIirni = 0 (16)
gnir

2
s − gnix

2
s + 2yIirnixs − rni = 0 (17)
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Solving (16) and (17), we can have

Fmin,i = 1 + 2
(√

gnirni − y2
Iir

2
ni + yRirni

)
(18)

zopt,i =

√
gnirni − y2

Iir
2
ni + jyIirni

gni
(19)

where yRi = Re{yni} and yIi = Im{yni}.

2.2. MIMO Capacity

Solving the circuit in Fig. 1 for the load voltage, we obtain

vL = Q (Hx + n) (20)

where Q = CL [ZM21 (ZR + ZM11)ZM12 − (ZM22 + Zin)]−1, n is the
total noise component

n = vE −M−1
(
va + Z′M ia

)
(21)

In radio communication system, the total noise can be considered as
a superposition of two uncorrelated noise sources: 1) external noise
received by the antennas and 2) internal noise due to the amplifiers
and passive components. Combining (3) and (12) ∼ (14), the total
noise covariance matrix Ntot = E{nnH} is given by

Ntot =4kTB
[
RR+M−1

(
Rn+Z′MGnZ′

H
M +SH

n Z′HM+Z′MSn

)
M−H

]

(22)
In this paper, we assume that only the receiver knows the channel

state information. Since Q multiplies both the signal and noise
component of vL, the ergodic capacity of the MIMO system is then

C = E

[
log2 det

(
I +

P

N
HHHN−1

tot

)]
(23)

In particular, we consider a high-SNR regime, since the benefits of
the use of MIMO systems are more pronounced at high SNR. Let
N≡Ntot/4kTB, The ergodic capacity in (23) in high-SNR regime can
be approximated by

Chigh SNR ≈ E

[
log2 det

(
4kTBP

N
HHH

)]
− log2 det (N) (24)
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3. OPTIMAL MATCHING CIRCUIT

3.1. Derivation of Optimal Matching Circuit

From the analysis in Section 2, the noise figure of an amplifier is
minimized when a source is matched to zopt. To extend the result
to multiport circuits, we now prove that the optimal matching which
maximizes the ergodic capacity of an N×N MIMO system in high SNR
scenarios is Z′M =diag{zopt,1,. . . , zopt,N}, and one particular circuit
which achieves this goal is

[
ZM11,opt ZM12,opt

ZM21,opt ZM22,opt

]
= j

[
−XR R1/2

R R1/2
opt

R1/2
opt R

1/2
R Xopt

]
(25)

where Zopt = diag{zopt,1, . . . , zopt,N}, Ropt = Re{Zopt} and Xopt =
Im{Zopt}.

An ideal matching circuit is lossless so it adds no noise. All
elements of a lossless matching circuit must be purely imaginary,
i.e., ZMpq = j XMpq (p, q = 1 or 2, XMpq are real matrices), and
satisfies ZM11 = −ZH

M11, ZM22 = −ZH
M22, ZM21 = −ZT

M12 [9]. Let
ZM11= j(U −XR), ZM22= jV, ZM21= jW and ZM12= jWT , and
using the property that logarithmic function is strictly increasing, the
optimal problem can be stated as

[
ZM11,opt ZM12,opt

ZM21,opt ZM22,opt

]
= j

[
U−XR WT

W V

]
= min

ZM

det (N) (26)

where U, V, W∈ RN×N , where U = UT and V = VT . To solve (26),
we first substitute ZM11= j(U −XR), ZM22= jV, ZM21= jW and
ZM12= jWT into (22), and set the partial derivatives of h = det(N)
with respect to U, V, W to zero

∂h

∂U
=

∂h

∂V
=

∂h

∂W
= 0 (27)

A general framework is introduced in [15] showing how to find
the derivative of complex-valued scalar-, vector-, or matrix functions
with respect to the complex-valued input parameter matrix and its
complex conjugate. For functions of the type of f(Z, Z∗), the way
of arranging the partial derivatives is: If df = Tr

{
ET

0 dZ + ET
1 dZ∗

}
,

then (∂/∂Z) = E0 and (∂/∂Z∗) = E1. Some of the most important
rules on complex differentials used in this paper are listed in Table 1,
assuming A, B, and a to be constants, and Z, Z0, Z1 to be complex-
valued matrix variables [15]. Since N = E{nnH}/4kTB is positive
definite, i.e., det(N) 6= 0, the equations to be solved for (U, V, W)
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Table 1. Important results for complex differentials.

Functions A aZ Z0 + Z1 Z0Z1

Differential 0 a(dZ) dZ0 + dZ1
(dZ0) Z1

+ Z0(dZ1)
Function ZH det(Z) Tr{Z} Z−1

Differential (dZ)H det(Z)
Tr{ Z−1(dZ) } Tr{dZ} Z−1(dZ)Z−1

can be stated as (see APPENDIX A)
(
W−1A1BH

1 +W−1AH
2 W

)
N−1−N−1

(
B1A1W−T +WTA2W−T

)

= 0 (28)
[
N−1

(
WTGn + B1AH

2

)−W−1
(
A1BH

1 + AH
2 W

)
N−1B1

]T

+
[(

GnW + A2BH
1

)
N−1−BH

1 N−1
(
B1A1 + WTA2

)
W−T

]
=0 (29)

(
GnVBH

1 + B2

)
N−1B1 + BH

1 N−1
(
GnVBH

1 + B2

)H
= 0 (30)

where A1 = Rn + VGnV + j
(
VSn − SH

n V
)
, A2 = Sn − jGnV,B1 =

(RR + jU)W−1 and B2 = j
(
GnW + SnBH

1

)
. (28)–(30) are

complicated equations and not easily solvable, however, after some
tedious but essentially straightforward analysis, and using the fact
that Z1Z2 = Z2Z1 if Z1 and Z2 are diagonal matrices, we can see
that U = 0, V = Xopt, W = (RoptRA)1/2 satisfies (28)–(30).

The same matching circuit has appeared in [7], with no proof of
optimality. [8] uses the matching circuits of the above form, and proves
it to be optimal for the output SNR maximization of a beamformer.
Since the array is mutually coupled, noise exiting the input of one
amplifier scatters between array elements and is presented at the inputs
of all other ports. Because of this noise coupling, it is not obvious that
a matching circuit which minimizes the noise figure of each amplifier
individually is optimal. In this paper, we prove that the optimal
impedance matching for capacity maximization of MIMO systems with
coupled antennas and noisy amplifiers is the one which decouple the
array and present isolated, individually noise-matched ports to the
amplifier inputs.

3.2. Capacity Upperbound

To study the effect of matching circuit, we use the fact that N, RR are
positive definite matrices, and factor the term inside the parentheses



Progress In Electromagnetics Research C, Vol. 15, 2010 31

of (22)

Rn + Z′MGnZ′
H
M + SH

n Z′HM + Z′MSn

=
(
Z′M − Zopt

)
GN

(
Z′M − Zopt

)H + (Fmin − IN )
Z′M + Z′HM

2

≥ (Fmin − IN )
Z′M + Z′HM

2
(31)

with equality if and only if Z′M = Zopt. Using the property: If Z1,
Z2 ∈ CN×N are Hermitian and Z1 ≥ Z2, then 1) TH Z1T ≥ TH Z2T
for all T ∈ Mn; 2) Z−1

2 ≥ Z−1
1 ; 3) det(Z1) ≥ det(Z2) [16], and applying

(31) to (22) and (23) yields

N ≥ Nmin = R1/2
R FminR

1/2
R (32)

C ≤ E

[
log2 det

(
IN +

4kTBP

N
HHHN−1

min

)]
(33)

with equality if and only if Z′M = Zopt. Fmin =
diag{Fmin,1, . . . , Fmin,N}. From the analysis in this paper, we see that
the capacity for any matching circuit with Z′M 6= Zopt is less than
that achieved by optimal matching. Though the optimal matching
circuit Zopt is derived for capacity maximization in high SNR regime
in Sections 2 and 3.1, the capacity upper bound expression in (33) is
independent of SNR.

4. NUMERICAL RESULTS

In this section, we provide a numerical study to evaluate the matching
performance of identical λ/2 dipoles with fixed self impedance z11 =
r11 + jx11. Results are given for N = 2. Induced EMF method is
used to fill ZR [17]. Based on minimum scattering antenna theory,
the spatial correlation coefficient between two antennas in three-
dimensional (3D) isotropic scattering can be calculated using the
normalized resistance as ρ12 = r12/

√
r11r22 [1], where r12 is the mutual

resistance and rii is the self resistance of port i. Thus, given d,
the normalized resistance will be used to fill Ψ = RR/r11. For the
simulation in this section, we consider 2 × 2 MIMO systems with
identical LNAs.

First, we compare the optimal impedance circuit derived
analytically with simulated results. The noise statistics of the amplifier
is characterized by rni = 10Ω, gni = 1 mS and yni = (2 + j1) mS,
i = 1, 2, this is equivalent to a noise figure of 1 dB. The simulated
{ZM11,opt, ZM12,opt, ZM21,opt, ZM22,opt} in (26) which minimizes
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(a) (b)

Figure 4. (a) Analytical and simulation ZM11,opt, ZM22,opt. (b)
Analytical and simulation ZM21,opt.

Figure 5. The ergodic capacity
of MIMO system (rn = 10Ω, gn =
1mS and yn = (2 + j1)mS).

Figure 6. The ergodic capacity
of MIMO system (rn = 15Ω, gn =
9mS and yn = (9 + j1)mS).

det(N) is obtained via numerical search. Figs. 4(a) and (b) shows the
analytical and numerical results. The close match of numerical and
analytical results ensures the validity of our derivation in Section 3.

Secondly, we study the effect of matching on MIMO capacity. An
optimal matching circuit given in Section 3 is difficult to implement
in practice. A practical alternative is to apply each receive antenna
the two-port matching circuit that achieves the minimum noise figure
for that antenna in isolation. This is called self matching and is
accomplished by the circuit ZM11 = −jx11I2, ZM12 = ZM21 =
−j
√

roptr11I2 and ZM22 = jxoptI2. To demonstrate the effect of
matching circuit on spectral efficiency and to illustrate the impact
of amplifiers on the capacity of mutual coupled antennas, the mean
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capacity for optimal matching, self matching and without matching is
depicted in Fig. 5. To further study the effect of amplifiers, the mean
capacity of MIMO systems with identical amplifiers characterized by
{rn, gn, yn, fmin} = {15Ω, 9 mS, (9 + j1)mS, 3 dB} for optimal-, self-
, and without-matching is depicted in Fig. 6. We generated 10,000
instances of MIMO channel and collect the mean capacity. And the
reference SISO SNR is 10 dB. It is observed that the performance
with optimal matching surpasses self-matching and without-matching
schemes. The performance disparity between optimal-matching and
other matching schemes is more distinctive for amplifiers with larger
noise figure. As antenna separation d increases, the performance
difference decreases. Substituting (2), (32) and Ψ = RR/r11 into (23),
the ergodic capacity with optimal matching in 3D isotropic scattering
environment Copt,3D is

Copt,3D = E

[
log2 det

(
IN +

4kTBP

Nr11
HwHH

w F−1
min

)]
(34)

Thus, Copt,3D is a function on transmit power, P , antenna self
resistance, r11, and noise parameters of amplifiers Fmin. Copt,3D is
independent of antenna spacing and this can be seen in Figs. 5 and 6.

5. CONCLUSION

This paper derives the optimal matching circuit for capacity
maximization of a N×N compact MIMO system with signal and noise
coupling in high SNR scenario. We show that significant improvement
can be realized when employing the optimal matching circuit for
capacity maximization in compact MIMO systems. The matching
circuit is proved to be the one which decouple the array and present
isolated, individually noise-matched ports to the amplifier inputs. We
have shown that the analytical and simulation results agree well with
each other through the example of ideal dipole. We conclude that
the performance of MIMO system can be significantly improved by
integrating ZM,opt into compact antenna arrays.

APPENDIX A. DERIVATION OF ∂H/∂U, ∂H/∂V, ∂F/∂W

A.1. Derivation of ∂h/∂U

Substituting ZM11= j(U − XR), ZM22= jV, ZM21= jW and
ZM12= jWT into (22), thus N can be rewritten as follows:

N = RR + WTGnW + (RR + jU)W−1A1W−T (RR − jU)

+WTA2W−T (RR − jU) + (RR + jU)W−1AH
2 W (A1)
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where A1 = Rn + VGnV + jVSn − jSH
n V and A2 = Sn − jGn.

Treating U as a variable, V, W, A1 and A2 as constants, and using
the results in Table 1, we can deduce the following formula

dN = j (dU)W−1A1W−T (RR−jU)−j (RR+jU)W−1A1W−T (dU)

−jWTA2W−T (dU) + j (dU)W−1AH
2 W (A2)

Thus dh = det(N)Tr{N−1dN} is

dh = det (N)Tr
{[

j
(
W−1A1BH

1 + W−1AH
2 W

)
N−1

−jN−1
(
B1A1W−T + WTA2W−T

)]
dU

}
(A3)

where B1 = (RR + jU)W−1. Thus, the derivatives with respect to U
of h:

∂h

∂U
= det (N)

[
j
(
W−1A1BH

1 + W−1AH
2 W

)
N−1

−jN−1
(
B1A1W−T + WTA2W−T

)]T
(A4)

A.2. Derivation of ∂h/∂W

In (A1), treating W as a variable, V, U, A1 and A2 as constants, we
can deduce the following formula

dN = (dW)T GnW + WTGn (dW)−B1 (dW)W−1A1BH
1

−B1A1W−T (dW)T BH
1 +(dW)T A2BH

1 −WTA2W−T (dW)T BH
1

−B1 (dW)W−1AH
2 W + B1AH

2 (dW) (A5)

Thus, we can deduce

dh = det (N)Tr
{ [

N−1
(
WTGn + B1AH

2

)

−W−1
(
A1BH

1 + AH
2 W

)
N−1B1

]
(dW)[(

GnW + A2BH
1

)
N−1 −BH

1 N−1
(
B1A1 + WTA2

)
W−T

]

(dW)T
}

(A6)

From this, the derivatives with respect to W of h can be derived

∂h

∂W
= det (N)

{[
N−1

(
WTGn + B1AH

2

)

−W−1
(
A1BH

1 + AH
2 W

)
N−1B1

]T
+[(

GnW + A2BH
1

)
N−1−BH

1 N−1
(
B1A1+WTA2

)
W−T

]}
(A7)
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A.3. Derivation of ∂h/∂V

(A1) can be rewritten as

N = RR + B1RnBH
1 + WTGnW + WTSnBH

1 + B1SH
n W

+B1VGnVBH
1 + B1VB2 + BH

2 VBH
1 (A8)

where B2 = j
(
GnW + SnBH

1

)
. Treating V as a variable, B1, B2, W

and U as constants, we can deduce

dN=B1 (dV)GnVBH
1 +B1VGn (dV)BH

1 +B1 (dV)B2+BH
2 (dV)BH

1
(A9)

Thus, we can deduce

dh = det (N)Tr
{[(

GnVBH
1 + B2

)
N−1B1

+BH
1 N−1

(
GnVBH

1 + B2

)H
]
(dV)

}
(A10)

From (A10), the derivatives with respect to V of h can be derived
∂h

∂N
=det (N)

[(
GnVBH

1 +B2

)
N−1B1+BH

1 N−1
(
GnVBH

1 +B2

)H
]T

(A11)
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