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Abstract—Adaptive Neuro-fuzzy systems constitute an intelligent
systems hybrid technique that combines fuzzy logic with neural
networks in order to have better results. A study is presented to
forecast the relative magnetic permeability using ANFIS. The global
electromagnetic parameter, namely, the magnetic induction has been
used as input to estimate the relative magnetic permeability. In
this exceptional research, finite element simulations are carried out
to build up a database which will be used to train ANFIS network.
The ANFIS approach learns the rules and membership functions from
training data. The hybrid system is tested by the use of the validation
data. Performance of the trained ANFIS network was compared with
the multilayer feed forward network model and experimental results.
The results show the effectiveness of the proposed approach in solving
inverse electromagnetic problem.

1. INTRODUCTION

A variety of installations for discovering the physical properties of
materials under test from the measured values have been proposed [1–
4]. We can apply the neural network to obtain these materials. The
neural models are most effective approximator of functions in industry
applications because it has the ability to solve difficult nonlinear
problems. Neural network performance is reliant on the quality and
quantity of training samples presented to the network [1]. Sometimes,
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when the training data set is not fully representative of the possibility
space, exploitation of fuzzy systems improves performance [2].

In recent years, the fuzzy system has been applied in numerous
of fields, such as power system, industry’s control [2]. Neuro-
fuzzy systems constitute an intelligent systems hybrid technique that
combines fuzzy logic with neural networks in order to have better
results. ANFIS can be described as a fuzzy system equipped with
a training algorithm. It is quite quick and has very good training
results that can be compared to the best neural networks. Neuro-fuzzy
network have been widely used for many different industrial areas such
as control, modelling, prediction, identification, pattern recognition [2,
3]. Neuro-fuzzy system represents connection of numerical data and
linguistic representation of knowledge. The neuro-fuzzy system works
similarly to that of multi-layer neural network. This hybrid system
uses the adaptive neural networks (ANNs) theory to characterize the
input-output relationship and build the fuzzy rules by determining the
input structure. Several approaches have been proposed to generate
fuzzy rules, from training data, based on Takagi-Sugeno-Kang-type
fuzzy model. One such an approach is called the adaptive-network-
based fuzzy inference system (ANFIS). ANFIS is a class of adaptive
multi-layer feed-forward network that is functionally equivalent to a
fuzzy inference system. The Adaptive network based fuzzy inference
system (ANFIS) model was proposed by Jang in 1993 [2] as a basis
for constructing a set of fuzzy rules with appropriate membership
functions from a set of input-output examples. This model has been
a source of inspiration for many other fuzzy models defined in more
recent works [2, 3].

Generally, the ANFIS has a capability to approach several
nonlinear unknown systems. In this work, we are going to exploit
ANFIS to forecast a material unknown. ANFIS is presented so as to
generate an excellent estimation to the nonlinear correlation between
the relative permeability and the magnetic induction at sensor position.
A large number of specimens with different relative permeability are
simulated using the 2D-FEM for calculating the detected signal of the
magnetic induction. The paired data with the form of (detected signal
of the magnetic induction, relative permeability) are collected from
these obtained results for ANFIS model.

2. ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM

The abbreviation ANFIS derives its name from adaptive neuro-fuzzy
inference system. Using a given input-output data set, ANFIS build a
fuzzy inference system (FIS) whose membership function parameters
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Figure 1. Sugeno fuzzy if-then rule and fuzzy reasoning mechanism.

Figure 2. The general architecture of ANFIS [2, 3].

are adjusted through the learning process. This hybrid system is
generally based on the Takagi-Sugeno’s fuzzy If-Then rules as shown
in Fig. 1. It involves a premise part and consequent part. The Takagi-
Sugeno fuzzy system has less linguistic power when compared with a
Mamdani fuzzy system, since the consequents are not represented with
meaningful linguistic terms [5]. Fig. 2 illustrates ANFIS architecture
for Takagi-Sugeno type fuzzy inference system, where nodes of the
identical layer have the same functions.

In general, neuro-fuzzy system has input and output layers, and
three hidden layers that represent membership functions and fuzzy
rules. Each node in a layer receives input signals from a previous layer
and transmits its output signals to nodes in the next layer. In the
adaptive network, we use both circle (fixed nodes) and square nodes
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(adaptive nodes). Adaptive nodes have parameter sets while fixed
nodes have none. The parameter sets are computing according to
given training data and a learning procedure for complete a desired
input-output data set. By varying these parameters, we are really
changing the node function (adaptive nodes) and the behavior of
adaptive network. To explicate the procedure of the trained ANFIS
network, we consider two inputs x and y and one output f in ANFIS.
For the first-order Sugeno inference system, typical two rules can be
expressed as:

Rule 1: if x is A1 and y is B1 then f1 = p1 × x + q1 × y + r1

Rule 2: if x is A2 and y is B2 then f2 = p2 × x + q2 × y + r2

where x and y the inputs variables to the node i, Ai and Bi are fuzzy
sets (or the linguistic table), which are characterized by convenient
membership functions and finally, pi, qi and ri are the consequence
parameters. The structure of this inference system is shown in Fig. 2.

Layer 1: Each node in this first layer is adjustable node. The
output signals are the fuzzy membership functions of the input signals,
which are given by the node function as:

O1
i = ξAi (x) , i = 1, 2

O1
i = ξBi−2(y), i = 3, 4 (1)

where Ai and Bi−2 is the linguistic variable. The fuzzy membership
function is generally chosen as a generalized bell-shape with upper limit
and lower limit equal to 1 and 0. The generalized bell-shape function
depends on three parameter sets a, b, and c as given by:

ξ (x) =
1

1 +
∣∣∣x−ci

ai

∣∣∣
2bi

(2)

where the parameter b is usually positive. The parameter c locates the
centre of the curve. The parameter sets in this first layer are named
as premise parameters.

Layer 2: all nodes in this layer are not adaptive (fixed node,
labelled as π). Each node calculates the firing strength of a rule wi or
the output signal through multiplication:

O2
i = t

(
ξAI

(x), ξBi−2(y)
)

= ξAi (x) · ξBi−2 (y) = ωi (3)

Layer 3: In this layer, every node isn’t also adaptive. Nodes in the
third layer (labelled as N) compute the normalized firing strength wi

by dividing each rule firing strength by the summation of all of them.
The output signals can be represented as:

O3
i = ω̄i =

ωi

ω1 + ω2
(4)
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Layer 4: Nodes (adjustable node) in this layer compute the
weighted output of the rules by evaluating the Takagi-Sugeno type
linear approximator fi multiplied by the normalized firing strength:

O4
i = ω̄i · fi = ω̄i (pi · x + qi · y + ri) (5)

Layer 5: This layer has only one node labelled S that is a fixed
node. The output of the system is computed by the node in the last
layer as a summation of all incoming signals. Hence, the global output
signal of the node is given by:

O5
i =

∑

i

ω̄ifi =

∑
i

ωi · fi

∑
i

ωi
(6)

For the hybrid neuro-fuzzy system or the ANFIS, suppose that
the ANFIS has only one global output represented by:

output = F (I, S) (7)

where I is the set of input variables. For this overall output, we can
divide the parameter set S into two sets S1 (premise parameters) and
S2 (consequent parameters). In this case, the total parameter is S1⊕
S2, where ⊕ is the direct sum of the two parameters.

In the forward pass of the hybrid ANFIS; the consequent
parameters are identified by the least-squares algorithm. However
for the backward pass, the error signals propagate backward and
by descent method [6] we can calculate (or update) the premise
parameters with respect the overall error measure (cost function for
training):

E =
P∑

p=1

Ep =
P∑

p=1

N(L)∑

m=1

(
Tm,p −OL

m,p

)2
(8)

where Tm,p is the mth component of the pth target output vector, and
Om,p is the mth component of the actual output vector produced by
the pth input vector, P is the number of the training vectors. The
partial derivative depends on the type of membership function (MF)
used. In this case, the gradient is used to update the MF parameters
α, then:

∂E

∂α
=

P∑

p=1

∂

∂α

N(L)∑

m=1

(
Tm,p −OL

m,p

)2
(9)

And the update parameter vector is:

∆α = −η
∂E

∂α
(10)
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The learning rate can be written:

η =
k√∑

α

(
∂E
∂α

)2
(11)

where k is the step size, which can be changed to vary the speed of
convergence. The type of membership functions (MFs) of the inputs
are generalized bell function, which contains three fitting parameters a,
b and c. A hybrid learning algorithm (gradient method and least square
estimate) is proposed to fine tune the values of these parameters. If
these parameters are fixed, the output of the whole network system
becomes:

f =
ω1

ω1 + ω2
f1 +

ω1

ω1 + ω2
f2

= (ω̄1 · x) p1 + (ω̄1y) q1 + (ω̄1) r1+(ω̄2x) p2+(ω̄2y) q2+(ω̄2) r2 (12)

This is a linear combination of the modifiable parameters p1, q1, r1,
p2, q2, r2.

3. DATA PREPARATION

3.1. Description of the System

The test configuration chosen for the evaluation of the new trained
ANFIS model is shown in Fig. 3. This Benchmark problem was planned
by the Japan Society of Applied Electromagnetics and Mechanics [6]
for the characterization of ferromagnetic properties such as relative
magnetic permeability and electric conductivity.

Figure 3 shows the description of this difficult problem in NDE.
The relative magnetic permeability in the materials under test will
be identified from the detected signal of the magnetic induction (the
detected signal is calculated by the following equation: DB = B/B0,
where B and B0 are the magnetic induction with and without material
under control) at the sensor position. The problem consists of E-
shaped ferrite core, excited by two coaxial coils (bobbin) and in the
presence of a material under control. In this problem, the bobbin is
supplied by a current source with constant amplitude Ic (Here is 0.1 A).

The physical parameters used in the electromagnetic field
computation are relative permeability (µr = 1 for coil and air, µr

∈ [50, 1000] for material under test, µr = 1100 for magnetic core),
conductivity of all space (σ = 5.7e7 S/m for coil (copper) and σ =
1e6 S/m for a material under test), air gap is 0.1 mm. The material
under control is a magnetic material of 5 mm height and 200 mm width.
The simplified model of the probe-specimen is shown Fig. 4.
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Figure 3. Probe-material under test configuration.

Figure 4. Example of typical joining application.

3.2. Finite Element Method

From Maxwell’s equation, we calculate the magnetic field from the
magnetic vector potential. The differential form of Maxwell’s equation
can be expressed as:

∇×H = J (13)
∇ ·B = 0 (14)

∇× E = −∂B

∂t
(15)

where ∇ is the Laplace operator, H is the magnetic field, B the
magnetic induction, J the electrical current density and E is the
electrical field. For two dimensional problems, the magnetic vector
potential A is the obvious choice in most instances. The divergence
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condition on B implies the existence of a vector potential defined by:
B = ∇×A (16)

The magnetic field of electromagnetic model can be considered as
a magnetostatic problem. Substituting (16) to (13) we obtain:

∇×
(

1
µ
∇×A

)
+ σ

∂A

∂t
= J (17)

where µ is the magnetic permeability, σ is the electric conductivity.
The finite element method is one of the most numerical methods

used to solve this differential equation. The FEM is widely used by
scientists and engineers. In this method, the equation is discretized in
space by the Galerkin’s method. After discretization of the domain,
the vector potential has been approximated using first-order triangular
elements. In each element, the vector potential varies according to:

A =
∑

i=l,m,n

AiNi (18)

where Ai are the node values of A and Ni are first order polynomials.
Applying the Galerkin’s method to Eq. (17), we have:∫

s

N t

[
∂

∂x
ν

∂A

∂x
+

∂

∂y
ν

∂A

∂y

]
dxdy + jw

∫

s

σN t
i NjAdxdy+

∫

s

N tJdxdy=0

(19)
where ν is the magnetic reluctivity.

After assembling all the elementary equations, an algebraic system
of equations is obtained which may be written as:

([M ] + jw[K]) [A] = [F ] (20)
where ([M ] + jw [K]) is the global coefficient matrix, [A] is the matrix
of nodal magnetic vector potentials and [F ] is nodal currents (forcing
functions) which are given by:

Mij =
∫

si

ν∇Ni∇Njdxdy (21)

Kij =
∫

si

σN t
i N

d
j xdy (22)

Fi =
∫

si

JN t
i dxdy (23)

The Gaussian elimination algorithm is then used to solve the above
banded matrix equation. The field solution is used to calculate the
magnetic induction. More details about the finite element method can
be found in [7].
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3.3. Training and Testing Data

The forward problem predicts the DB at sensor position with more
excitation frequencies using the 2D-finite element method from the
magnetic potential vector A. The main reason for the selection
of 2D-FEM is related to their wide area of use and good global
electromagnetic properties. In 2D-FEM the regions are meshed and
the DB is the unknown vector in the sensor position. The mesh
is automatically generated by dividing the geometry into discrete
elements. Standard triangular elements are applied here. The open
boundary was set at a radius of 4× l (where l is the length of material
under test) using the Dirichlet condition. The generated mesh had
approximately 7294 nodes or 14484 first order triangular elements. It
is essential to select an adequate mesh to characterize precisely the
electromagnetic phenomena and then, to reduce the numerical errors
that can influence the convergence of the identification process.

The data set used in this study is obtained using a 2D-FEM. The
partial differential equation toolbox (PDE-toolbox) [8] for the 2D-FEM
is used in measurements and the finite element meshes generation.
The problem was solved on a PC with P4 2.4G R© CPU under Matlab
7 workspace. In order to generate the database for training of the
ANFIS model, 2D-FEM simulations will be carried out for diverse sets
of material parameters.

Through the stage of 2D-FEM simulations, errors can appear due
to its particularly character [9, 10]. Accordingly, the results of the 2D-
FEM must be carefully examined. To verify the database, we will plot
a few values of relative permeability in the same figure. The detected
signal of the magnetic induction (DB) are calculated at nine different
frequencies (61–610 Hz, one every 30.5 Hz) using finite element method
at the sensor position. Fig. 5 shows the DB in the region of the device
at the sensor position for five materials having the different relative
permeability. By these results of the 2D-FEM simulations, the test of
coherence of the data set is verified and gives us that not errors in the
data set.

For the preparation of the learning, 130 sets of relative
permeability µ = 50, 57.364, . . . , 1000 (step size = 7.364) are exploited.
Initially it is appropriate to split the data to training and test data.
The 130 cases are used for the DB calculation. Some of the obtained
values (50%) are used in training of ANFIS model and the rest is used
in testing (50%).
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Figure 5. The DB as a function of frequency for different relative
magnetic permeability.

3.4. Identification Strategy

In this paper, we present a new technique on the use of the ANFIS
and 2D-FEM in the relative magnetic permeability identification. The
new methodology can be summarized as follows:

1) A large number of specimens with different relative permeability
are simulated using the 2D-FEM for the DB calculation.

2) The paired data with the form of ([detected signal of the
magnetic induction at all frequencies; relative permeability]) are
collected from these obtained results for ANFIS model.

3) The collected data are used to train the ANFIS to approximate
the functional relations between input variables (DB) and responses
(relative permeability) to a desired degree of accuracy.

4) The trained ANFIS network is then tested with the new relative
permeability (testing data) of the specimens, which not belong to the
original data set.

4. RESULTS AND DISCUSSION

All of the relative magnetic permeability data are arranged for 9-input-
1-output system as this format: ([DB(f1); DB(f2); DB(f3); DB(f4);
DB(f5); DB(f6); DB(f7); DB(f8); DB(f9), relative permeability]),
where, for the first vector, DB are the inputs values and relative
permeability is the output variable.
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For our identification approach, the data set is partitioned into
a training set and a checking set. For reduce the CPU time of the
inverse problem, in the first, we perform a new forward search within
the available inputs to select the two inputs that generally influence
the relative magnetic permeability. The target of this strategy is the
specification of the number of input combinations during the search.
In trained ANFIS network, the aim was reducing the root mean square
error, which defines as: (1/2P )× E (see (8)).

For our problem, there are 9 input candidates ([DB(f1); DB(f2);
DB(f3); DB(f4); DB(f5); DB(f6); DB(f7); DB(f8); DB(f9)]), and the
output to be expected is relative magnetic permeability. First of all,
we construct nine ANFIS models for select the one most influential
input attribute in the output. In the second step, we build eight
ANFIS models with various input combinations, and select the two
most influential inputs attribute in the relative magnetic permeability.
The result is shown in the plot (see Fig. 6), where 2 inputs ([DB(f1);
DB(f4)]) are selected with a training RMSE of 0.4688 and checking
RMSE of 0.8375.

In Fig. 6, we can see that ANFIS with DB(f1) and DB(f4) as
inputs has the least error, so it is logical to select these new inputs
for further parameter tuning. The results from this strategy indicate
that DB(f1) and DB(f4) form the optimal combination of two input
attributes.
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Figure 6. Input variable combinations and their influence (Training
(Circles), Checking (Asterisks)).
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By this new strategy for input selection in NDE, we then extract
the selected input attributes from the original training and checking
data set (this approach is used for reducing the time calculation of the
inverse approach).

The ANFIS system is started with new candidate inputs data set
(the detected signal of the magnetic induction DB at two frequencies)
in the [DB(f1); DB(f4)] format. Next, the steps of our approach are: 1)
The paired data with the new form of ([DB(f1); DB(f4)]) are given to
the trained ANFIS network. 2) The trained ANFIS network completes
the forward pass which the overall output f is the relative magnetic
permeability. 3) After training phase the trained ANFIS system is
tested with another independent data. 4) The error is calculated
for every one epoch by computing the root mean square errors. 5)
Training of the ANFIS is performed using both least squares method
and back-propagation. In the forward pass the consequent parameters
(pi, qi and ri) are updated using least squares and in the backward
pass the premise parameters (ai, bi and ci) are identified using back-
propagation. This is offline learning, because the trained ANFIS
network accepts all data sets. Also, all parameters are updated. 6)
After these steps calculation, if the number of ANFIS training epochs
is achieved then the system terminates.

The bell-shape membership function is adopted in the ANFIS
training. The number of MFs for the input variables DB(f1) and
DB(f4) is five and five, respectively. The ANFIS model is formed
by twenty-five (5 × 5 = 25) fuzzy rules with linear sequences whose
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it’s membership functions are represented by the Fig. 7. Hence, the
ANFIS used here contains a total of ninety-five fitting parameters, of
which twenty (5 × 2 + 5 × 2 = 20, here 2 is the input variables) are
the premise parameters and seventy-five (3 × 25 = 75, here 3 is the
number of the unknown consequent parameters) are the consequent
parameters.

The rules (Ri) of the this model are defined by:

(R1) IF (DB(f1) is VS) AND (DB(f4) is VS)
THEN µ = p1 · DB(f1) + q1 · DB(f4) + r1

(R2) IF (DB(f1) is VS) AND (DB(f4) is SM)
THEN µ = p2 · DB(f1)+ q2 · DB(f4) + r2

(R3) IF (DB(f1) is VS) AND (DB(f4) is ME)
THEN µ = p3 · DB(f1) + q3 · DB(f4) + r3

(R4) IF (DB(f1) is VS) AND (DB(f4) is VS)
THEN µ = p4 · DB(f1) + q4 · DB(f4) + r4

(R5) IF (DB(f1) is VS) AND (DB(f4) is VL)
THEN µ = p5 · DB(f1) + q5 · DB(f4) + r5...

(R23) IF (DB(f1) is VL) AND (DB(f4) is ME)
THEN µ = p23 · DB(f1) + q23 · DB(f4) + r23

(R24) IF (DB(f1) is VL) AND (DB(f4) is LG)
THEN µ = p24 · DB(f1) + q24 · DB(f4) + r24

(R25) IF (DB(f1) is VL) AND (DB(f4) is VL)
THEN µ = p25 · DB(f1) + q25 · DB(f4) + r25
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Table 1. Rmse and average percent rmse of training and testing data.

RMSE of
training

data

RMSE of
testing
data

Average percent
RMSE of

training data

Average percent
RMSE of

testing data
4.8488e-3 1.5181e-2 6.3068e-4 4.7953e-3

Five types of fuzzy sets are used for indicating “very small”,
“small”, “medium”, “large” and “very large” respectively. Fig. 7
illustrates their MFs, and each with three control parameters: the
center of MFs c and the interval range of target variable [a, b]. Also,
each fuzzy value such as VS is denoted by the control parameters p,
q and r. These parameters are used in computing the output of the
ANFIS system separately. Fig. 8 illustrates the final membership
functions for each input variable. The input-output surface of the
ANFIS model is shown in Fig. 9. The input-output surface shown
above is a nonlinear surface and illustrates how the ANFIS model will
respond to varying values of DB. The trained ANFIS network was
used to approximate the functional relations between input variables
(DB(f1) and DB(f4)) and responses (relative magnetic permeability)
to a desired degree of accuracy.

The ANFIS models shown in Fig. 9 was implemented by using
Matlab R© Fuzzy Logic Toolbox [11], it uses training data and the step
size for parameter adaptation had an initial value of 0.2. Training was
executed off-line for the solution. The steps of parameter adaptation
of the ANFIS are shown in Fig. 10.
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Figure 10. Parameter step adaptation.
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Figure 11. Errors between the ANFIS output and testing data.

Root mean square errors and average percentage mean square
errors of training and testing results of ANFIS model which is trained
for 5000 epochs, are tabulated in Table 1. Fig. 11 illustrate the errors
between ANFIS output and the independent data set (testing data)
for evaluating trained ANFIS network. Good agreement between the
two data sets proves that ANFIS has learned well the behavior of
the identification process. The real error values of evaluation data
set revealed that the training ANFIS network was done without any
over-training [6]. At 5000 training periods for ANFIS, the network
error convergence curve was derived as shown in Fig. 12. From this
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Figure 12. ANFIS training (solid line) and checking (dashed line)
errors.

curve, the final convergence value is 4.8488e-3. The minimal checking
error occurs at about epoch 71 for ANFIS, which is indicated by a
circle. Notice that the checking error curve goes up after 71 epochs,
indicating that further training overfits the data and produces worse
generalization (See Fig. 12).

In the following study, identification of relative magnetic
permeability of material under test using multi-layer neural network [1,
10, 12, 13] will be realize with the same data set which are used in this
other learning process. Numerical data set were used to train trained
MLP network, which have nine inputs ([DB(f1); DB(f2); DB(f3);
DB(f4); DB(f5); DB(f6); DB(f7); DB(f8); DB(f9)]) and one output
([relative magnetic permeability]). Next, the trained MLP network was
tested periodically using data not used in the training phase. In this
work, the number of hidden layers and units was established by training
a different rang of networks and selecting the one that best balanced
generalization performance against network size. Therefore, a shape of
nine input neurons, a single hidden layer with ten neurons and output
layer with one neuron, noted MLP (9-10-1) was used. For this trained
MLP network; the hidden neurons use a hyperbolic tangent sigmoids
as nonlinear activation functions. Good identification is obtained with
the MLP (9-10-1), on training data: RMSE of 9.0124e-2 for relative
magnetic permeability. In general, neural network exploit the back-
propagation process [12–14] but ANFIS use hybrid method for training
fuzzy inference membership function parameters.
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Table 2. Results Obtained From anfis and mlp models.

Models ANFIS model MLP model
No. of Input parameter 2 9

Training RMSE 4.8488e-3 9.0124e-2
Testing RMSE 1.5181e-2 1.2586e-1

CPU time 45 s 536 s

Table 3. The experimental and identified material parameter for the
two network models.

Relative
Permeability

experimental
values [7]

ANFIS model MLP model

µ1 250 250.5211 252.5619
µ2 500 500.3351 501.0123
µ3 1000 1000.103 1002.256
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Figure 13. Experimental and network models results.

The Table 2 is a comparison among the two approaches. The
MLP spends the largest amount of time to reach the final solution,
which the trained ANFIS network via a new forward search takes the
least amount of time to reach the best accuracy. In these results, if
the precision is a goal, we can remark that ANFIS has the highest
precision.

Table 3 and Fig. 13 show the comparison between the experimental
results and the identified relative magnetic permeability parameter
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using these approaches. Fig. 13 shows that a very good agreement
between experiment and inverse strategies is obtained for this difficult
eddy current problem. These results confirm that the trained
ANFIS model is accurate and expert for solving materials properties
determination inverse problem of non-destructive evaluation.

5. CONCLUSION

Measurement of relative magnetic permeability of metallic walls
requires specialized laboratories [1, 13]. It is for this reason that new
approach for solving inverse problem has been used by some authors
to evaluate the physical property of metallic walls. In this paper we
propose a new approach based on the use of the 2D-FEM and ANFIS
model for the parameter identification of materials under test. The
ANFIS is presented so as to create an excellent relationship between
the ferromagnetic properties and the detected signal of the magnetic
induction. It is concluded that ANFIS model is more efficient to
multi-layer neural network (MLP) for solving inverse electromagnetic
problem.

In conclusion, the obtained results demonstrate that the FEM-
ANFIS presented in this study can be used as another way to identify
the ferromagnetic properties of pieces under test.

REFERENCES

1. Liu, G. R. and X. Han, Computational Inverse Techniques in Non-
destructive Evaluation, CRC Press, New York, 2003.

2. Jang, J. S. R. and C. T. Sun, Neuro-Fuzzy and Soft Computing:
A Computational Approach to Learning and Machine Intelligence,
Prentice Hall, 1997.

3. Jang, J. R., “ANFIS: Adaptive-network-based fuzzy inference
systems,” IEEE Transactions on Systems, Man and Cybernetics
(IEEE), Vol. 23, No. 3, 2889–2892, May 1993.

4. Fouladgar, J., “The inverse problem methodology for the
measurement of the permeability of the ferromagnetic materials,”
IEEE Transactions on Magnetics, Vol. 33, No. 2, 2889–2892,
March 1997.

5. Mamdani, E. H., “Applications of fuzzy logic to approximate
reasoning using linguistic synthesis,” IEEE Transactions on
Computers, Vol. 26, No. 12, 1182–1191, 1977.

6. Nagata, S., M. Enokizono, T. Chady, and R. Sikora, Low



Progress In Electromagnetics Research B, Vol. 22, 2010 255

Frequency Excitation of MFES, Electromagnetic Nondestructive
Evaluation (VIII), IOS-Press, 2004.

7. Silvester, P. P. and R. L. Ferrari, Finite Elements for Electrical
Engineers, Univ Press, Cambridge, 1996.

8. Matlab, PDE Toolbox User’s Guide, www.mathworks.com.
9. Hacib, T., M. R. Mekideche, N. Ferkha, N. Ikhlef, and

H. Bouridah, “Application of a radial basis function neural
network for the inverse electromagnetic problem of parameter
identification,” The First IEEE International Symposium on
Industrial Electronics, ISIE 2007, Vigo, Spain, June 15–18, 2007.

10. Hacib, T., M. R. Mekideche, and N. Ferkha, “Defect identification
using artificial neural networks and finite element method,”
International Conference on E-learning in Industrial Electronics,
ICEIE 2007, Hammamet, Tunisia, December 10–12, 2007.

11. Matlab, Fuzzy Logic Toolbox User’s Guide, www.mathworks.com.
12. Low, T. S. and B. Chao, “The use of finite elements and neural

networks for the solution of inverse electromagnetic problems,”
IEEE Transactions on Magnetics, Vol. 28, No. 5, 1931–1934, 1992.

13. De Alcantara, N. P., J. Alexandre, and M. de Carvalho,
“Computational investigation on the use of FEM and ANN in
the non-destructive the analysis of metallic tubes,” the Biennial
Conference on Electromagnetic Field Computation, BCEFC 2002,
Rome, Italy, June 12–14, 2002.

14. Matlab, Neural Network Toolbox User’s Guide, www.mathworks.-
com.


