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Abstract—This paper estimates separately the components of
scattering waves generated in cylinder-body model for body area
networks. For the evaluation, scattering field formulations in
relation to uniform cylinder- and slab-body models are provided,
and the reliability of the analyses is testified by the comparison
with results computed by the finite-difference time-domain (FDTD)
method. Creeping waves, cylinder leaky waves, and cylinder guided
waves, which are created only in cylindrical structure, are extracted
quantitatively by contrasting the scattering waves that are calculated
with the two body models. In addition to the extracted waves, other
components of scattering waves such as reflected waves, transmitted
waves, surface waves, leaky waves, and guided waves also are examined.
From evaluations with various operating frequencies and thicknesses
of the body model, it is confirmed that reflected waves have the most
influence on electrical characteristics of a source. Moreover creeping
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waves and cylinder leaky waves are generally dominant at the opposite
side of the cylinder when a source is located near cylinder surface.
Furthermore, the existence of creeping waves with low attenuation
in the vicinity of cylinder surface is demonstrated by electric field
intensities calculated by varying the observation point along cylinder
axis.

1. INTRODUCTION

The grafting of wireless communications onto the human body has
been conceptualized from a few decades ago [1, 2]. At present due to
rapid technological developments, there have been recent and novel
applications of wireless communications such as telemedicine, smart
home, and wireless identification system [3, 4]. As a result of new
communication networks that operate in body-centric environments,
body area networks (BANs) have been introduced; with a great
number of the papers being published on the subject. The current
research for BANs can be separated into three main groups: those
which focus on the development of antennas for implant or wearable
devices [5–7]; those which research the channel model with respect
to body postures or consider the effect of multi-path propagations by
other objects in a restricted interior space [8–10]; and finally those
that examine the propagation characteristics in the vicinity of the
human body or inside the human body through the specific absorption
rate (SAR) [11–13]. However, most of papers are limited in the
explanation of scattering waves because of the evaluation method
by the FDTD method or physical experiments that provide total
field results only, although analytical solutions for scattering problem
in the inhomogeneous environment between the free space and the
human body may be useful for the design of antennas considering
the characteristics changed by the human body or for the effectual
estimation of communication channels in BANs.

For theoretical analysis, it is inevitable that the human body needs
to be simplified, thus planar and circular-cylinder structures have been
used to create a representation of the human body. The analysis with
three-layered half-space geometry substituted for the half-space of the
human body was examined [14], and the propagation on the model,
especially about surface wave modes, was investigated [15]. In order to
approach the finite body, circular-cylinder geometry similar to sectional
parts of the human body, such as arms, legs, and torso, was employed
and the propagation characteristics including scattering waves were
evaluated in relation to the transverse section of the human body [16].

The fields due to a finite source in the presence of a dielectric
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material are distributed not only by the reflection and transmission
but also by specific physical propagations depending on a shape of
the dielectric. The individual interpretation of such propagations has
been a matter of great interest in radio wave propagation, and the
consideration and application of it are important factors in the design
of antennas. In particular, the separate evaluation of propagating
waves in BANs of which the human body is located in the center
of analysis environment may assist the concrete comprehension of
scattering characteristics by the human body.

In this paper, when the human body is simplified to a lossy-
dielectric infinite circular cylinder, specific cylinder waves generated by
the cylindrical geometry are investigated quantitatively. The method
of estimation is accomplished by comparing the results calculated
with circular-cylinder and planar-slab structures. Besides reflected
waves (RWs) and transmitted waves (TWs), the slab supports leaky
waves (LWs), surface waves (SWs), and guided waves (GWs). The
cylinder supports creeping waves (CWs), and in addition, cylinder
LWs (CLWs), cylinder SWs (CSWs), and cylinder GWs (CGWs).
In general, the evaluations of LWs, SWs, CWs, CLWs, and CSWs
are conducted with poles, where the denominator of integrand in
analytical solutions is zero, in a complex plane. In case of slab, it
can be acquired from reflection and transmission coefficients, and a
cylinder is from overall integrand of field formulation [17, 18]. However,
it is hard to examine universally for BANs with such analyses because
poles have to be recalculated if any one variable in several calculation
conditions is changed. Moreover, since the analyses are accompanied
by fundamental conditions for asymptotic evaluation, errorless results
in short range communications cannot be expected [16]. Therefore, the
consideration for BANs with a few meters range should be supported
with an exact numerical analysis. In this paper, the estimations of the
scattering modes including the CW, CLW, and CGW modes in the
near-field region of BANs are performed based on results computed
numerically.

This paper is constructed as follows. Section 2 describes the
propagating waves in circular-cylinder and planar-slab structures in
detail and explains about the method of quantitative estimation of
CWs, CLWs, and CGWs. The scattering electric field formulations
inside and outside of the cylinder and analytical solutions for the slab
are derived in Section 3. In Section 4.1, firstly, in order to confirm the
reliabilities of the formulations in Section 3, with a finite linear dipole
and the 2/3-muscle equivalent tissue as the human body, the numerical
result accomplished with the analytical solutions is compared with the
result calculated by the FDTD method. Secondly, the distribution of
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the specific cylinder waves extracted by the subtraction of scattering
results in cylinder- and slab-body models is exhibited and discussed.
In Section 4.2, the results obtained with the variations of radius
of cylinder-body model and operating frequency are presented and
general characteristics of scattering waves in cylinder-body model for
BANs are discussed separately. Finally, Section 5 summarizes results
and conclusions.

2. WAVES IN STRUCTURES OF CIRCULAR
CYLINDER AND PLANAR SLAB

Figure 1 illustrates the wave modes generated by a circular-cylinder
dielectric when a source is located outside the dielectric. The SW, LW,
and GW modes are observed in the longitudinal plane, and the CW,
CSW, CLW, and CGW modes are associated with the transverse plane.
With the term “creeping waves” usually used to describe all types of
azimuthally propagating waves on a cylinder [18], the CW mode in this
paper terminologically contains the CSW mode also. The propagation
behaviors of CLWs and CGWs are analogous to LWs and GWs, but the
difference between the waves is to be generated in connection with the
longitudinal and azimuthal boundaries of the cylinder, respectively.
The waves described in Figure 1(b) propagate in precisely toward
the longitudinal direction simultaneously with the azimuthal direction.
Such all waves including RWs and TWs are designated collectively as
scattering waves.

When the outside and inside of the cylinder are assigned as regions

(a) (b)

Figure 1. Propagating waves in a circular-cylinder structure. RWs
in the illuminated region exist additionally. LWs and CLWs are
distributed on overall cylinder surface. (a) In longitudinal section.
(b) In transverse section.
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1 and 2, respectively, the electric fields in each region emanated from a
source located in region 1 are expressible as written in (1) and (2). The
notation E(ij) is adopted when field point is in region i and source point
is in region j. The superscripts 0 and S mean the incidence in the free
space of region 1 and the scattering, respectively. In (1), the RW mode
is for the optically illuminated area. In non-illuminated zone, the TW
mode which has the shortest propagating path is corresponded and the
SW mode is excluded.

E(11) C = E0 + ES(11) C

= E0+ERW
(
or ETW

)
+ESW (or 0)+ELW +ECLW +ECW (1)

E(21) C = ES(21) C = EGW + ECGW (2)

In case of a dielectric with the structure of infinite planar slab,
since any longitudinal section of the slab makes the identical plane with
Figure 1(a), the longitudinal propagation modes shown in Figure 1(a)
are formed. Unlike the cylinder structure, the analysis region for the
slab is split into three: source region, slab region, opposite region of
source. The illuminated area is the source region, and the TW mode is
supported only in other two regions. When the regions are numbered
as regions 1, 2, and 3, respectively, (3)–(5) explain the wave modes in
each region.

E(11) P = E0 + ES(11) P = E0 + ERW + ESW + ELW (3)

E(21) P = ES(21) P = ETW (21) = EGW (4)

E(31) P = ES(31) P = ETW (31) + ELW (5)

When slab thickness is equal to cylinder diameter, the longitudinal
section cutting across the center of cylinder is same geometrically with
it of the slab. The fields on this observation plane as a criterion plane
were evaluated for the investigation of propagation characteristics in
BANs [14–16]. On this common plane, the specifically propagating
waves (CWs, CLWs, and CGWs) created only in cylinder structure
can be extracted by the subtraction of scattering waves calculated
with cylinder and slab. By the relations between (1) and (3), and
between (1) and (5), CWs and CLWs in source region and opposite
region of source, respectively, are calculated. For CGWs inner
cylinder, (2) and (4) are applied.

3. SCATTERING ELECTRIC FIELD FORMULATIONS

The field formulation entirely depends on source direction. As repre-
sentative source directions in connection with cylinder coordinates, it
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can be divided into two types: a vertical electric dipole (VED) to cylin-
der surface and a horizontal electric dipole (HED) parallel to cylinder
axis If cylinder axis and source direction are identical, the analysis has
the homogeneous environment in regard to that direction. In this case,
it is difficult to expect the specific scattering waves because the waves
are caused by an inhomogeneous environment This paper, therefore,
deals with a VED case as a source for a fundamental examination. In
this paper, a time-harmonic convention of ejωt with angular frequency
ω is assumed and suppressed.

3.1. Circular-cylinder Structure

As the geometry for analysis, Figure 2 shows the human body
represented with a lossy-dielectric infinite circular cylinder of radius
a in the free space. The human body has the electrical properties
of conductivity σ and relative permittivity εr in accordance with
operating frequency. The permittivity and permeability of the free
space are ε0 and µ0, respectively. The wavenumbers in regions 1 and
2 are respectively k1 and k2.

The scattering problems having boundaries which coincide with
cylindrical coordinate surfaces are firstly constructed from the
solutions satisfying the homogeneous scalar Helmholtz equation in
cylindrical coordinate system. The solutions can be obtained by
the method of separation of variables. Linear combinations of the
solutions are also solutions to the Helmholtz equation, and these can
be expressed by the discrete summation over eigenvalue of constant
n relative to only φ-domain and the integration over eigenvalue of
kz, which is the wavenumber of z-direction irrespective of regions in

(a) (b)

Figure 2. Geometry for analysis of circular-cylinder model. Source
with current moment Il is located at (ρ′, φ′, z′) in region 1 of the
free space. Region 2 with shading indicates the human body. (a)
Longitudinal section. (b) Transverse section.
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Figure 2 [19, 20]. The eigenfunction for any values of such eigenvalues
is solved explicitly by imposing boundary conditions at the interface
ρ = a between the cylinder and the free space [21, 22]. Through such
a procedure for the eigenfunction solutions, when a VED with current
moment Il is located at (ρ′, φ′, z′), scattering electric field formulations
at observation point (ρ, φ, z) in region 1 are derived as written in (6)–
(8).

ES(11) C
ρ = −Ilωµ0

8π

∫ ∞

−∞
dkz

∞∑

n=0

(2− δ0)
k2

ρ1

cos
(
n

(
φ− φ′

))
e−jkz(z−z′)

×
[{

A1
n

ρ
H(2)

n (kρ1ρ) + B1
jkz

k1

∂H
(2)
n (kρ1ρ)

∂ρ

}
P

(
kρ1, n, kz; ρ′

)

+

{
C1

jkz

k1

∂H
(2)
n (kρ1ρ)

∂ρ
−D1

n

ρ
H(2)

n (kρ1ρ)

}
Q

(
kρ1, n, kz; ρ′

)
]

(6)

E
S(11) C
φ = −Ilωµ0

8π

∫ ∞

−∞
dkz

∞∑

n=0

(2− δ0)
k2

ρ1

sin
(
n

(
φ− φ′

))
e−jkz(z−z′)

×
[{
−A1

∂H
(2)
n (kρ1ρ)

∂ρ
−B1

jnkz

k1ρ
H(2)

n (kρ1ρ)

}
P

(
kρ1, n, kz; ρ′

)

+

{
−C1

jnkz

k1ρ
H(2)

n (kρ1ρ) + D1
∂H

(2)
n (kρ1ρ)

∂ρ

}
Q

(
kρ1, n, kz; ρ′

)
]

(7)

ES(11) C
z = −Ilωµ0

8π

∫ ∞

−∞
dkz

∞∑

n=0

(2− δ0)
k2

ρ1

cos
(
n

(
φ− φ′

))
e−jkz(z−z′)

×
[{
−B1

k2
ρ1

k1
H(2)

n (kρ1ρ)

}
P

(
kρ1, n, kz; ρ′

)

+

{
−C1

k2
ρ1

k1
H(2)

n (kρ1ρ)

}
Q

(
kρ1, n, kz; ρ′

)
]

(8)

where

P
(
kρ1, n, kz; ρ′

)
=

n

ρ′
H(2)

n

(
kρ1ρ

′) (9)

Q
(
kρ1, n, kz; ρ′

)
= −jkz

k1

∂H
(2)
n (kρ1ρ

′)
∂ρ

(10)

δ0 is the Kronecker delta function, which is 1 if n = 0, and 0 otherwise.
kρ1 = −

√
k2

1 − k2
z and H

(2)
n (x) is the Hankel function of the second
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kind of order n. The coefficients A1, B1, C1, and D1 deduced from
boundary conditions are explained in the Appendix A. The expressions
in square brackets in (6)–(8) are organized individually with the
functions corresponding to observation point and the functions of
source points as written in (9) and (10).

Field formulations of ES(21) for observation point inner cylinder
is attained basically by altering the variables associated with region 1
in braces in (6)–(8) into the variables in region 2. Furthermore, the
Bessel function should be substituted for the Hankel function because
the radiation condition at the origin where ρ = 0 has to be satisfied.
Namely, the variables A1, B1, C1, D1, k1, kρ1, and the function
H

(2)
n (kρ1ρ) in braces are respectively changed into a2, b2, c2, d2, k2,

kρ2, and Jn (kρ2ρ). kρ2 = −
√

k2
2 − k2

z , Jn (x) is the Bessel function of
the first kind of order n, and the coefficients a2, b2, c2, and d2 from
boundary conditions in relation to region 2 are also described in the
Appendix A.

3.2. Planar-slab Structure

Figure 3(a) shows the human body regarded as a lossy-dielectric
infinite planar slab of thickness 2a in the free space. By the same set
of coordinates with the longitudinal section of circular-cylinder model
the geometry for analysis in this section is identical with Figure 2(a)
except for the addition of region 3 which is the opposite region of
source The symbols in Figure 3(a) are the same meanings with them
in Figure 2(a).

(a) (b)

Figure 3. (a) Geometry for analysis of planar-slab model. Source with
current moment Il is located at (x′, y′, z′) in region 1 of the free space.
Region 2 is the human body. (b) In XYZ coordinates with the origin
moved into source coordinates, observation vector γ and wavenumber
vector kγ involved with Y and Z coordinates.
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The analytical solutions for a dielectric planar slab can be
established by the use of the Fresnel reflection and transmission
coefficients in a multilayered medium [20] or by the eigenfunction
expansion of the dyadic Green’s functions associated with planar
stratified media [21]. However, since the former is developed by
the generalized reflection coefficient which implicates the series of
multiple reflections inner dielectric, the field formulations for each
region have complex forms In the latter case, the discrete summation
over eigenvalue of constant n relative to the φ-domain is also contained,
and therefore the calculation time is slow due to its convergence.

In this paper, in order to formulate scattering electric fields with
simple expressions, the perfect electric conductor (PEC) and perfect
magnetic conductor (PMC) placed virtually at the middle of inner slab
are used [17]. When a source is located at (x′, y′, z′) in region 1 as
shown in Figure 3(a) and the virtual conductors lay on the x = 0
plane, an image source at (−x′, y′, z′) is created by the image theory
and the direction of image source is reversed only in the case of PMC.
If the original and image sources considered by virtual PEC and PMC
are individually added or subtracted, the original or image source
with double amplitude only remains, respectively. This principle can
be articulated to the reflection and transmission coefficients for the
Green’s functions in each region because the fields in region 1 are
related to the reflection with the original source and the transmission
to region 3 is identical to the reflection to region 3 by means of the
image source. In other words, with the sum and difference of the
reflection coefficients derived from the existence of virtual PEC or
PMC, the reflection and transmission coefficients in regions 1 and 3
are represented simply, respectively.

For scattering waves in each region of slab, the Sommerfeld
identity of the Green’s function being available to solve 2-dimensional
problem is applied [20] and expanded with TMx mode as the electric
source of x-direction [19]. Since the coordinate system divided
into vertical and horizontal directions to the slab is convenient, the
coordinate system of x, γ, and ψ is employed in this analysis. The
relation of the variations of this coordinate system and rectangular
coordinate system is as follows: x = x, γ =

√
y2 + z2, and ψ =

tan−1(y/z). When a VED with current moment Il is located at (x′,
γ′, ψ′) in region 1, scattering electric field formulations at observation
point (x, γ, ψ) in regions 1, 2, and 3 are derived as written in (11), (12),
(13), (14), and (15), (16), respectively. The y and z components of the
fields are acquired from multiplying the γ components in (12), (14),
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and (16) by sin(ψ − ψ′) and cos(ψ − ψ′), respectively.

ES(11) P
x =

−Il

4πωε1

∫ ∞

0

k3
γ

kx1
Γ (kγ) J0

(
kγ

∣∣γ − γ′
∣∣) ejkx1(2a−x−x′)dkγ (11)

ES(11) P
γ =

−jIl

4πωε1

∫ ∞

0
k2

γΓ (kγ) J1

(
kγ

∣∣γ − γ′
∣∣) ejkx1(2a−x−x′)dkγ (12)

ES(21) P
x =

−Il

4πωε2

∫ ∞

0

k3
γ

kx1
T (21)

x (x, kγ)J0

(
kγ

∣∣γ−γ′
∣∣) ejkx1(a−x′)dkγ (13)

ES(21) P
γ =

Il

4πωε2

∫ ∞

0
k2

γT (21)
γ (x, kγ)J1

(
kγ

∣∣γ−γ′
∣∣) ejkx1(a−x′)dkγ (14)

ES(31) P
x =

−Il

4πωε1

∫ ∞

0

k3
γ

kx1
T (31)(kγ)J0

(
kγ

∣∣γ−γ′
∣∣) ejkx1(2a+x−x′)dkγ (15)

ES(31) P
γ =

jIl

4πωε1

∫ ∞

0
k2

γT (31)(kγ)J1

(
kγ

∣∣γ−γ′
∣∣) ejkx1(2a+x−x′)dkγ (16)

where

Γ (kγ) = {Γe (kγ) + Γm (kγ)}/2 (17)

T (21)
x (x, kγ) = {Te (x, kγ) + Tm (x, kγ)}/2 (18)

T (21)
γ (x, kγ) =

kx2

2kx1
{Tm(x, kγ) cot (kx2x)−Te (x, kγ) tan (kx2x)} (19)

T (31) (kγ) = {Γe (kγ)− Γm (kγ)}/2 (20)

kx1 =





√
k2

1 − k2
γ , k1 < kγ

−
√

k2
1 − k2

γ , k1 > kγ

(21)

kx2 =





√
k2

2 − k2
γ , k1 < kγ

−
√

k2
2 − k2

γ , k1 > kγ

(22)

ε1 = ε0, ε2 = εrε0 − jσ/ω, and Jn(x) is the Bessel function of the
first kind of order n. The reflection and two transmission coefficients
corresponding to each region are described in (17)–(20). As denoted
in (18) and (19), the x and γ components of the fields in region 2 have
the different forms of transmission coefficient because the coefficient
comprises the x coordinate of observation point and the second-order
and first-order partial differentials with respect to the x variable are
involved, respectively. The reflection and transmission coefficients Γe,
Te and Γm, Tm calculated by the placement of virtual PEC and PMC,
respectively, are explained in the Appendix B. kx1 and kx2 are the
wavenumbers of x-direction in regions 1 and 2, respectively, and kγ is
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the wavenumber of γ-direction irrelevant to regions. In order to satisfy
the radiation condition, the kx1 and kx2 are negative when kγ is smaller
than k1.

The separation of CWs, CLWs, and CGWs debated in Section 2
signifies the extraction of the waves contributed independently from
only the wavenumber of longitudinal direction. Hence, in the analysis
for slab, the results served by only the wavenumber kz = kγ cosα
in kγ illustrated in Figure 3(b) are required. With the reference to
Figure 3(b), the propagation of γ-direction is expressed as kγ ·|γ−γ′| =
kγ |γ−γ′| cos(α−(ψ−ψ′)), and the condition, in which the inner product
becomes the function of only kz, is ψ − ψ′ = 0 or π. Namely, when
a source and an observation point are placed in same xz -plane, the
purpose of this paper is accomplished.

4. NUMERICAL RESULTS AND DISCUSSIONS

4.1. Field Distributions in Longitudinal Section

In this section, firstly, in order to verify the reliabilities of the scattering
electric field formulations constructed in Section 3, the comparison of
the results calculated by the FDTD method and with the analytical
solutions is performed. With the approximate estimation from the
average circumference of a Japanese forearm [23], the parameter a,
which indicates the radius of cylinder and half the thickness of slab,
is set as 0.050 m for the human arm. The operating frequency is
2.45GHz, and the inner cylinder and inner slab assumed to be a
homogeneous single tissue have electrical properties of the 2/3-muscle
equivalent tissue, σ = 1.16 S/m, εr = 35.15 at 2.45 GHz [24]. The
source, which is a linear VED of 0.030m length, is located at 0.010m
away from the cylinder or slab surface. With the coordinate systems
in Figures 2(a) and 3(a), the coordinates of feeding point placed at
the center of source are (ρ′, φ′, z′) = (x′, y′, z′) = (0.050m, 0, 0). The
observation plane is xz -plane at y = 0.

In the calculations with the FDTD method, the cell size is
∆x = ∆y = ∆z = 0.002 m and the perfect matching layer (PML)
of eight layers is used as the absorbing boundary condition. The
cylinder is extended into inner PML for materialization of the infinity
of z-direction and the slab is at yz -plane. In the radiation problems
with analytical solutions, the incident electric fields E0 in (1) and (3)
are easily achieved by the analysis of TMx mode with the free-space
Green’s function of scalar wave equation [19]. For the scattering
electric fields, the integrals over the wavenumbers kz and kγ in
Sections 3.1 and 3.2 are worked out by applying the Gauss-Legendre
integration excluding the branch-point singularities at kz = ±k1
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and kγ = k1, respectively. The numerical method for the integrals
is demonstrated concretely in the Appendix C. The total electric
field distributions estimated with cylinder- and slab-body models are
exhibited in Figures 4 and 5, respectively. Each (a) and (b) in Figures 4
and 5 are the results calculated by the FDTD method and with the
analytical solutions, respectively.

The FDTD method was programmed with FORTAN, but
the calculations with analytical solutions received assistance from
MATLAB function library in order to secure reliable values of the
Bessel and Hankel functions. Since the FDTD method which outputs

(a) (b)

Figure 4. Total electric field distributions estimated with cylinder-
body model. (a) By FDTD method. (b) With analytical solutions.

(a) (b)

Figure 5. Total electric field distributions estimated with slab-body
model. (a) By FDTD method. (b) With analytical solutions.
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only total electric fields is progressed with the differential forms of the
Maxwell’s equations, the computation is completed in the relatively
short calculation time regardless of body-model type but demands a
high memory, that is 413 Mbytes for Figures 4(a) and 5(a), owing
to saving all computation data with respect to time in a restricted
calculation domain. On the other hand, the analytical solutions
which acquire separately scattering electric fields consist of integral
expression; therefore the calculation needs a considerable time for
precise results involved with strict convergence conditions of the
integrals, but the computational memory-cost is very low because the
saving spaces are requisite only for a temporary value in repetition
processing for convergence at an observation point and final data at all
calculation region. In order to obtain Figures 4(b) and 5(b), 42 Mbytes
memory was used. The analytical solutions for cylinder-body model
require a quite high computational time-cost due to the consideration
for convergences of both integral variable kz and summation variable
n.

In Figures 4 and 5, the levels of each point are displayed as
relative values normalized by the absolute value of total electric field at
(x, y, z) = (0.050m, 0, 0.002 m). The white lines in the results indicate
the interfaces between the human body and the free space. In Figure 4
of cylinder-body model, the results by the FDTD method and with
the eigenfunction solutions are in near-perfect agreement except that
a very slight difference is observed at the opposite region of source.
That is an error in the FDTD method which cannot take shape the
calculation model of an ideal circular transversesection. In the case of
the slab-body model, Figure 5 shows that the results, calculated by
the FDTD method and with the analytical solutions, are in perfect
agreement.

As the second subject in this section, the specific cylinder
waves generated only in cylinder structure are extracted and the
general characteristics about the components of scattering waves
mentioned in Section 2 are discussed. Figures 6(a) and (b) exhibit the
scattering electric fields analyzed with circular-cylinder and planar-
slab structures, respectively. These are that the incident waves in the
total fields shown in Figures 4(b) and 5(b), respectively, are removed.
Through the subtraction of the result viewed in Figure 6(b) from the
result displayed in Figure 6(a), Figure 6(c) shows the field distribution
of CWs and CLWs extracted outside the cylinder and CGWs inside.

In Figure 6(b), the scattering fields inner slab are distributed with
not a constantly decreasing form but partially folding shapes. This
describes the GW mode constituted by multiple reflections inner slab,
but the mode cannot be discerned distinctly by the large attenuation
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(a) (b)

(c)

Figure 6. Scattering electric field distributions. (a) With circular-
body model. (b) With slab-body model. (c) Extracted CWs, CLWs,
and CGWs.

in z-direction as well as x-direction due to the high conductivity. Little
contribution of the SW and LW modes in region 1 and the LW mode
in region 3 can be inferred with such lossy characteristic. In actuality,
the irregular levels such as a ripple related to natures of the SW and
LW modes are not detected in the vicinity of the interfaces. Therefore,
the RW mode in region 1 and the TW mode in region 3 are dominant
in scattering wave modes. The fields near the slab in region 1 are
distributed like the propagation along the interface such as the SW
mode, but it is associated with incident and reflected angles of waves
in the RW mode. When a source approaches the slab, the phenomenon
of such field distribution is shown noticeably. The unique radiation
characteristics of VED are transformed by RWs but it is kept basically
except for the distribution near the slab. Since the TW mode in region
3 has direct propagation paths penetrating region 2 and the amount
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of attenuation in region 2 is determined by lengths of such paths,
the spread flat field distribution compared to the radiation pattern
of general VED is displayed in region 3.

In Figure 6(a), the levels of the fields in regions 1 and 3 are
little different generally because the regions are connected spatially
in essence. In results related to cylinder structure, the region 3,
which is designated for convenience in Section 4, means actually the
opposite side of the cylinder as the region 1 identified in Section 3.1.
In Figure 6(c), the CGWs in region 2 are concentrated on a specific
z-axis and it is preserved in Figure 6(a). In case of the SAR evaluation
in the human body, this result is contrasted with the general view,
which the SAR is decreased gradually when an evaluation point is
moved on the inward side of the human body. This manifests that
propagation characteristics based on geometrical structure of a subject
should be considered for wave-examinations inner human body such
as the SAR evaluation. In Figure 6(c), the dissimilarity between the
field distributions in regions 1 and 3 shows the offset and complement
between CWs and CLWs. Although the CW mode is influenced by the
conductivity inner cylinder, the intensities of CWs in regions 1 and 3
are almost continuous because the CW mode is the propagation along
the azimuthal surface of cylinder. On the other hand, CLWs in regions
1 and 3 are discontinuous and the reason can be explained by the
operation of the CLW mode. The CLWs are created when CGWs with
azimuthal multi-reflection are leaked to the outside of the cylinder.
The propagation-path lengths of the CGWs arrived at the interface
between regions 1 and 2 are relatively longer than the path lengths to
the interface between regions 2 and 3. As the amount of loss and the
phase variation inner cylinder are connected to the path lengths, the
CLWs in regions 1 and 3 have great differences. Such characteristics
of CWs and CLWs cause the different field distributions in regions 1
and 3.

4.2. Scattering Waves with Variations of Cylinder Radius
and Operating Frequency

In analysis with cylinder-body model for BANs, the considerable
parameters, which have influence on overall results, are cylinder radius
and operating frequency. The variation of cylinder radius affects
sensitively scattering waves, especially CWs, CLWs, and CGWs, and
the relative researches have been investigated quite a while ago. Due
to the fact that electrical properties of the human body vary with
frequency [24], the operating frequency becomes a very important
consideration for BANs.

With the variations of parameter a and operating frequency,
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Figures 7 and 8 show absolute values of scattering electric fields. In
Figures 7 and 8, each (a) displays the results evaluated with cylinder-
body model, and each (b) is the outcomes with slab-body model, and
each (c) exhibits the intensities of CWs and CLWs separated by taking
each (b) from each (a). The parameter a means half of slab thickness or
cylinder radius, and it has the range covered comprehensively from the
human arm to the human torso [23]. A source employed in Section 4.2
is the infinitesimal VED located at (x′, y′, z′) = (a + 0.001m, 0, 0)
with the current moment of 0.02 A·m. The source coordinates at
the closest point to the cylinder surface is chosen because the largest
levels of scattering waves are anticipated. The observation points in
Figures 7 and 8, respectively, are (x, y, z) = (a+0.001 m, 0, 0) in region

(a) (b)

(c)

Figure 7. Scattering electric field intensities with variations of
parameter a and operating frequency when source is located at
(x′, y′, z′) = (a + 0.001 m, 0, 0) and observation is at (x, y, z) = (a +
0.001m, 0, 0). (a) With circular-body model. (b) With slab-body
model. (c) Extracted CWs, CLWs, and CGWs.
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(a) (b)

(c)

Figure 8. Scattering electric field intensities with variations of
parameter a and operating frequency when source is located at
(x′, y′, z′) = (a + 0.001m, 0, 0) and observation is at (x, y, z) = (−a −
0.001m, 0, 0). (a) With circular-body model. (b) With slab-body
model. (c) Extracted CWs, CLWs, and CGWs.

1 and (−a− 0.001m, 0, 0) in region 3 in order to investigate scattering
characteristics excluded the propagation toward z-direction. In the
calculations, electrical features of the 2/3-muscle equivalent tissue in
accordance with operating frequency were used [24]. Since it is hard
to determine the standard value for normalization when the frequency
sweep is examined, all values of results in this section are expressed
with dB V/m, which the absolute electric field unit V/m is converted
on a logarithmic scale in decibels.

As the scattering waves at same observation point with source
coordinates, in Figures 7(a) and (b), remarkable points are that
the results with cylinder and slab structures are little different and
are largely unchanged with the variation of parameter a. These
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results demonstrate that the most influential scattering component
in electrical characteristics of the source is the RWs when a source
is adjacent to the surface of structure analyzed. This conclusion can
also be confirmed by the relatively very low intensities of CWs and
CLWs shown in Figure 7(c). The contributions of SWs and LWs may
be negligible in a similar context discussed in Section 4.1. In the design
of a wearable device for BANs, it cannot avoid the change of device
characteristics, such as the input impedance or current distribution,
owing to scattering waves by the human body. Thus the analytical
evaluation of the scattering waves is required for the effectual design of
device. Figure 7 attests that results with slab-body model are available
for the analytical calculation with such purpose, and the use of slab-
body model may be more useful because the convergence speed is very
slow in the numerical computation with cylinder-body model.

Figures 8(a) and (b) are the results of scattering waves at the
closest observation point to the surface of each structure in region 3,
and Figure 8(c) shows the intensities of CWs and CLWs. Contrary to
the results at the observation point in region 1, it can be judged that
the specific waves generated by the cylindrical geometry are dominant
in region 3. The TWs and LWs shown in Figure 8(b) contribute to
the overall scattering waves only when the cylinder radius is less than
0.022m. From Figure 8(b), it is reconfirmed that propagationpath
lengths of the TW and LW modes are increased due to the increase
of cylinder radius and the levels of TWs and LWs are decreased. The
attenuation by the conductivity proportional to operating frequency
also is perceived. In Figure 8(c), the sections of levels decreased by the
counterbalance between CWs and CLWs are observed periodically in
connection with the cylinder-radius axis.

The CW and CLW modes propagate toward the longitudinal
direction simultaneously with the azimuthal direction. For
examination of wave propagation along the longitudinal direction, the
scattering waves estimated with slab-body model and extracted CWs
and CLWs at 2.45GHz are shown in Figure 9 when the observation
points are set as (x, y, z) = (a + 0.001m, 0, z) in region 1 and
(−a− 0.001m, 0, z) in region 3. The parameter a is set up as 0.025 m
and 0.075m represented as the human arm and thigh, respectively [23].
These results display the components of scattering waves generated
by the cylinder-body model at a look. In Figure 9(a), the CWs and
CLWs in regions 1 are almost identical with the waves in region 3.
In Figure 9(b), the offsetting between CWs and CLWs in region 1 is
observed but the waves in region 3 are similar to the waves shown in
Figure 9(a). In the results of these CWs and CLWs, it is noticeable
that the peak levels of the fluctuations of the waves in region 3 are
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(a) (b)

Figure 9. Components of scattering waves in cylinder-body model
with variation of observation point along z-axis. (a) At 2.45 GHz and
a = 0.025 m. (b) At 2.45 GHz and a = 0.075m.

maintained almost in spite of the propagation along z-axis. With the
reference to the operation of CLW mode and the almost continuity of
CWs in regions 1 and 3 discussed in Section 4.1, the existence of CWs
with low attenuation dominated in the vicinity of the cylinder surface
can be demonstrated In Figures 9(a) and (b), the graphs of RWs, SWs,
and LWs with the exponential decreasing are perfectly identical. These
can be regarded as the extension of results shown in Figure 7(b). The
levels of RWs, SWs, and LWs only near the source are higher than
the intensities of CWs and CLWs. It is confirmed that the TW and
LW modes are insignificant for scattering waves in region 3 regardless
of the movement of observation point along z-axis. As the conclusion
obtained from Figure 9, when a source is located near the cylinder
surface, it can say that the dominant propagation mode toward the
cylinder axis in the vicinity of the cylinder surface is the CW mode
except for the area near a source.

5. CONCLUSIONS

In this paper, in order to investigate separately the components of
scattering waves generated in cylinder-body model for BANs, the
scattering wave modes in circular-cylinder and planar-slab structures
were analyzed, and the method of quantitative computation of
specific waves, which are CWs, CLWs, and CGWs, generated only
in cylindrical geometry was suggested. Additionally, the scattering
electric field formulations for the cylinder- and slab-body models,
respectively, were derived from the eigenfunction solutions and by using
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the virtual PEC and PMC. The exactitudes of the formulations were
verified by the comparisons with the total field distributions calculated
by the FDTD method.

With a finite linear VED and the 2/3-muscle equivalent tissue
as the human body, the scattering waves in cylinder- and slab-body
models were calculated on the common plane of two models, and CWs,
CLWs, and CGWs were extracted by the difference of the scattering
waves. Each scattering mode in optically illuminated area, inner body,
and in non-illuminated zone was estimated and analyzed based on the
results.

The estimations with the variations of operating frequency and
cylinder radius were accomplished. From the results, when a source is
adjacent to cylinder surface, it was confirmed that the most influential
scattering component in electrical characteristics of the source was
RWs, and the CWs and CLWs modes were the dominant modes at
the opposite side of the cylinder with the cylinder radius larger than
0.022m. Furthermore, the electric field intensities with the variation of
observation point along the longitudinal direction were calculated and
the existence of CWs with low attenuation dominated in the vicinity
of the cylinder surface was demonstrated.

In the future, for more intensive examination of scattering waves,
the analytical solutions will be expanded to multi-layered models of
the human body.

APPENDIX A. SCATTERING COEFFICIENTS FOR
CIRCULAR-CYLINDER STRUCTURE

For construction of scattering field formulations associated with an
infinite cylinder, it is necessary firstly to expand the eigenfunction
of the Green’s function in the free space. In accordance with
the kind of cylinder, scattering coefficients are attached to the
expanded eigenfunction solutions. By the method to satisfy boundary
conditions at the interface ρ = a, between the cylinder and the
external environment, the coefficients are determined with the forms
of simultaneous equations. In the case of a lossy-dielectric cylinder
conducted in this paper, the scattering coefficients are arranged as
follows:

A1 =− Jn (kρ1a)

H
(2)
n (kρ1a)

− j2
π (kρ1a)

Tn (kρ1, kρ2; a)[
(kρ1a)H
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]2
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2
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(A2)
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C1 =− Jn (kρ1a)
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where ε = (εrε0 − jσ/ω)/ε0 and µ = µ0/µ0 = 1 are the ratios of
permittivity and permeability, respectively, between regions 1 and 2 in
Figure 2.

APPENDIX B. REFLECTION AND TRANSMISSION
COEFFICIENTS FOR PLANAR-SLAB STRUCTURE

When the PEC or PMC is on x = 0 plane in Figure 3(a), the reflection
and transmission coefficients can be solved easily by the transmission-
line theory with respect to the x-direction. The input impedances for
each case at the interface x = a between regions 1 and 2 are firstly
yielded with the transmission-line length a and the wave impedance
kx2/(ωε2) of TM mode in region 2. Then, from the wave impedances
kx1/(ωε1) in region 1 and the input impedances, the reflection
coefficients of PEC and PMC cases are derived as written in (B1)
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and (B2), respectively. The transmission coefficients for the fields inner
slab maintain the general relation between the Fresnel transmission and
reflection coefficients, but the boundary conditions at x = 0 and the
continuity at x = a should be applied additionally [22]. Those are to
append the terms of cos(kx2x)/ cos(kx2a) and sin(kx2x)/ sin(kx2a) in
the cases of PEC and PMC, respectively. The transmission coefficients
of each case are arranged in (B3) and (B4), respectively.

Γe (kγ) = −jkx2 tan (kx2a)− εkx1

jkx2 tan (kx2a) + εkx1
(B1)

Γm (kγ) = −jkx2 cot (kx2a) + εkx1

jkx2 cot (kx2a)− εkx1
(B2)

Te (x, kγ) =
j2ε kx1 cos (kx2x)

jkx2 sin (kx2a) + εkx1 cos (kx2a)
(B3)

Tm (x, kγ) =
−j2ε kx1 sin (kx2x)

jkx2 cos (kx2a)− εkx1 sin (kx2a)
(B4)

where ε = ε2/ε1 = (εrε0 − jσ/ω)/ε0.

APPENDIX C. NUMERICAL METHOD FOR
ANALYTICAL SOLUTIONS

The integrals in Section 3.1 are estimated with the integration path
drawn in Figure C1. Because the integrands have branch-point
singularities at kz = ±k1, the integration path takes a detour round
at the points. The analysis associated with the branch points is
accomplished with asymptotic techniques [20]. However, in this

Figure C1. In circular-cylinder structure, integration path in complex
kz plane and sub-integral interval points for numerical computation in
Re[kz] ≥ 0.
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paper to pursue an exact numerical analysis, the evaluations at
branch points are excluded purposefully by using the Gauss-Legendre
integration which is extreme accurate without the end points of integral
interval [25].

As described in (C1), the interval of the integrals in Section 3.1 can
be separated into kz ≤ 0 and kz ≥ 0. As derived in (C2), the integral
for kz ≥ 0 can be expressed as the summation of sub-integrals with
closed intervals [Im−1, Im] shown in Figure C1, and each sub-integral
can be converted by the Gauss-Legendre integration formulation. The
end points of closed intervals are duplicated owing to the continuity
of intervals, but actual calculation has no regard for such duplications
because the end points are ruled out as sampling points determined by
the Gauss-Legendre integration method.
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∫ ∞
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2
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w (i) =
1

∂Ph+1 (α (i))/∂α (i)

∫ 1

−1

Ph+1 (α)
α− α (i)

dα (C4)

Ph+1(α) is the Legendre polynomial of (h + 1) degrees and α(i) is the
root of Ph+1(α) = 0. The weighting coefficient in the Gauss-Legendre
integration is symbolized as w(i).

The sub-integral intervals and the degree of the Legendre
polynomial are decisive factors for the accuracy of original integral. In
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relation to the sub-integral intervals, because the branch point kz = k1

is the discontinuity point of original integral, above all, the interval
should divide into [0, k1] and [k1,∞). And then, as the points I1 and I3

shown in Figure C1, it is necessary that the intervals are appropriately
subdivided with a same distance away from the branch point since the
value of integrand near the branch point is rapidly varied. The interval
beyond point I3 is sectioned with a proper gap for the convergence
discernment of integration-path length. The Legendre polynomial of
41 degrees (h = 40) was utilized for the results in this paper, and this
means that sub-integrals are estimated by the 41 sampling points inside
the interval [Im−1, Im]. The integral for kz ≤ 0 has to be expanded
with symmetrical sub-integral intervals with respect to kz = 0.

The individual convergences with respect to n and m in (C2) are
the prerequisites for results with finite values. As discriminants for the
convergences, respectively, (C5) and (C6) are employed.
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The results in this paper were computed with convergence conditions
Cn and Cm of 0.0001 and 0.0010, respectively. In relation to the choice
of the convergence conditions, those Cn and Cm have the difference of
scattering field intensities within 0.0010% near the interface between
the cylinder and the free space.

In the evaluation for planar-slab structure, kz in (C1) and (C2)
is corresponded to kγ with interval [0,∞). All terms with respect to
n are removed and the discriminant of (C6) is involved only. The
convergence condition Cm = 0.0010 was used for the analysis with
slab-body model.
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