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Abstract—In this paper, the ICA (independent component analysis)
technique is applied to PCA (principal component analysis) based
radar target recognition. The goal is to identify the similarity between
the unknown and known targets. The RCS (radar cross section) signals
are collected and then processed to serve as the features for target
recognition. Initially, the RCS data from targets are collected by
angular-diversity technique, i.e., are observed in directions of different
elevation and azimuth angles. These RCS data are first processed by
the PCA technique to reduce noise, and then further processed by the
ICA technique for reliable discrimination. Finally, the identification of
targets will be performed by comparing features in the ICA space. The
noise effects are also taken into consideration in this study. Simulation
results show that the recognition scheme with ICA processing has
better ability to discriminate features and to tolerate noises than those
without ICA processing. The ICA technique is inherently an approach
of high-order statistics and can extract much important information
about radar target recognition. This property will make the proposed
recognition scheme accurate and reliable. This study will be helpful to
many applications of radar target recognition.

1. INTRODUCTION

The radar target recognition means to identify unknown targets from
observed signals. It plays an important role in the radar engineering.
This study focuses on the radar recognition of ships. Traditionally, the
SAR (synthetic aperture radar) or ISAR (inverse synthetic aperture
radar) images are usually utilized to recognize the ship targets,
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e.g., [1, 2]. However, it is usually expensive or even difficult to obtain
such SAR or ISAR images. Compared with SAR or ISAR images, the
RCS (radar cross section) [3] data are easy to obtain and then become
good candidates for radar target recognition of ships [4]. In [4], we
have successfully utilized angular-diversity RCS data in PCA (principal
component analysis) [5] space as features to identify radar targets.
The PCA based radar target recognition [4] means the original signals
are projected into a low-dimensional eigenspace and identification of
targets is performed in the eigenspace. The major drawback of PCA
based radar target recognition [4] is that the PCA technique can treat
dependencies of features only to the second-order statistics and may
lose some useful information about target identification. This then
motivates us to develop a new scheme of radar target recognition
based on high-order statistics. Since the ICA (independent component
analysis) [6] technique can treat dependencies of features to high-order
statistics, it then becomes a good candidate in our new scheme of radar
target recognition.

The ICA is a statistical and computational technique for revealing
hidden factors that underlies sets of random variables, measurements,
or signals. The data analyzed by ICA could originate from many
different kinds of application fields, such as digital images, document
databases, psychometric measurements, etc. In this paper, the ICA [6]
technique is applied to PCA [5] based radar target recognition [4].
Without loss of generality, models of ships are considered as the targets
for recognition. It should be noted that our recognition scheme has no
limitation on types of targets. The main reason why we focus on models
of ships is that the results of this paper can be compared with our past
studies [4]. Our recognition scheme is divided into four (including three
off-line and one on-line) steps. Initially, the RCS data from ships are
collected by angular-diversity technique, i.e., are observed in directions
of different elevation and azimuth angles. These RCS data are first
processed by the PCA technique to reduce noise, and then further
processed by the ICA technique for reliable discrimination. Finally,
the identification of targets will be performed by comparing features
in the ICA space. The noise effects are also taken into consideration
in this study. Simulation results show that the recognition scheme
with ICA processing has better ability to discriminate features and to
tolerate noises than those without ICA processing. This is due to the
high-order statistical properties of ICA technique.
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Figure 1. Schematic diagram of a ship illuminated by an incident
plane wave.

2. FORMULATIONS

Without loss of generality, the targets for the proposed radar
recognition algorithm are chosen as ships. It should be noted that
this study has no limitation in types of targets. Consider a ship on
the sea level (X-Y plane) located at the origin of coordinate, as shown
in Figure 1. The front end of ship is in the +x̂ direction and the
broadside of ship is in the +ŷ direction. The spherical coordinate
system is defined as (ρ, θ, φ) where ρ is the distance from observation
position to origin, θ is the elevation angle and φ is the azimuth angle.
The ship is illuminated by a plane wave Ei = e+jkxẑ (i.e., propagating
toward the −x̂ direction) where k is the wavenumber. The bistatic
RCS in the direction of (θ, φ) is defined as [3]

RCS = lim
ρ→∞ 4πρ2

∣∣Es(θ, φ)
∣∣2

∣∣Ei

∣∣2 . (1)

where Es(θ, φ) is the scattered electric field.
In this study, the RCS data in different directions are collected

for target recognition. Both PCA and ICA techniques are utilized in
our target recognition scheme. Our target recognition scheme includes
off-line and on-line procedures, as described in the following.

Step-1 : constructing RCS databases (off-line)
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Initially, RCS databases of known ships are constructed. Assume
we have C types of known ships. The bistatic RCS data for each type
of known ship (e.g., type ]c, c = 1, . . . , C) are collected in directions
of Ne different elevation angles (θ) and Na different azimuth angles
(φ) to constitute an Na × Ne RCS matrix (for type ]c, denoted as
Xc). Obviously, we have C measured matrices totally since there are
C types of known ships. These C measured matrices are combined
together to constitute a large RCS matrix as

RNa×(NeC) =
[
X1X2 . . . XC

]
Na×(NeC)

. (2)

Step-2 : PCA processing (off-line)
The collected RCS data in Step-1 are first processed by the

following PCA technique for reducing the noise. Assume the mean
vector for all the (NeC) column vectors of matrix R in (2) is µr

(dimension Na × 1). The centered matrix for R is then given as

ZNa×(NeC) = RNa×(NeC) − [µr, µr, . . . , µr]Na×(NeC) . (3)

Consider the covariance matrix (Z ·ZT
)Na×Na , where “T” denotes

the transpose. In general, the Na is large and it is inefficient to
calculate eigenvalues of the covariance matrix. Since only the principal
eigenvalues and eigenvectors are required in the PCA processing,
the Karhunen-Loève’s low-rank approximation [5] may be utilized to
obtain the required eigenvalues and eigenvectors. In other words,

eigenvalues and eigenvectors of the low-rank matrix (Z
T ·Z)(NeC)×(NeC)

are considered instead. Note that we have NeC ¿ Na in general. The
eigenvalues are calculated and ranked decreasingly as λ1 ≥ λ2 ≥ . . ..
Their corresponding eigenvectors are denoted as φ1, φ2, . . .. In the PCA
processing, only the top P (P < NeC < Na) eigenvalues λ1, λ2, . . . , λP

are reserved as the “principal components” and the other eigenvalues
are discarded. The principal eigenvectors φ1, φ2, . . . , φP will constitute
a matrix as

A(NeC)×P =
[
φ1, φ2, . . . , φP

]
. (4)

The PCA projection matrix is then defined as

BNa×(NeC) = Z ·A ·AT
+ [µr, µr, . . . , µr]Na×(NeC) . (5)

In general, the PCA projection matrix BNa×(NeC) in (5) is much

cleaner, i.e., with less noise, than the original measurement Z.
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Step-3 : ICA processing (off-line)
In this step, The PCA projection matrix in (5) of Step-2 are

further processed by the ICA technique. For convenience, the feature
matrix B in (5) is transposed and then horizontally divided into C
equal sub-matrices, i.e.,

B
T

=




(
Y 1

)
Ne×Na(

Y 2

)
Ne×Na
...(

Y C

)
Ne×Na




(NeC)×Na

. (6)

Note that the sub-matrix Y c (c = 1, 2, . . . , C) represents the
contribution of PCA projection from the known ship of type ]c. Based
on the concept of ICA, each sub-matrix Y c (c = 1, 2, . . . , C) can be
viewed as the linear combination of several independent sources or

(
Y c

)
Ne×Na

=
(
Ac

)
Ne×Ne

·
(
Sc

)
Ne×Na

. (7)

In (7), the matrix (Sc)Ne×Na contains Ne row vectors representing
independent sources, and the matrix (Ac)Ne×Ne contains coefficients
of linear combination. From (7), we have

(
Sc

)
Ne×Na

=
(
W c

)
Ne×Ne

·
(
Y c

)
Ne×Na

. (8)

where W c = (Ac)−1 is the demixing matrix. In this study, the values
of W c are computed from the FastICA iteration algorithm [6]. The
detailed procedures of FastICA algorithm are given in [6].

The next step is to whiten the matrix Y c. Assume µc,i denotes
the mean for elements in the i-th row of the matrix Y c. The centered
matrix of Y c is given as

(
Ωc

)
Ne×Na

=
(
Y c

)
Ne×Na

−




µc,1 µc,1 . . . µc,1

µc,2 µc,2 . . . µc,2
...

...
...

...
µc,Ne µc,Ne . . . µc,Ne




Ne×Na

. (9)

The covariance matrix is defined as(
CΩc

)
Ne×Ne

= Ωc · Ωc

T
. (10)
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The whitening of Y c is then given as
(
Hc

)
Ne×Na

=
(

Dc

− 1
2

)

Ne×Ne

·
(

Ec

T
)

Ne×Ne

·
(
Ωc

)
Ne×Na

. (11)

In (11), the matrix Dc is a diagonal matrix with elements given from
eigenvalues of matrix CΩc , and the matrix Ec has column vectors given
from eigenvectors of matrix CΩc . Therefore, new ICA projection ma-
trices can be defined as (W c ·Hc)Ne×Na (c = 1, 2, . . . , C). These new
ICA projection matrices will be utilized as the final features in identi-
fying the targets, as shown in the following step.

Step-4 : Testing (on-line)
In this step, the on-line testing, i.e., recognition for unknown

targets is given. As an unknown ship is detected on the sea surface,
its bistatic RCS data are first collected in directions of Ne different
elevation angles (θ) and Na different azimuth angles (φ) to constitute
an Na × Ne RCS matrix X. Initially, it is processed by the PCA
technique. The procedures of PCA processing are similar to those
given in Step-2, except that the Na × (NeC) matrix R is replaced by
the Na ×Ne matrix X. As a result, the dimension of matrix B in (5)

becomes Na ×Ne. In other words, the dimension of matrix B
T

in (6)
becomes Ne ×Na. Therefore, the right side of (6) is composed of only
one sub-matrix and this sub-matrix is denoted as Y . The matrix Y
is whitened into a new matrix and the result is denoted as H. The
whitening procedures are similar to those given in (9)–(11) except that
the matrix Y c is replaced by Y .

The difference matrix (in ICA space) between the unknown target
and the known ship of type ]c (c = 1, 2, . . . , C) is defined as

Dc = W c ·
(
H −Hc

)
, c = 1, 2, . . . , C. (12)

Note that the matrix Dc in (12) contains the difference information
about features in ICA space under various observing directions. For
example, the magnitude for the i-th row vector of matrix Dc (denoted
as mc,i) represents the difference (in ICA space) with respect to the
known ship of type ]c as the unknown target is observed in direction
of the i-th elevation angle. In such a case, the “similarity” is defined
as

similarity = 1− mc,i∑C
c=1 mc,i

, i = 1, 2, . . . , Ne. (13)
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The above definition means the strong resemblance has a large value
of ”similarity”, and vice versa.

3. NUMERICAL SIMULATION RESULTS

In this section, numerical examples are given to verify the above
formulations. To simplify the computation, simple ship models are
considered instead of practical ships. The RCS data are calculated by
using the commercial software Ansoft HFSS which has been proved to
be accurate by many researchers in electromagnetic waves. Assume
there are three types of known ships (i.e., C = 3) including type ]1
(to model the container vessel), type ]2 (to model the naval ship) and
type ]3 (to model the fishing boat). The geometrical models for these
three types of known ships are shown in Figure 2. The ship length l
is chosen as kl = 9.4 for the ship of type ]1, kl = 6.3 for the ship of
type ]2, and kl = 3.1 for the ship of type ]3, where k is the wavenumber.
All ships are on a rough sea level (X-Y plane) and the characteristic
for surface roughness of sea level is assumed to be sinusoidal as

z(x, y) =
4
75

l · sin
(

15
4

πx

)
sin

(
15
4

πy

)
+

8
75

l. (14)

The sea water has dielectric constant εr = 81 and conductivity
σ = 4 S/m. There are three examples in the following to verify the
proposed target recognition scheme.

In the first example, the unknown target is assumed to be the ship
of type ]1. As the arrangement in Figure 1, the bistatic RCS from each

(a) (b) (c)

Figure 2. The geometrical models for the three types of known ships:
(a) type ]1, (b) type ]2 and (c) type ]3.
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type of known ship in directions of a fixed elevation angle θ and 181
(i.e., Na = 181) azimuth angles of φ = 0◦, 1◦, . . . , 180◦ are collected to
constitute a column vector. To make our recognition believable, the
sampling elevation angles for training (i.e., off-line) and testing (i.e.,
on-line) are different. In our simulation, elevation angles are chosen
to be θ = 61◦, 63◦, . . . , 89◦ for training and θ = 62◦, 64◦, . . . , 90◦ for
testing, respectively. In other words, the Ne in Section 2 is equal
to 15. In Step-2 of Section 2, the number of principal components
is chosen to be p = 2. The selection of p is according to research
experiences in this field. In general, the higher eigenvalues represent
the signal subspace, whereas the lower eigenvalues represent the noise
subspace [6]. The radar recognition algorithm is trained using Step-
1 to Step-3 (off-line stages) in Section 2. After the algorithm is well
trained, it can identify the unknown target of ship by using the Step-4
(on-line stage) in Section 2. Following the recognition procedures of
Section 2, the similarity between the unknown target and the three
types of known ships at all the 15 testing elevation angles of θ is shown
in Figure 3. According to (13), the largest similarity, i.e., the highest
line of Figure 3, means this type of known ship (type ]1) has the
most resemblance to the unknown target. In Figure 3(a), only the
PCA technique [4] is utilized. The average similarity of the 15 testing
elevation angles is 0.897 to type ]1, 0.811 to type ]2 and 0.285 to
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Figure 3. The similarity between the unknown target (i.e., the ship
of type ]1 in the first example) and the three types of known ships at
all the 15 testing elevation angles of θ: (a) by PCA technique only, (b)
by proposed PCA & ICA techniques.
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type ]3. In Figure 3(b), the “PCA & ICA” techniques in Section 2
of this paper are utilized. The average similarity of the 15 testing
elevation angles is 0.926 to type ]1, 0.577 to type ]2 and 0.560 to
type ]3. Both Figures 3(a) and 3(b) show that the known ship of
type ]1 has the highest similarity, i.e., resembles the unknown target
most. This result is very reasonable because the testing target is just
the ship of type ]1. The recognition results are correct at all the 15
testing evaluation angles and then the successful recognition rate is
15/15 = 100%. In our simulation, the discrimination can be defined
as the difference between the best and the next-best similarity. Under
this definition, the average discrimination is 0.086 (= 0.897 − 0.811)
for Figure 3(a), and is 0.349 (= 0.926 − 0.577) for Figure 3(b). This
means that Figure 3(b) by “PCA & ICA” has better discriminating
ability than Figure 3(a) by “PCA” only. In other words, the add
of ICA technique to the PCA based recognition will improve the
discriminating ability.

In the second example, the unknown target is assumed to be the
ship of type ]2. The recognition procedures are the same as those
given in the first example. Figure 4 shows the similarity between the
unknown target and the three types of known ships at all the 15 testing
elevation angles of θ. In Figure 4(a), only the PCA technique [4] is
utilized. The average similarity of the 15 testing elevation angles is
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Figure 4. The similarity between the unknown target (i.e., the ship
of type ]2 in the second example) and the three types of known ships
at all the 15 testing elevation angles of θ: (a) by PCA technique only,
(b) by proposed PCA & ICA techniques.
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0.807 to type ]1, 0.893 to type ]2 and 0.305 to type ]3. In Figure 4(b),
the “PCA & ICA” techniques in Section 2 of this paper are utilized.
The average similarity of the 15 testing elevation angles is 0.598 to
type ]1, 0.790 to type ]2 and 0.634 to type ]3. Both Figure 4(a)
and Figure 4(b) show that the known ship of type ]2 has the highest
similarity, i.e., resembles the unknown target most. This result is very
reasonable because the testing target is just the ship of type ]2. The
recognition results are correct at all the 15 testing evaluation angles
and then the successful recognition rate is 15/15 = 100%. The average
discrimination is 0.086 (= 0.893− 0.807) for Figure 4(a), and is 0.156
(= 0.790 − 0.634) for Figure 4(b). This means that Figure 4(b) by
“PCA & ICA” has better discriminating ability than Figure 4(a) by
“PCA” only. In other words, the add of ICA technique to the PCA
based recognition will improve the discriminating ability.

In the third example, the unknown target is assumed to be the
ship of type ]3. The recognition procedures are the same as those
given in the previous examples. Figure 5 shows the similarity between
the unknown target and the three types of known ships at all the 15
testing elevation angles of θ. In Figure 5(a), only the PCA technique [4]
is utilized. The average similarity of the 15 testing elevation angles
is 0.532 to type ]1, 0.541 to type ]2 and 0.928 to type ]3. In
Figure 5(b), the “PCA & ICA” techniques in Section 2 of this paper
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Figure 5. The similarity between the unknown target (i.e., the ship
of type ]3 in the third example) and the three types of known ships at
all the 15 testing elevation angles of θ: (a) by PCA technique only, (b)
by proposed PCA & ICA techniques.
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are utilized. The average similarity of the 15 testing elevation angles
is 0.561 to type ]1, 0.485 to type ]2 and 0.973 to type ]3. Both
Figures 5(a) and 5(b) show that the known ship of type ]3 has the
highest similarity, i.e., resembles the unknown target most. This result
is very reasonable because the testing target is just the ship of type ]3.
The recognition results are correct at all the 15 testing evaluation
angles and then the successful recognition rate is 15/15 = 100%. The
average discrimination is 0.387 (= 0.928− 0.541) for Figure 5(a), and
is 0.412 (=0.973−0.561) for Figure 5(b). This means that Figure 5(b)
by “PCA & ICA” has better discriminating ability than Figure 5(a)
by “PCA” only. In other words, the add of ICA technique to the PCA
based recognition will improve the discriminating ability.

Practically, the measured RCS includes random noise. To
investigate the effects of noise, each calculated RCS is added by an
independent random noise. The noise is assumed to be with Gaussian
distribution and zero mean. For convenience, the standard derivation
of noise is normalized with respect to the root mean square of
calculated RCS. In our simulation, the noise level, i.e., the normalized
standard derivation of noise, is assumed to be 10−4, 10−3, 10−2, 10−1,
2 × 10−1 and 4 × 10−1, respectively. The number of trials for each
Gaussian distribution is chosen as 10. Figure 6 shows the average
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successful recognition rate with respect to different levels of noise by
“PCA” technique only, and by proposed “PCA & ICA” techniques.
From Figure 6, it shows that the successful recognition rates under the
above noise levels are 100%, 100%, 100%, 95.3%, 91.8% and 79.6%,
by “PCA” technique only. Figure 6 also shows that the successful
recognition rates under the above noise levels are increased to 100%,
100%, 100%, 100%, 98.4% and 84.2%, by proposed “PCA & ICA”
techniques. In other words, the successful recognition rate in noisy
environments will be greatly improved, as the ICA technique is added
to the PCA based recognition scheme. With the use of ICA, the
proposed recognition scheme can still maintain accurate recognition
rate of 84.2%, even though the noise level is increased to 4 × 10−1.
This implies that our recognition scheme can tolerate noises and still
maintains accurate recognition rate.

Figure 7 shows the average successful recognition rate with respect
to different number of elevation angles in off-line stages. In low-niose
(e.g., normalized standard deviation of noise ≤ 0.01) environments,
the successful recognition rate is only slightly improved as the number
of elevation angles increases. In high-niose (e.g., normalized standard
deviation of noise ≥ 0.1) environments, the successful recognition rate
is greatly improved as the number of elevation angles increases.

4. CONCLUSION

In this paper, the high-order statistical approach of ICA is successfully
applied to PCA based radar target recognition. Simulation results
show that the recognition scheme with ICA processing has better
ability to discriminate features and to tolerate noises than those
without ICA processing. Although the PCA processing can reduce
the noise, it treat dependencies of features only to the second-order
statistics. The ICA technique is inherently a high-order statistical
approach and can extract much important information about radar
target recognition. Basically, the ICA can be viewed as an extension
of PCA and factor analyses [6]. With the use of ICA, the discriminating
ability to identify targets is greatly improved. Noted that this paper
is a primary study of applying ICA technique to PCA based radar
target recognition. Therefore, many ideal assumptions are made for
simplicity. In this paper, the RCS data of a single frequency are
collected in many directions. Although the number of observation
directions for RCS is high in this paper, this can be improved in the
future by frequency-diversity collection of RCS, i.e., RCS of different
frequencies are collected in each observation angle. Although this study
chooses only simple models of ships as targets of recognition, one can



Progress In Electromagnetics Research, Vol. 105, 2010 169

add different types of random components to RCS for modeling RCS of
complex targets. This study can be applied to many other applications
in radar target recognition [7–19].
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