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Abstract—Based on the active coupled line concept, a novel approach
for efficient noise performance modeling of millimeter-wave field-effect
transistors is proposed. This distributed model considers the effect of
wave propagation along the device electrodes, which can significantly
affect the noise performance especially in the millimeter-wave range.
By solving the multi-conductor transmission line equations, using
the Finite-Difference Time-Domain technique, this procedure can
accurately determine the noise correlation matrix of the transistor and
then its noise performance.

1. INTRODUCTION

Efficient noise design of high frequency systems is critically based on
accurate noise models of their internal components. As the core of
modern communication systems, active devices should be carefully
modeled for reliable system design.

In high frequencies, when the device physical dimensions become
comparable to the wavelength, the input active transmission line has a
different reactance from the output transmission line [1, 2], exhibiting
different phase velocities for the input and output signals. So by
increasing the frequency or device dimension the phase cancellation
due to the phase velocity mismatching will affect the performance
of the device [3]. Thus, a full-wave time-domain analysis involving
distributed elements should be considered. However, this type of
analysis is highly time consuming [4–7], even if different simulation
time reduction techniques have been already proposed [8]. As a result,

Received 20 April 2010, Accepted 8 July 2010, Scheduled 4 August 2010
Corresponding author: S. Asadi (sasad063@uottawa.ca).



130 Asadi and Yagoub

semi-distributed models such as the slice model, easily implemented
in CAD routines, become a suitable alternative to overcome this
limitation [9, 10]. However, by increasing the frequency, the slice
model cannot precisely model the wave propagation effect and phase
cancellation phenomena on the electrical performance. Therefore to
achieve more accurate design in millimeter-wave applications, one
needs to develop a more advanced distributed model.

In this paper, a distributed model is proposed [12]. It includes the
effect of wave propagation along the electrodes more accurately than
the semi distributed model although the CPU time of this model is
a little greater than the slice model. Since a time domain analytical
solution does not exist, a numerical approach should be used. Among
all the existing methods, the Finite-Difference Time-Domain method
(FDTD) was retained as one of the most widely used in this area [7–11].

2. SIGNAL MODELING OF HIGH-FREQUENCY FET

A typical millimeter-wave field effect transistor (FET) is shown in
Fig. 1. It consists on three coupled electrodes (i.e., three active
transmission lines).

(a)

(b)

Figure 1. (a) 3D structure of FET used in millimeter-wave frequency.
(b) A segment of distributed model along the wave propagation
direction.
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In the lower part of the microwave spectrum, the longitudinal
electromagnetic (EM) field is very small in magnitude as compared
to the transverse field [10, 12]. Therefore, a quasi-TEM mode
can be considered to obtain the generalized active multi-conductor
transmission line equation. An equivalent circuit of a section of the
transistor is shown in Fig. 2. Each segment is represented by a 6-
port equivalent circuit which combines a conventional FET small-signal
equivalent circuit model with a distributed circuit to account for the
coupled transmission line effect of the electrode structure where the all
parameters are per unit length. By applying Kirchhoff’s current laws
to the left loop of the circuit in Fig. 2 with the condition ∆x → 0, we
obtain the following system of equations [10, 12]:

∂Id(x, t)
∂x

+ C11
∂Vd(x, t)

∂t
− C12

∂Vg(x, t)
∂t

− C13
∂Vs(x, t)

∂t
+GmV ′

g(x, t) + Gds(Vd(x, t)− Vs(x, t)) = 0 (1)

∂Ig(x, t)
∂x

+ C22
∂Vg(x, t)

∂t
− C12

∂Vd(x, t)
∂t

+ Cgs

∂V ′
g(x, t)
∂t

= 0 (2)

∂Is(x, t)
∂x

+ C33
∂Vs(x, t)

∂t
− C13

∂Vd(x, t)
∂t

− Cgs

∂V ′
g(x, t)
∂t

−GmV ′
g(x, t) + Gds(Vs(x, t)− Vd(x, t)) = 0 (3)

∂Vd(x, t)
∂x

+ RdId(x, t) + Ldd
∂Id(x, t)

∂t
+ Mgd

∂Ig(x, t)
∂t

+Mds
∂Is(x, t)

∂t
= 0 (4)

∂Vg(x, t)
∂z

+ RgIg(x, t) + Lgg
∂Ig(x, t)

∂t
+ Mgd

∂Id(x, t)
∂t

+Mgs
∂Is(x, t)

∂t
= 0 (5)

∂Vs(x, t)
∂z

+ RsIs(x, t) + Lss
∂Is(x, t)

∂t
+ Mds

∂Id(x, t)
∂t

+Mgs
∂Ig(x, t)

∂t
= 0 (6)

C11 = Cdp + Cds + Cdg C22 = Cgp + Cdg

C33 = Csp + Cds C12 = Cdg C13 = Cds

where Vd, Vg, and Vs, are the drain, gate and source voltages,
respectively, V ′

g is the voltage across gate-source capacitor, while
Id, Ig, and Is are the drain, gate and source currents, respectively.
These variables are time-dependant and function of the position
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Figure 2. The different parts of a segment in the distributed model.

x along the device width. Also, Mds, Mgd, and Mgs represent
the mutual inductances between drain-source, gate-drain and gate-
source, respectively; In the above system, we have an extra unknown
parameter, i.e., the gate-source capacitance voltage V ′

g . Therefore,
the following equation should be included to complete the system of
equations

V ′
g(x, t) + Vs(x, t) + RiCgs

∂V ′
g(x, t)
∂ t

− Vg(x, t) = 0 (7)

which can be then reformatted into two matrix equations

∂

∂x




Id(x, t)
Ig(x, t)
Is(x, t)

0


 +

∂

∂t




C11 −C12 −C13 0
−C12 C22 0 Cgs

−C13 0 C33 −Cgs

0 0 0 Ri Cgs







Vd(x, t)
Vg(x, t)
Vs(x, t)
V ′

g(x, t)




+




Gds 0 −Gds Gm

0 0 0 0
−Gds 0 Gds −Gm

0 −1 1 1







Vd(x, t)
Vg(x, t)
Vs(x, t)
V ′

g(x, t)


 = 0 (8)
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∂

∂x

(
Vd(x, t)
Vg(x, t)
Vs(x, t)

)
+

∂

∂t

(
Ldd Mgd Mds

Mgd Lgg Mgs

Mds Mgs Lss

)(
Id(x, t)
Ig(x, t)
Is(x, t)

)

+

(
Rd 0 0
0 Rg 0
0 0 Rs

)(
Id(x, t)
Ig(x, t)
Is(x, t)

)
= 0 (9)

3. NOISE MODELING OF HIGH-FREQUENCY FETS

The transmission line structure, exciting by noise equivalent sources
distributed on the conductors as a new noise model of the high-
frequency FET is shown in Fig. 3.

J∆x 

v∆x

+  − Z∆x 

Y
∆

x
 

∆x 

Figure 3. Differential subsection of an excited transmission line.

Applying Kirchhoff’s laws in time domain leads to

∂

∂x
I′ + C

∂

∂t
V′ + GV′ + jn = 0 (10a)

∂

∂x
V + L

∂

∂t
I + RI + vn = 0 (10b)

where

I′(x, t) =




Id(x, t)
Ig(x, t)
Is(x, t)

0


 V′(x, t) =




Vd(x, t)
Vg(x, t)
Vs(x, t)
V ′

g(x, t)




I(x, t) =

(
Id(x, t)
Ig(x, t)
Is(x, t)

)
V(x, t) =

(
Vd(x, t)
Vg(x, t)
Vs(x, t)

)

L =

(
Ldd Mgd Mds

Mgd Lgg Mgs

Mds Mgs Lss

)
R=

(
Rd 0 0
0 Rg 0
0 0 Rs

)
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Figure 4. Noise-equivalent voltage and current sources.

C=




C11 −C12 −C13 0
−C12 C22 0 Cgs

−C13 0 C33 −Cgs

0 0 0 Ri Cgs


 G=




Gds 0 −Gds Gm

0 0 0 0
−Gds 0 Gds −Gm

0 −1 1 1




Note that vectors vn and jn are the linear density of exciting voltage
and current noise sources, respectively. To evaluate the noise sources,
we considered a noisy FET subsection with gate width ∆x, as shown
in Fig. 4. Thus, the unit-per-length noise correlation matrix for chain
representation of the transistor (CAUPL) can be deduced as [16–18]

CAUPL =

〈(
vn

jn

)(
vn

jn

)+
〉

=
〈

C11 C12

C21 C22

〉
(11)

where 〈 〉 denotes the ensemble average and + the transposed complex
conjugate. According to the correlation matrix definition, we can
calculate vn and jn knowing (CAUPL), to completely describe the
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proposed FET noise model. Indeed, by solving (11), the noise
parameters of the transistor can be obtained.

4. THE FDTD FORMULATION

The FDTD technique was used to solve the above equations.
Applications of the FDTD method to the full-wave solution of
Maxwell’s equations have shown that accuracy and stability of the
solution can be achieved if the electric and magnetic field solution
points are chosen to alternate in space and be separated by one-half the
position discretization, e.g., ∆x/2, and to also be interlaced in time and
separated by ∆t/2 [13–15]. To incorporate these constraints into the
FDTD solution of the transmission-line equations, we divided each line
into Nx sections of length ∆x, as shown in Fig. 5. Similarly, we divided
the total solution time into segments of length ∆t. In order to insure
the stability of the discretization process and to insure second-order
accuracy, we interlaced the Nx + 1 voltage points, V1, V2, . . . , VNx+1

and the Nx current points, I1, I2, . . . , INx. Each voltage and adjacent
current solution points were separated by ∆x/2. In addition, the time
points are also interlaced, and each voltage time point and adjacent
current time point were separated by ∆t/2 [19, 20]. Then, (10) can
lead to [12]

dI
n+1/2
k −dI

n+1/2
k−1

∆x
+C11

dV n+1
k −dV n

k

∆t
−C12

gV n+1
k −gV n

k

∆t

−C13
sV n+1

k −sV n
k

∆t
+Gm

g′V n+1
k +g′V n

k

2

+Gds
(dV n+1

k +dV n
k−sV n+1

k −sV n
k )

2
+

Nx+1∑

m=1

n1v
n+3/2
m +n1v

n+1/2
m

2
=0 (12)

gI
n+1/2
k − gI

n+1/2
k−1

∆x
+ C22

gV n+1
k − gV n

k

∆t
− C12

dV n+1
k − dV n

k

∆t

+Cgs
g′V n+1

k − g′V n
k

∆t
+

Nx+1∑

m=1

n2v
n+3/2
m + n2v

n+1/2
m

2
= 0 (13)



136 Asadi and Yagoub

sI
n+1/2
k − sI

n+1/2
k−1

∆x
+ C33

sV n+1
k − sV n

k

∆t
− C13

dV n+1
k − dV n

k

∆t

−Gm
g′V n+1

k + g′V n
k

2
−Gds

(dV n+1
k + dV n

k − sV n+1
k − sV n

k )
2

+
Nx+1∑

m=1

n3v
n+3/2
m + n3v

n+1/2
m

2
= 0 (14)

dV n+1
k−1 − dV n+1

k

∆x
+ Rd

dI
n+3/2
k + dI

n+1/2
k

2
+ Ldd

dI
n+3/2
k − dI

n+1/2
k

∆t

+Mgd
gI

n+3/2
k − gI

n+1/2
k

∆t
+ Mgs

sI
n+3/2
k − sI

n+1/2
k

∆t

+
Nx+1∑

m=1

n1jn+1
m + n1jn

m

2
= 0 (15)

gV n+1
k−1 − gV n+1

k

∆x
+ Rg

gI
n+3/2
k + gI

n+1/2
k

2
+ Lgg

gI
n+3/2
k − gI

n+1/2
k

∆t

+Mgd
dI

n+3/2
k − dI

n+1/2
k

∆t
+ Mgs

sI
n+3/2
k − sI

n+1/2
k

∆t

+
Nx+1∑

m=1

n2jn+1
m + n2jn

m

2
= 0 (16)

sV n+1
k−1 − sV n+1

k

∆x
+ Rs

sI
n+3/2
k + sI

n+1/2
k

2
+ Lss

sI
n+3/2
k − sI

n+1/2
k

∆t

+Mds
dI

n+3/2
k − dI

n+1/2
k

∆t
+ Mgs

gI
n+3/2
k − gI

n+1/2
k

∆t

+
Nx+1∑

m=1

n3jn+1
m + n3jn

m

2
= 0 (17)

Applying the finite difference approximation to (7) gives

RiCgs

(
gV n+1

k

)′ − (gV n
k )′

∆t
+

(
gV n+1

k

)′ − (gV n
k )′

2
+

sV n+1
k + sV n

k

2

=
gV n+1

k + gV n
k

2
(18)
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with

dV
j
i = dV ((i− 1)∆x, j∆t) and dI

j
i = dI((i− 1/2)∆x, j∆t)

for the drain electrode (19a)

gV
j
i = gV ((i− 1)∆x, j∆t) and gI

j
i = gI((i− 1/2)∆x, j∆t)

for the gate electrode (19b)

sV
j
i = sV ((i− 1)∆x, j∆t) and sI

j
i = sI((i− 1/2)∆x, j∆t)

for the source electrode (19c)

and where k, m and n are integers. Solving these equations give the
required recursion relations

V ′n+1
k =

(
C

∆t
+

G

2

)−1
{(

C

∆t
− G

2

)
V ′n

k −
I ′n+1/2

k − I ′n+1/2
k−1

∆x

+
∆x

2

Nx+1∑

m=1

(
jn+1
m + jn

m

)
}

(20)

I
n+3/2
k =

(
L

∆t
+

R

2

)−1
{(

L

∆t
− R

2

)
I

n+1/2
k − V n+1

k+1 − V n+1
k

∆x

+
∆x

2

Nx+1∑
m

(
vn+3/2
m + vn+1/2

m

)}
(21)

Superposing all the distributed noise sources is equivalent to a
summation in (20) and (21) over the gate width for m = 1, . . . , Nx+1.

Because of its simplicity, the leap-frog method was used to solve
the above equations. First the voltages along the line were solved for
a fixed time using (20) then the currents were determined using (21).
The solution starts with an initially relaxed line having zero voltage
and current [13, 14].

5. NOISE CORRELATION MATRIX OF TRANSISTOR

To find the noise correlation matrix for admittance representation of
the transistor as a noisy six-port active network (as in Fig. 2), the
values of port currents should be determined when they are all assumed
short-circuited simultaneously. Equation (20) for k = 0 and k = Nx+1
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becomes

V ′n+1
1 =

(
C

∆t
+

G

2

)−1
{(

C

∆t
− G

2

)
V ′n

1 −
I ′n+1/2

1 − I ′n+1/2
0

∆x/2

+
∆x

2

Nx+1∑

m=1

(
jn+1
m + jn

m

)
}

(22)

V ′n+1
Nx+1 =

(
C

∆t
+

G

2

)−1
{(

C

∆t
− G

2

)
V ′n

Nx+1 −
I ′n+1/2

Nx+1 − I ′n+1/2
Nx

∆x/2

+
∆x

2

Nx+1∑

m=1

(
jn+1
m + jn

m

)
}

(23)

By considering Fig. 3, this equation requires that we replace ∆x with
∆x/2 only for k = 1 and k = Nx + 1.

In order to determine the transistor noise parameters, we set the
input voltage source as zero (Vs = 0) [8, 9]. Referring Fig. 6, we denoted
the currents at the source point (x = 0) as I0 and at the load point
(x = L) as INx+1. By substituting this notation into (22) we obtain

(
I0d

I0g

I0s

)
=




V n
1d−V n+1

1d
2Rsd

0 0

0
V n
1g−V n+1

1g

2Rsg
0

0 0 V n
1s−V n+1

1s
2Rss


 (24)

Figure 5. Relation between the spatial and temporal discretization to
achieve second-order accuracy in the discretization of the derivatives.
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V1

Rs

I0

x = 0

I1 

∆x

VNDX+1 

RL

x = L

INDX+1

Rs

Vs

Figure 6. Voltage and current solution points. Spatial discretization
of the line showing location of the interlaced points.

Similarly, we imposed the terminal constraint at x = L by substituting
INx+1 into (23) as follow:

(
INx+1,d

INx+1,g

INx+1,s

)
=




V n
Nx+1,d−V n+1

Nx+1,d

2RLd
0 0

0
V n

Nx+1,g−V n+1
Nx+1,g

2RLg
0

0 0
V n

Nx+1,s−V n+1
Nx+1,s

2RLs


 (25)

To determine the currents I1 and INx at short-circuited ports (x = 0
and x = L), we set V1 = VNx+1 = 0. The finite difference
approximation of (21) for k = 1 and k = Nx can be then written
as (26) and (27), respectively.

I
n+3/2
1 =

(
L

∆t
+

R

2

)−1 {(
L

∆t
− R

2

)
I

n+1/2
1 − V n+1

2

∆x

+
∆x

2

Nx+1∑

m=1

(
vn+3/2
m + vn+1/2

m

)}
(26)

I
n+3/2
Nx =

(
L

∆t
+

R

2

)−1
{(

L

∆t
− R

2

)
I

n+1/2
Nx − V n+1

Nx

∆x

+
∆x

2

Nx+1∑

m=1

(
vn+3/2
m + vn+1/2

m

)}
(27)

Replacing I
n+1/2
1 and I

n+1/2
Nx into (26) and (27), respectively, leads to
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short-circuit currents at input and output terminals.

I
n+3/2
1 =

(
L

∆t
+

R

2

)−1
{(

L

∆t
− R

2

)(
∆x

2

)2 Nx+1∑

m=1

(
jn+1
m + jn

m

)

+
∆x

2

Nx+1∑

m=1

(
vn+3/2
m + vn+1/2

m

)
− V n+1

2

∆x

}
(28)

I
n+3/2
Nx =

(
L

∆t
+

R

2

)−1
{(

L

∆t
− R

2

)(
∆x

2

)2 Nx+1∑

m=1

(
jn+1
m + jn

m

)

+
∆x

2

Nx+1∑

m=1

(
vn+3/2
m + vn+1/2

m

)
− V n+1

Nx

∆x

}
(29)

Finally, the currents of the short-circuited ports can be determined as

[
I

n+1/2
1

I
n+3/2
Nx

]
∼=

[
A B
A B

]



Nx+1∑
m=1

(
jn+1
m + jn

m

)

Nx+1∑
m=1

(
v

n+3/2
m + v

n+1/2
m

)




= K




Nx+1∑
m=1

(
jn+1
m + jn

m

)

Nx+1∑
m=1

(
v

n+3/2
m + v

n+1/2
m

)


 (30)

with

A=
(

L

∆t
+

R

2

)−1
{(

L

∆t
−R

2

)(
∆x

2

)2
}

B=
(

L

∆t
+

R

2

)−1(∆x

2

)

The admittance noise correlation matrix of the six-port FET noise
model is then equal to

CYtr =

〈[
I

n+1/2
1

I
n+3/2
1

][
I

n+1/2
1

I
n+3/2
1

]+〉
=

〈(
K

[∑
jn∑
vn

])(
K

[∑
jn∑
vn

])+
〉

= K × CAUPL ×K+ (31)

6. NUMERICAL RESULTS

The proposed approach was used to model a sub micrometer-gate FET
transistor (NE710). The device has a 0.3 × 560µm gate. The input
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Figure 7. Comparison between S-parameters of NE710 for sliced,
fully distributed model and measurements.

and output nodes were connected to the beginning of the gate electrode
and at the end of the drain electrode, respectively. The transistor was
biased at Vds = 3 V and Ids = 10 mA [21]. The obtained S-parameters
of the transistor over a frequency range of 1–26 GHz from the sliced
model, the proposed fully distributed model and measurements are
plotted in Fig. 7.

As expected, our distributed model is more close to measurements
than the slice model [9], especially at the upper part of the frequency
spectrum, when the device physical dimensions are comparable to the
wavelength. This is due to the fact that our fully distributed model
is based on the full-wave equation while the slice model is based on
an electrical circuit model. Fig. 8 shows the noise figure obtained for
three different sets of data.

Thus, the proposed wave analysis can be applied for accurate
noise analysis of FET circuits. To further prove the accuracy of the
proposed wave approach in noise analysis, our results were successfully
compared to measurements as well as to those obtained by the sliced
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Figure 8. Comparison between normalized equivalent noise
admittance and noise figure for sliced, fully distributed model and
measurements.

model, highlighting the advantage of our model over this later (Fig. 9).
Figs. 10(a) and 10(b) show the minimum noise figure and normalized
equivalent noise admittance vs. the transistor gate width, respectively.
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Figure 9. Comparison between the results of slice modeling, fully
distributed model and measured values of amplitude and the phase of
optimum reflection coefficient.
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Figure 10. (a) Comparison between noise figure for sliced and
fully distributed model versus gate width. (b) Comparison between
normalized equivalent noise admittance for sliced and fully distributed
model versus gate width.
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7. CONCLUSION

A new modeling approach for noise analysis of high frequency
transistors was presented. This method can accurately take into
account the effect of wave propagation along the device electrodes. The
promising model can be applied to solve issues related to simultaneous
signal and noise analysis, as well as in modeling traveling wave FETs
in which the gate width is much higher than that of a usual FET.
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