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Abstract—We extend our previously-derived generalized closed-form
representation for spectral dispersing performance of the Virtually-
Imaged-Phased-Array (VIPA) based on a 3D vectorial Gaussian beam
formulation to demultiplexing application. To analyze VIPA in the
demultiplexer scheme, a spherical lens is added after the VIPA, so that
the device plane is superimposed on the focal plane of the lens. The
calculated output profile at previous step is reformulated ¿ in a matrix
form in this step. Finally, the derived closed-form is simulated, and
the numerical outcomes are compared with the previous results. The
3D output radiation of VIPA demultiplexer pattern is also depicted
and found to be very intuitive and promising for some applications
especially WDM demultiplexer and optical Code Division Multiple
Access (CDMA).

1. INTRODUCTION

Multiplexing/demultiplexing devices are employed to separate and
recombine optical wavelengths. There are two methods used to
split the optical channels, one by cascaded splitting such as fiber
Bragg grating or multilayer interference thin film [1] and the other
by single multi-channel devices such as arrayed waveguide grating
(AWG) [2, 3]. The former method is less favorable due to additive
loss and noise. Finer spectral resolution is of the utmost importance
in the development of hyperfine wavelength demultiplexing.

Recently, a modified and tilted version of etalon has been
proposed and is found to be the best choice to replace the
former MUX/DEMUX technologies especially to achieve narrower
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channel widths in hyperfine WDM schemes. This device shows
high angular dispersion (for example 0.5 deg/nm) which is high
enough to be utilized in 0.8 nm channel spacing WDM [4–7].
This device is utilized in many applications, such as chromatic
dispersion compensation [5, 6], direct space-to-time pulse shaping [8],
OCDMA encoder/decoder [9], photonic-microwave arbitrary waveform
generation [10] and programmable optical burst manipulation [11].

The VIPA principal demultiplexing system is depicted in Figure 1.
The VIPA operation can be explained based on the Fabry-Perót
etalon. It consists of two high reflective coated planes. The input
(entry) side has a reflectivity factor close to 1.0 except at a window
that remains uncoated or coated with anti-reflection (AR) material to
allow light beam entrance. The laser source beam is focused on the
output plate of the etalon by a proper lens (mostly a semi-cylindrical
one). The collimated beam enters the etalon through the window and
reflects back and forth. The round-trip beam is partly reflected and
transmitted, and the reflection continues until all injected power leaks
out of the etalon. The resulted diverging beams from virtual sources
(VSs) interfere with each other in a phased array and form a collimated
beam. The phase differences between the diverging beams are highly
dependant on the wavelength variations; hence, the VIPA disperses the
beam angularly. Then, the spherical lens is used to focus the generated
diverging beams on the fiber array to discriminate the wavelengths.
In other words, the lens imaging system collimates the beams of
different wavelengths on the different points of the lens focal plane.
Consequently, each wavelength enters a unique fiber in fiber detector
array. The VIPA surpasses the common diffraction gratings due to
several advantages such as large angular dispersion, low polarization
sensitivity, simple structure, compactness and better performance [7].

Figure 1. The setup used to analyze the VIPA demultiplexer.
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Function of VIPA after the lens (in a demultiplexer scheme)
was first characterized numerically in [4, 7] by Shirasaki. Pioneer
analytical approach by Yang [12] modeled VIPA as a periodic filter
and described the maxima of pass bands as a function of diffraction
angle using 2D Gaussian beam and Fourier transform. Vega [13]
proposed a grating equation based on a plane wave theory for relatively
large incident angles. Xiao [14] considered the paraxial waves and
generalized the Vega’s approach for small incident angles. Later, he
provided an analytical expression for the pass band response of VIPA
demultiplexers [15].

All the above mentioned analytical approaches treat the VIPA
with a 2D, scalar model, while neglecting the vertical profile
variations, collimation effect of spherical lens in transverse plane and
TE/TM different reflection/transmission coefficients. All supposed
that the input beam is focused exactly on the outer side, and
keep the output reflection profile constant over the whole surface
(except [4, 7]) despite the fact that this profile can be engineered
to optimize the VIPA performance. Here, trying to eliminate the
previous restricting assumptions, we follow our rigorous 3D vectorial
Gaussian beam method from [16, 17] to extend our previous spectral
dispersing framework and find a detailed matrix representation of
VIPA demultiplexer output pattern. A generalized imaging lens is
employed where input field is placed against the lens and pattern
variations due to changing imaging parameters are investigated.

This paper is structured as follows: Section 2 includes
the derivation of vectorial Gaussian beam description of pattern
formulation after the lens; Section 3 contains numerical results of
the extracted equations for the comparison of VIPA demultiplexer
performance with the previous works and the related discussions.
Finally, we conclude in Section 4.

2. THEORETICAL DERIVATION

We had previously derived the closed form representation of VIPA
pattern on arbitrary parallel plane after the device [16, 17]. We deal
with the new problem in the following approach: The arbitrary plane
is selected deliberately to superimpose on the lens one and the field
pattern is calculated; then, we apply the imaging function of the lens
on the pattern employing the Fresnel complex 2D integration. Finally,
by acquiring each virtual source pattern after the lens, the final pattern
is represented in closed-form on an arbitrary distance after the lens.

Suppose Figure 1 is used for the analysis of device performance.
We have some assumptions in calculation procedure: First, due to
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nonlinear phase of Gaussian beam propagation from the lens plane,
the propagation phase can not be measured by exp(−jk2d) similar to
a plane wave (d is the distance between the lens and observation point).
The propagation variations are fully considered in the Gaussian beam
term. Second, the lens diameter is much larger than the object. So
the lens pupil function is close to 1 [18]. Third, we consider the lens
spatial and temporal phasor term with the convention exp(jωt− jkz)
that will be employed in final field representation. Forth, we use the
paraxial approximation to derive the field after the lens. Finally, we
assume that both the lens focal plane and the detector point satisfy
the Fresnel condition [18]. In order to derive the field pattern after the
lens at an arbitrary distance, we calculate the Fresnel integration for
z ≥ zmin where zmin is dictated by the lower bound of Fresnel condition.

2.1. Final Field Calculations

If field pattern before the spherical lens (with focal length F ) showed
by Ul(x, y), the lens functions as a phase mask of exp(j k2

2F (x2 + y2));
hence, the field after the lens is obtained through multiplying the field
before the lens by the lens phase function:

U(x, y) = Ul(x, y)× exp
(

j
k2

2F

(
x2 + y2

))
(1)

Field pattern is a function of both transverse coordinate system
(x, y) and the propagation direction z; thus, the field can be expanded
by dividing it into the propagation and the transverse terms as follows:

Ul(x, y, z) =
N∑

m=1

Etot,m(z)× exp
{
−j

k2

2
qf
m(x, y)

}
(2)

where Etot,m(z) and qf
m(x, y) are the field of the mth virtual source

and q-parameter of Gaussian beam respectively [17]. We define some
parameters for mth virtual source before proceeding:

Qi
m=Rot(α3)

×
({

Fx(qx3m−1(0), qy3m−1(0))+ZPm

}−1 0
0

{
Fy(qx3m−1(0), qy3m−1(0))+ZPm

}−1

)

×Rot(−α3) (3a)

While, we have:

ZPm = (N −m + 1)× 2d tan(θi) cos(ϕ) (3b)

Fx
y
{qx3m−1(0), qy3m−1(0)} =

2k2
k1

qx3m−1(0)qy3m−1(0)

ξ ±√
ξ2 − 4β2qx3m−1(0)qy3m−1(0)

(3c)
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where:




ξ=
(
β2 sin2(α1)+cos2(α1)

)
qx3m−1(0)

+
(
β2 cos2(α1)+sin2(α1)

)
qy3m−1(0)

β=cos(θi)/ cos(θt)
qx3m−1(0)=qx1(Z0)+2(m−1)d/ cos(θi)
qy3m−1(0)=qy1(Z0)+2(m−1)d/ cos(θi)

(3d)

The θi and θt are incident and transmitted angles. Rot(α3) is the
rotation matrix by angle α3 as depicted in Figure 2. ki is the
propagation constant for the ith medium equal to ω

√
εiµi. N , d and

qij (z) are total number of virtual sources, VIPA thickness, and the jth
Gaussian beam q parameter at z for i = x or y directions respectively.

By considering D (the lens diameter) and correct transformation
of field from coordinate system (x, y, z) to lens plane coordinate system
by a D/2 shift, qf

m(x, y) is calculated from the following equation:

−jk2

2
qf
m(x, y) = [x− xm y]Qi

m[x− xm y]t

= a(x− xm)2 − jb(x− xm)y + cy2 (4a)





xm = (m− 1)2d tan(θi) sin(ϕ)− D

2

a = −j
k2

2
Qi

m(1, 1)

b =
k2

2

{
Qi

m(1, 2) + Qi
m(2, 1)

}
= k2Qi

m(1, 2)

c = −j
k2

2
Qi

m(2, 2)

(4b)

Qi
m(i, j) is the element in ith row and jth column of Qi

m matrix.
Because the final term in Eq. (2) is only the function of transverse
coordinate system (z), the integration operator enters the summation
and operates on the qf

m(x, y) term that is described as follows in the
lens coordinate system (xF , yF ):

Ul(xF , yF , z) =
N∑

m=1

Etot,m(z)× Uf (xF , yF , z) (5)

While Uf (xF , yF , z) is field pattern of each virtual source after the
lens. This relation remains true for arbitrary vertical plane parallel
to the focal plane until the Fresnel lower boundary satisfied (z ≥
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zmin). The field after the lens is derived through Fourier transforms
integration [18–21]:

Uf (xF , yF , z) = exp
(
−j

k2

2z

(
x2

F + y2
F

))×exp(−jk2z)
jλz

×
∫ ∞

−∞

∫ ∞

−∞
exp

{
−j

k2

2
qf
m(x, y)

}
×exp

{
j

k2

2F

(
x2+y2

)}

× exp
{
−j

k2

2z

[
(xF − x)2 + (yF − y)2

]}
dxdy (6)

That simplified as follows:

Uf (xF , yF , z) = exp
(
−j

k2

z

(
x2

F + y2
F

))×exp(−jk2z)
jλz

×
∫ ∞

−∞

∫ ∞

−∞
exp

{
−j

k2

2
qf
m(x, y)

}
×exp

{
j
k2

z
(xxF +yyF )

}

× exp
{

j
k2

2
(
x2+y2

)(
1
F
− 1

z

)}
dxdy (7)

If we called ∆ = 1
F − 1

z then in Fourier plane with coordinate system
(xF , yF ) the term is expanded using Eq. (4a) as:

Uf (xF , yF , z) =
exp (−jk2z)

jλz
× exp

(
−j

k2

z

(
x2

F +y2
F

))

×
∫ ∞

−∞

∫ ∞

−∞
exp

{
a(x−xm)2−jb(x−xm)y+cy2

+j
k2

z
(xxF +yyF )+j

k2

2
∆

(
x2+y2

)}
dxdy (8)

The following complex integration formula is widely used:∫ ∞

−∞
exp

(−β(x + α)2
)× exp(−jωx)dx

=





√
π

β
× exp

(
jω

(
α +

jω

4β

))
complex sign (β) = 1

Undefined otherwise
(9)

Complex sign (signum) is a symbolic function frequently employed
in the mathematical toolboxes such as MATLAB or Maple. The square
root of β remains unique with this criterion:

complex sign(β)=1 ⇒
{

Re(β) > 0
If Re(β)=0 ⇒ Im(β) > 0

(10)
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Figure 2. VIPA structure and the equivalent virtual sources.

After a lengthy calculation using complex Fourier integration and
employing two stability criteria, the field after the lens on the focal
plane is shown to be:

Uf (xF , yF , z) =
exp(−jk2z)

jλz
× exp

(
−j

k2

z

(
x2

F + y2
F

))

× exp
(
ax2

m

)× π√
MK

exp
(
−1

4

(
L2

K
+

N2

M

))
(11)

where the K, L, M and N are the x2, x, y2 and y coefficients in Eq. (8)
respectively: 




K = a + j
k2

2
∆

L = −2axm + j
k2

z
xF

M = c + j
k2

2
∆ +

b2

4K

N = jbxm + j
k2

z
yF + j

bL

2K

(12)

With two stability criteria are defined as:{
complex sign (−M) = 1
complex sign (−K) = 1

(13)

If we summarize the matrix Qi
m = Rot(α3)

(
q−1
x3m

0
0 q−1

y3m

)
Rot(−α3),

and by definition of a new parameter, O = (∆ − q−1
x3m

)(∆ − q−1
y3m

), we
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obtain the following equation:

det
(
Qi

m

)
= (qx3mqy3m)−1 (14)

The analytical pattern of each virtual source after the
demultiplexer on an arbitrary plane is derived:

Uf (xF , yF , z) =
exp(−jk2z)

z
×

exp
(
−j k2

z

(
x2

F +y2
F

))
√

O

× exp
(

jk2

2O

{[
xF
zyF
z

]t
(

O+Qi2
m(1,2)

Qi
m(1,1)−∆

−Qi
m(1, 2)

−Qi
m(2, 1) Qi

m(1, 1)−∆

)[
xF
zyF
z

]

+2xm

[
xF
zyF
z

]t
(

OQi
m(1,1)+∆Qi2

m(1,2)
Qi

m(1,1)−∆

−∆Qi
m(1, 2)

)

+x2
m

(
∆OQi

m(1, 1) + ∆Qi2
m(1, 2)

Qi
m(1, 1)−∆

)})
(15)

For special case where the detector is on the focal plane (z = F ),
two defined parameters are simplified as follows:




∆ =
1
z
− 1

F
= 0

O = (qx3m qy3m)−1 = det
(
Qi

m

) (16)

Consequently, each virtual source field on focal plane does not
have the quadratic phase function:

Uf (xF , yF , z) =
exp(−jk2F )

F
×

exp
(
−j k2

F

(
x2

F + y2
F

))
√

det(Qi
m)

× exp

(
jk2

2

{[
xF
FyF
F

]t

Qi
m−1

[
xF
FyF
F

]
+2xm

xF

F

})
(17)

The total field is found by summing up over each virtual source
that can be showed as:

Ul(xF , yF , z) =
N∑

m=1

Etot,m(z)× Uf (xF , yF , z) (18)

2.2. Discussion on Stability Criteria

In order to find the validity limits of two calculations, we use the
following criteria (from Fresnel approximation) [18]:

z3 À π

4λ

{
(x− xF )2 + (y − yF )2

}2

max
(19)
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So, we should find the maximum for the second term:

max
{
(x− xF )2 + (y − yF )2

}

= max
{
(x− xF )2}+ max{(y − yF )2

}
= 2

(
D

2

)2

=
D2

2
(20)

where D is the lens diameter. We extract the following lower limit for
distance:

z À zmin = 3

√
π

4λ

(
D2

2

)2

= 3

√
πD4

16λ
(21)

For example if the lens diameter D = 1 cm and λ = 1.55µm, the
lower limit is:

z À zmin = 3

√
π × 10−8

16× 1.55× 10−6
= 10.8 cm (22)

This limit is not exact and the derived formula is a good
approximation for much less distances including stability criterion [18].

complex sign (−M) = 1 ⇒
{

Re(−M) > 0
Re(−M) = 0 ⇒ Im(−M) > 0

(23)

And the other stability criterion is:

complex sign (−K) = 1 ⇒
{

Re(−K) > 0
Re(−K) = 0 ⇒ Im(−K) > 0

(24)

These stability criteria are comparable to those derived in [22].
The condition is derived by limiting the response to the group of
Gaussian beams that have decreasing amplitudes. These criteria
should be checked to ensure that the solution remains in feasible region
of Gaussian beams.

2.3. VIPA Demultiplexer Performance Figures of Merit

Two major dominating figures of merit (FOM) of every periodic (comb)
filter are Free Spectral Range (FSR) and FWHM (3-dB bandwidth)
that are depicted in Figure 3.

Figure 3. Periodic filter and main describing figures of merit.
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2.3.1. FSR (Free Spectral Range)

The maximum width of spectrum span that can be determined without
ambiguity is called the free spectral range [23]. Also, by definition,
FSR is the frequency span of the input signal that the spectrum is
reconstructable [24]. For the general case the FSR can be measured
from transmission spectrum plot. The final field formula is derived as
follows:

Ul(xF , yF , F ) =
N∑

m=1

Etot,m(F )× exp(−jk2F )
F

×
exp

(
−j k2

2F

(
x2

F +y2
F

))
√

det(Qi
m)

× exp

(
jk2

2

{[
xF
FyF
F

]t

Qi−1
m

[
xF
FyF
F

]
+ 2xm

xF

F

})
(25)

Total field is reformed as a geometrical series so that the FSR
can be calculated. We eliminate the common terms in the geometrical
series description of final field in the focal plane:

∑
m

exp
{
−j2(m− 1)k1

d

cos(θi)
− jk2ZPm

+
jk2

2

{
Qi−1

m (1, 1)
(xF

F

)2
+ 2xm

(xF

F

)}}
Qi−1

m (1, 1)

=
Qi

m(2, 2)
det(Qi

m)
= cos2(α3)qx3m + sin2(α3)qy3m (26)

The final field can be calculated in terms of output angle with
the paraxial approximation tan(xF

F ) ∼= (xF
F ) = θF . Finding the phase

matching condition is not possible for general case of polarization due
to nonlinear dependence. For special case of circular polarization, we
have:

α3 =
π

2
⇒ Qi−1

m (1, 1) = qy3m =
n2

n1
{q0 + 2(m− 1)l} (27)

So the phase matching condition is:

exp

{
jk0d

{
2n1

cos(θi)
−2n2tan(θi)cos(ϕ)−2n2tan(θi)sin(ϕ)θF− n2

2

n1 cos(θi)
θ2

F

}}
=1 (28)

Assuming that the beams make zero angles with the horizontal
direction, referring to the Figure 2, we have θt = π

2 − ϕ. So, FSR can
be calculated from the following relation (for air-filled VIPA, where
n2 = 1):

FSR =
c

2d

{
n1 cos(θi)− tan(θi) cos(θt)θF − θ2

F

2n1 cos(θi)

} (29)
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2.3.2. 3-dB Bandwidth (Full-width at Half Maximum)

Other dominating figure of merit is FWHM or 3-dB bandwidth. That
is the band- width that the output transmission spectrum reaches its
half of its maximum. Based on etalon analysis [15], we have (Rr is the
multiplication of two reflection coefficients of VIPA surfaces.):





FWHM =
c

2πd cos(θi)
1−Rr√

Rr
(Frequency)

FWHM =
λ2

0

2πd cos(θi)
1−Rr√

Rr
(Wavelength)

(30)

The finesse parameter is π
√

Rr
1−Rr considering VIPA’s similarities with

etalon. The incident angle is determined from the following formula
regarding the phase matching condition at the origin for the central
wavelength:

mλ0 = 2d cos(θi) (31)

3. NUMERICAL RESULTS

3.1. Comparison of Current Work with Ref. [7]

According to the principles of phased arrays, the device acts as a beam
former and prefers some angles to others as suggested by radiation
pattern illustrated in Figure 4 for uniform and graded reflection
profiles. It also demonstrates the VIPA’s spatial filtering function
that conforms to its application as a spectral disperser. There are
other peaks in radiation pattern that shows other angles also satisfy
phase matching condition. It is obvious that Shirasaki [7] limited the
radiation pattern study to the main lobe, considered it as the reference
direction and neglected the side lobes. (Refer to [17] for parameter
values). Meanwhile, radiation peaks are invariant of profile engineering
(Figure 4).

Figure 5(a) shows better characteristics and performance of
graded reflection profile over the uniform one first proposed by
Shirasaki [7]. The radiation patterns are compared in Figure 5
that illustrates higher contrast ratio of graded versus uniform profile.
The graded one benefits from reduction of channel crosstalk in a
demultiplexer setup and increased coupling efficiency to the fiber. The
higher coupling efficiency will lead to lower insertion loss of VIPA in a
demultiplexer scheme as well as better power efficiency. The coupling
coefficient is derived through calculating overlap integral (Eq. (32))
where UF (v) is the output spatial pattern of VIPA demultiplexer and
G(v) is the input Gaussian spatial pattern of a single-mode fiber with
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(a) (b)

Figure 4. Comparison of VIPA profiles after the lens with [7] for
(a) uniform and (b) graded profiles.

(a) (b)

Figure 5. Comparison of (a) VIPA radiation patterns after the lens
for uniform and graded profiles. (b) Coupling coefficient efficiency for
uniform and graded profiles using [7] parameters.

diameter of 15µm. The coupling coefficient vs. wavelength deviations
is plotted in Figure 5(b) that clarifies the higher wavelength selectivity
of graded over the uniform one. This behavior results in the mentioned
reduced channel crosstalk.

Coupling =

∣∣∫ UF (v)G∗(v)dv
∣∣2

∫ |UF (v)|2 dv
∫ |G(v)|2 dv

(32)

Comparison of output 3D radiation patterns on the lens focal plane
confirms the aforementioned better performance of graded profile over
the uniform one in the application of demultiplexer (Figures 6(a) and
(b)). The graded one has more side lobes (which can be employed
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(a) (b)

Figure 6. Comparison of 3-D radiation pattern of VIPA demultiplexer
on the lens focal plane for (a) uniform and (b) graded profiles (X and
Y are both in meter) using [7] parameters.

for more demultiplexer channel allocation) and it also benefits from
higher contrast ratio. Despite the radial symmetry of spherical lens, the
output patterns lack it due to the radial asymmetry of VIPA spectral
disperser pattern.

Employing 3D pattern instead of 2D one increases the number of
available codes in an optical Code Division Multiple Access (CDMA)
scheme. Consequently, assigning 2D codes to users will dramatically
improve the number of coverable users [24]. Because selection of codes
in a 2D plane adds a degree of freedom, the demultiplexer channels can
be discriminated so that the channel crosstalk is substantially reduced.
This channel crosstalk decrement translates into the lower multi-user
interference (MUI) which is a key factor in enhancement of CDMA
networks [24].

3.2. Comparison of Current Work with Ref. [15]

Deviation of detector from the focal plane is studied in [15] referred
as “spatial chirp effect”. The result of the deviation of detector from
the focal plane (±2mm) is shown in Figure 7 in linear and logarithmic
scale. Detuning from the focal plane to the farther (nearer) distances
from the lens will degrade the transmission spectrum of VIPA as
well as shifting the peak to lower (higher) wavelengths. As Eq. (17)
suggests even if we place the detector on the focal plane, there remains
a non-quadratic phase for 3D analysis in contrast to the previous
2D analysis [15]. Our proposed formulation holds true for arbitrary
deviations from the focal plane.

The ratio of FSR (here, 0.8 nm)/FHWM (here, 4.18 pm) is a
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(a) (b)

Figure 7. Transmission spectrum variations by detector place
detuning (spatial chirp effect) (±2mm) [15] (a) linear and (b)
logarithmic scale.

measure of adjustable wavelength channels (about 190). Increasing
this ratio will increase the number of WDM channels as well as
channel crosstalk (indeed, it is required to carefully engineer the
reflection profile or other design parameters to compensate for it);
hence, improvement in communication system throughput.

4. CONCLUSION

We have proposed a rigorous vectorial Gaussian beam tracing method
to extract a 3D generalized analytic model for the VIPA pattern after
the lens in a closed-form formulation. To our knowledge, this is
the first VIPA demultiplexer 3D performance analysis with arbitrary
polarization input Gaussian beam at an arbitrary vertical plane using
a generalized imaging lens system. The comparisons with previously-
published 2D results show a good agreement. The advantages and
potentials of the proposed method were also investigated previously
in [17] repeated here for convenience: 1) The source beam waists
are finite in both directions that are modeled as a generalized elliptic
vectorial Gaussian beam. 2) The vectorial behavior of electromagnetic
fields is modeled precisely by vectorial reflection and transmission
coefficients. 3) This method can handle both types of VIPA (air-
filled n2 = 1 and solid n2 = n > 1 and moreover, the device in
the arbitrary environment by selecting n1 and n3). 4) The restricting
assumptions like scalar formulation, negligence of wave’s polarization
and setup’s misalignments are eliminated. 5) Demultiplexer pattern



Progress In Electromagnetics Research M, Vol. 13, 2010 15

is derived not only at focal plane but also at arbitrary distance after
the lens. Having exact description of 3D output pattern of device,
features such as reflection profile of VIPA and distance from the lens
can be employed to design and optimize a setup for the aforementioned
applications such as femtosecond pulse shaping, arbitrary waveform
generation and OCDMA encoding/decoding. Furthermore, the results
can fully predict the performance of VIPA demultiplexer general setup
and effects of design parameter variations.
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