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Abstract—Strong interests are recently emerging for development of
solid-state devices operating in the so-called “terahertz gap” region
for possible application in radio astronomy, industry and defense.
To fill the THz gap by using conventional electron approach or
transit time devices seems to be very difficult due to the limitation
that comes from the carrier transit time where extremely small
feature sizes are required. One way to overcome this limitation
is to employ the traveling wave type approach in semiconductors
like classical traveling wave tubes (TWTs) where no transit time
limitation is imposed. In this paper, the analysis method to analyze
the properties of drifting plasma waves in semiconductor-insulator
structure based on the transverse magnetic (TM) mode analysis
is presented. Two waves components (quasi-lamellar wave and
quasi-solenoidal wave), electromagnetic fields (Ey, Ez and Hx) and
ω- and k-dependent effective permittivity are derived where these
parameters are the main parameters to explain the interaction between
propagating electromagnetic waves and drifting carrier plasma waves
in semiconductor. A method to determine the surface impedances
in semiconductor-insulator multi-layered structure using equivalent
transmission line representation method is also presented since multi-
layered structure is also a promising structure for fabricating such a
so-called plasma wave device.
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1. INTRODUCTION

The idea to replace the electron beam in a traveling wave tube
with drifting carriers in a semiconductor has motivated tremendous
theoretical work to show and evaluate the possibilities of interactions
between drifting carriers and propagating slow electromagnetic waves.
The resulted convective instability by the interactions would lead to the
possibility of constructing a new type electromagnetic wave solid-state
amplifier.

In 1964, Solymar and Ash [1] published a one-dimensional analysis
of an n-type semiconductor traveling wave amplifier predicting high
gain per centimeter. They assumed a single species of charge carrier
with infinite recombination lifetime obtaining a characteristic equation
for the interaction that is reducible to the well known traveling wave
tube case. This one-dimensional analysis may be valid for the coupling
that takes place directly in the semiconductor bulk but in the case of
using external circuit, the coupling is realized only through a surface
of semiconductor which sandwiching a thin insulating layer, contacts
with the slow-wave circuit. Thus, the coupling through semiconductor
surface is essentially of two or three dimensions and hence, two- or
three- dimensional analysis would be required for the understanding of
amplification by this process.

In 1966, Sumi [2, 3] published an analysis of semiconductor
traveling wave amplification by drifting carriers in a semiconductor
in which he predicted 100 dB/mm gain for an InSb device operated
at 4 GHz at liquid nitrogen temperature. The analysis consisted of
evaluating the transverse admittance at the surface of a collision-
dominant semiconductor and equating it to the transverse admittance
at the surface of a developed helix (slow-wave structure). In
this analysis, all the electromagnetic fields in the semiconductor
are included for the estimation of propagation constants and the
amplification is attained beyond the threshold that the electronic gain
exceeds all the semiconductor loss.

In 1968, Zotter [4] corrected algebraic errors in Sumi’s paper and
numerically evaluated the available gain for different semiconductor
materials, predicting an even higher gain per millimeter. In 1969,
Steele and Vural [5] have extended Sumi’s analysis to consider the
interaction with a generalized admittance wall including the effects
of surface charge and currents. In 1970, Ettenberg [6] published an
analysis by following essentially the same method of Solymar and
Ash [1] which applicable for two carrier species, e.g., electrons and
holes, and derived a maximum resistivity for a given material for which
the single dominant carrier approximation remains valid. In their
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analysis, carrier-lattice collisions, diffusion and carrier recombination
were taken into account.

Although those theories were very different but they agreed on one
point, the gain may be very high (several hundred dB/mm). Motivated
by the possibilities of amplification with such high gain, in particular
demonstrated theoretically by Solymar and Sumi, some innovative
experimental study at 77 K down to 2.4K was performed [7, 8]. In
1991, Thompson et al. also claimed a gain of 13 dB/mm at 8 GHz
with an applied transverse dc field of 1.5 kV/cm using n-type GaAs
with interdigitated fingers and dc segmented fan antenna [9]. In their
experiments, they observed the change of reflection coefficients between
the biased and unbiased states of the device which they assumed to
be caused by the traveling wave interaction without any theoretical
explanation. At best only marginal internal electronic gain was
observed and it was not clear that the gain mechanism corresponded
to the predicted mode of operation.

These innovative experimental results demonstrated by various
group since 1960s till 1990s experiments did not show any net gain
and only an interaction much weaker than predicted by theory was
observed. Many effects may contribute to divergence between theory
and experiment. One of the reasons is mainly due to the strongly
collision-dominant (CD) nature of semiconductor plasma. Further
accurate theoretical approach and proper device design supported
by the remarkable progress in semiconductor materials, fabrication
techniques and measurement technologies should open new hope
towards the realization of solid-state THz device utilizing plasma wave
interaction.

Recently, we have reported theoretically the phenomena of
negative conductance in the frequency range of several GHz up to
THz region at temperature of 300K using III-V high-electron-mobility-
transistor (HEMT) semiconductor with interdigital structure [10]. A
generalized three-dimensional (3D) transverse magnetic (TM) mode
analysis to analyze the characteristics of two-dimensional electron gas
(2DEG) drifting carrier plasma at III-V hetero-interface was presented.
The detail of the theoretical approach for that structure was presented
in Reference [11]. Indeed, we have aggressively presented some
experimental results which absolutely can be explained well with our
theoretical approach [12–15].

In this paper, we report an extended and systematic approach
in detail to perform the three-dimensional analysis of the interac-
tions between carrier plasma waves and electromagnetic waves at
semiconductor-insulator interface structure for the readers to under-
stand the concept of drifting plasma and its interaction in such struc-
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ture. It includes the determination of electromagnetic fields in semicon-
ductor drifting plasma using the combination of well known Maxwell’s
equations and carrier kinetic equation based on semiconductor fluid
model, the determination of boundary condition at semiconductor-
insulator interface, and the derivation of the effective permittivity of a
semi-infinite semiconductor drifting plasma which are described in Sec-
tion 2, Section 3 and Section 4, respectively. These parameters are the
main parameters to explain the interaction between propagating elec-
tromagnetic waves and drifting carrier plasma waves in semiconduc-
tor. In Section 5, the analysis technique on the multi-layered structure
using transmission line representations is also presented since multi-
layered structure is also a promising structure for fabricating such a
so-called plasma wave device. Finally, the conclusion is summarized in
Section 6.

2. ELECTROMAGNETIC FIELDS IN
SEMICONDUCTOR DRIFTING PLASMA

To derive the electromagnetic fields in semiconductor drifting plasma,
the following assumptions are applied. (a) Only one sort of carriers
exists in the semiconductor layer, (b) the semiconductor layer is
isotropic and (c) mobility is not changed with electric field. The
assumptions are also made where the change of electromagnetic field
components, electron density, electron drift velocity are very small and
electrons drift in the z direction with a factor of exp[j(ωt−kz)]. Here,
k is the propagation constant in z direction as illustrated in Fig. 1.
Basically, we generalized the transverse magnetic (TM) mode analysis
by Sumi [2, 3] in such a way that the inertia effect of the electron in
the nearly collision free (NCF) situation is included. Since the collision
frequency, ν, in the semiconductor plasma falls typically in the THz or
sub-THz region at room temperature, and even in a lower frequency
range at lower temperature, the NCF case is a realistic possibility.

Figure 1. Semiconductor-insulator interface and its coordinate.
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The electromagnetic fields are obtained by the three groups of
equations mentioned as follows.

(1) The electron kinetic equation.

d
⇀
υ

dt
=

∂
⇀
υ

∂t
+ ⇀

υ · ∇⇀
υ = − q

m∗
(

⇀

E + ⇀
υ × ⇀

B
)
− υ2

th

n
∇n− ν

⇀
υ (1)

The Eq. (1) is obtained by applying the charge-current conservation
principle derived from zeroth momentum term of Boltzman transport
equation into the first momentum term of Boltzman transport
equation. The left-hand side of Eq. (1) represents an acceleration
term caused by external force applied to electrons. The first term,
second term and third term of the right-hand side of Eq. (1) represents
acceleration term caused by Lorentz force, diffusion term and the
collision term, respectively. The acceleration term caused by Lorentz
force was not considered in the Sumi’s analysis [2, 3]. The acceleration
term caused by Lorentz force shows the inertia effect experienced by
electrons when there is an introduction of external electromagnetic
fields. The collision term shows the effect due to the collisions
among the electrons or the collisions between the electrons and ionized
impurities. The diffusion term show the diffusion effect due to the
movement of electrons caused by electron temperature ambience.

(2) The charge and current equations.

ρ = −qn (2)
⇀

j = −qn
⇀
υ (3)

(3) The Maxwell’s equations.

∇× ⇀

E = −∂
⇀

B

∂t
and ∇× ⇀

E = −µo
∂

⇀

H

∂t
(4)

∇× ⇀

H =
⇀

j +
∂

⇀

D

∂t
and ∇× ⇀

H =
⇀

j + ε
∂

⇀

E

∂t
(5)

∇ · ⇀

D = ρ and ∇ · ⇀

E = −q

ε
n (6)

∇ · ⇀

B = 0 and ∇ · ⇀

H = 0 (7)

⇀

D = ε
⇀

E (8)
⇀

B = µo

⇀

H (9)

From the small signal theory, ⇀
υ, n,

⇀

E and
⇀

H can be represented by
summation of dc component and ac component. Symbol ‘0’ represents
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the dc component while symbol ‘1’ represents ac component. Here, υd

is a vector quantity.
⇀
υ = ⇀

υ0 + ⇀
υ1 = υd + ⇀

υ1

(⇀
υ0 = υd

)
(10)

n = n0 + n1 (11)
⇀

E =
⇀

E0 +
⇀

E1;
⇀

H =
⇀

H1

(
⇀

H0 = 0
)

(12)

Again, as mentioned previously, the assumptions are made where
the change of electromagnetic field components, electron density,
electron drift velocity are very small and electrons drift in the z
direction with a factor of exp[j(ωt − kz)]. Here, ⇀

υ0 is replaced by υd

and k is the propagation constant in z direction. Then, the Eqs. (1)–(7)
are converted as follows.

j

(
ω − kυd − j

τ

)
⇀
υ1 = − q

m∗
(

⇀

E1 + µ0υd ×
⇀

H1

)
− υ2

th

n0
∇n1 (13)

ρ1 = −qn1 (14)
⇀

j 1 = −q
(
n0

⇀
υ1 + n1υd

)
(15)

∇× ⇀

E1 = −jωµo

⇀

H1 (16)

∇× ⇀

H1 =
⇀

j 1 + jωε
⇀

E1 (17)

∇ · ⇀

E1 = −q

ε
n1 (18)

∇ · ⇀

H1 = 0 (19)

If the frequency of the input electromagnetic field is small enough
compared to collision frequency, ν where |ω − kυd| ¿ 1

τ is assumed,
then, the acceleration term j (ω − kυd)

⇀
υ1 of Eq. (13) can be omitted.

The following Eq. (20) is built from Eqs. (13) and (18).

⇀
υ1 = −µ

⇀

E1 +
εD

qn0
∇∇ · ⇀

E1 − µµoυd ×
⇀

H1 (20)

Then, the following Eq. (21) which shows the relation of Eqs. (13)–(19)
and (20) is obtained.

∇×∇× ⇀

E1 = ω2εµo

⇀

E1 − jωqn0µoµ
⇀

E1 + jωεµoD∇∇ · ⇀

E1

−jωεµoυd

(
∇ · ⇀

E1

)
+ qµn0µoυd ×∇× ⇀

E1 (21)

By introducing the ∇×∇× ⇀

E1 = ∇∇ · ⇀

E1 −∇2
⇀

E1, c = (εµo)−
1
2 and
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ωc = qµn0

ε into Eq. (21), then we can obtain Eq. (22).
[
∇2 +

ω2

c2

(
1− j

ωc

ω

)]
⇀

E1

=
(

1− j
ωD

c2

)
∇∇ · ⇀

E1 + j
ω

c2
υd

(
∇ · ⇀
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)
− ωc

c2
υd ×∇× ⇀

E1(22)

The above Eq. (22) is the fundamental equation for determining the
electromagnetic fields in the semiconductor drifting plasma. Here, the
effect of magnetic field is also considered.

In the further analysis, only the ac component of electromagnetic
fields are going to be dealt with, then, the above fundamental equation
can be rewritten as follows by omitting the symbol ‘1’.[

∇2 +
ω2

c2

(
1− j

ωc

ω

)]
⇀

E

=
(

1− j
ωD

c2

)
∇∇ · ⇀

E + j
ω

c2
υd

(
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E
)
− ωc

c2
υd ×∇× ⇀

E (23)

In the following step, we analyze the transverse magnetic (TM)
waves propagating along the interface between the insulator layer and
semi-infinite semiconductor layer as schematically shown in Fig. 1.
Here, the interface between those layers is set at y = 0. This work
is going to deal with the coupling between the electromagnetic waves
and drifting carrier waves which normally the phase velocity of the
electromagnetic waves need to be slowed down by a so-called slow wave
structure so that it can be just slightly higher than the drift velocity
of drifting carrier waves. One of the slow wave structures that have
been studied by our group is known as an interdigital-gate slow wave
structure [10, 13–15]. The electromagnetic waves which exist in the
slow-wave structure can be classified into transverse magnetic (TM)
waves and transverse electric (TE) waves. However, the electric field
direction of TE waves is in x direction where it is vertical to its traveling
direction and electron drifting direction. As a result, the coupling of
TE waves with the drifting electrons is assumed not to occur. Hence,
only the TM waves will contribute to the interactions with the drifting
electrons. In other word, in x direction, only the magnetic field, Hx

will have an effect on the drifting of electrons while the electric field,
Ex will not have an effect on the drifting of electrons.

In addition, the field component in the x direction is also ignored
with the reason that the width of semiconductor in the x direction is
small enough compared to the wavelength of microwaves. Thus, we
can assume that

Ex = 0 or
∂

∂x
= 0 (24)
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Hence, in this analysis, the components of the electromagnetic
fields that will be determined are Hx, Ey and Ez.

The following equations, Eq. (25) and Eq. (26) are obtained from
the extension of Eq. (23).

(
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((
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+
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)
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From Eqs. (25) and (26), the following differential equation is derived
to relate Ey and Ez.(

∂2

∂y2
− Γ2

l

)(
∂2

∂y2
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s

)(
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)
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∂y2
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Here,
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Γl =

√
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√
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d
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The above Eqs. (28) and (29) can also be expressed in the forms as the
following.

Γs =

√
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c2
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√
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=
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Here,
λD ≡ 1

ωp

√
Dν =

√
εkBTe

nq2 (debye length)

ωc ≡ ω2
p

ν (dielectric relaxation frequency) (ωp: plasma frequency)

ω∗c ≡ −j
ω2

p

ω−kυd−jν

Assuming Γ as a propagation constant in the y direction, the
following Eq. (33) can be formed from Eq. (27).

(
Γ2 − Γ2

l

) (
Γ2 − Γ2

s

)
= −ξ2Γ2 (33)

From Eqs. (27) and (33), it can be seen that there is a coupling between
Γl wave and Γs wave. Here Γl wave and Γs are known as the decay
constants of quasi-lamellar wave (l-wave) and quasi-solenoidal wave
(s-wave), respectively. The properties of these waves are going to
be mentioned later. However, in a general semiconductor material,
drift velocity of carriers are very small compared to the light speed in
semiconductor and thus, a condition of (υd/c)2 ¿ 1 is usually valid
which means that the term of ξ2 ¿ 1 can be considered. As a result,
the right-hand side of Eq. (27) can be ignored. In other word, the
coupling between Γl wave and Γs wave will become very small. If the
coupling is considered, then, the propagation constant of the TM waves
can be expressed as

Γ2
± =

(
Γ2

s + Γ2
l − ξ2

)±
√(

Γ2
l − Γ2

s

)2 − 2ξ2
(
Γ2

l + Γ2
s

)
+ ξ4

2
(34)

Next, the following boundary conditions of semi-infinite semiconductor
are made.

Ey(y = −∞) = 0 (35)
Ez(y = −∞) = 0 (36)

From Eq. (27), it is shown that Ey and Ez component are constructed
by two factors, Γ+ and Γ−. Thus, those components can be expressed
in term of Γ+ and Γ− as follows.

Ey = Ayle
Γ+y + Ayse

Γ−y (37)

Ez = Azle
Γ+y + Azse

Γ−y (38)

Ayl, Ays, Azl, Azs are the coefficients determined by the boundary
condition at semiconductor-insulator interface.

Next, Eqs. (37) and (38) are introduced into Eqs. (25) and (26).
Here, the assumption of

ωD

c2
¿ 1 (39)
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is made due to the diffusion constant in GaAs is only a few tens cm2/s
at the considered frequency. Also, it will be shown later that to make
the interactions, the propagation velocity of microwave and electron
drift velocity should be nearly equal,

ω

k
∼= υd (40)

where the conditions of(υd

c

)2
¿ 1,

ω

kυd

(υd

c

)2
¿ 1 or

ωcυd

kc2
¿ 1 (41)

can be considered. However, the term ωcυd
kc2

cannot be ignored in the
following Eq. (42).

Ayl = j
Γ+

k

1− j ωD
c2

1− ω
kυd

(
υd
c

)2 − j ωD
c2

Azl
∼= j

Γ+

k

Azl

1− ω
kυd

(
υd
c

)2 (42)

Ays = j
k

Γ−

1− j ωD
c2
− j ωcυd

kc2

1− j ωD
c2

Azs
∼= j

k

Γ−
Azs (43)

For Eq. (43), the conditions of ωD
c2
¿ 1 and ωcυd

kc2
¿ 1 can be applied.

From Eq. (16), Hx is obtained as

Hx = j
1

µoω

(
−jkEy +

∂Ez

∂y

)
. (44)

Eqs. (42) and (43) are introduced into Eq. (37) which produces the
following Eq. (45).

Ey = j
Γ+

k

Azl

1− ω
kυd

(
υd
c

)2 eΓ+y + j
k

Γ−
Azse

Γ−y (45)

Hx can be expressed again by considering Eqs. (38), (44) and (45).

Hx = j
ευdΓ+

k
Azle

Γ+y +
j

µoωΓ−

(
k2 − Γ2

−
)
Azse

Γ−y (46)

Assuming that the coupling between l-wave and s-wave is very weak
where ξ2 = 0 then the following assumptions are valid.

Γ+
∼= Γl (47)

Γ− ∼= Γs (48)
Replacing Azl with Al and Azs with As then finally the electromagnetic
field components are obtained as follows.

Ey = j
Γl

k
· Al

1−j ω
kυd

(
υd
c

)2 eΓly+j
k

Γs
Ase

Γsy =j
Γl

k
·Ale

Γly+j
k

Γs
Ase

Γsy (49)

Ez = Ale
Γly + Ase

Γsy (50)

Hx =
jωε

k

(
Γl

k
· kυd

ω
Ale

Γly +
k

Γs

(
1− j

ωc

ω

)
Ase

Γsy

)
(51)
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Here, the first term and the second term of the right-hand side
of Eqs. (49), (50) and (51) represents the quasi-lamellar component
and the quasi-solenoidal component, respectively. The quasi-lamellar
component satisfies the condition of

∇× ⇀

E ∼= 0 or ∇× ⇀

El
∼= 0 (52)

while the quasi-solenoidal component satisfies the condition of

∇ · ⇀

E ∼= 0 or ∇ · ⇀

Es
∼= 0 (53)

which can be confirmed using Eqs. (53) and (50). Here, again Γs and
Γl are referred as the decay constant of solenoidal wave (s-wave) and
lamellar wave (l-wave), respectively.

The electric fields in semiconductor
⇀

E are formed by
⇀

El and
⇀

Es.
⇀

E =
⇀

El +
⇀

Es (54)

The divergence of electric fields is given as

∇ · ⇀

E = −qn

ε
(55)

Then, Eq. (55) is converted to the following equation.

∇ ·
(

⇀

El +
⇀

Es

)
= −qn

ε
∇ · ⇀

El
∼= −qn

ε
(56)

Eq. (56) shows that the behavior of electrons in the semiconductor
near to the interface of semiconductor-insulator is mainly influenced
by

⇀

El.
The rotation of electric fields is given as

∇× ⇀

E = −jωµo

⇀

H1 (57)

Then, Eq. (57) is converted to the following equation.

∇×
(

⇀

El +
⇀

Es

)
= −jωµo

⇀

H1 ∇× ⇀

Es
∼= −jωµo

⇀

H1 (58)

The above Eq. (58) shows that the magnetic field in the semiconductor
is mainly influenced by

⇀

Es. In addition, it is shown from Eq. (46)
that the behavior of electrons is not influenced by

⇀

Es. In other
word, the lamellar component represents the longitudinal component
which can influence the electron distribution near to the interface
of semiconductor-insulator structure while the solenoidal component
represents the transverse component which can influence the x
direction magnetic field. These l-wave and s-wave are schematically
shown in Fig. 2.
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S-wave

S-wave

L-wave

S-wave + L-wave
D
λ

Ez

y

x

Semiconductor

Figure 2. S-wave and l-wave in semiconductor-insulator structure.

The term “quasi” means that ∇× ⇀

El and ∇· ⇀

Es are not perfectly
have a value of zero as shown in Eqs. (52) and (53). This also gives
a meaning that

⇀

El and
⇀

Es is not strictly independent between each
other. The electromagnetic fields of TM waves in semiconductor, Ey,
Ez, and Hx are given by Eqs. (49), (50) and (51), respectively.

3. BOUNDARY CONDITION AT
SEMICONDUCTOR-INSULATOR INTERFACE

In reality, due to various causes, the surface states will exist at the
semiconductor-insulator interface. It is generally believed that the
response time of the surface states are very slow, lying in the kHz to
MHz region. In this analysis, the surface recombination of carriers at
the semiconductor-insulator interface is ignored with the reason that
the frequency range dealt in this work is high enough compared to
the frequency range of surface recombination. Generally, in normal
condition, the surface charge, ρsur and surface current, Jsur exist due
to the existence of carriers in semiconductor. Jsur is considered only
in the z direction. Thus, the boundary conditions are determined as
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below which relates both ρsur and Jsur.

ε1Ey1 − ε2Ey2 = ρsur (59)
Hx1 −Hx2 = −Jsur (60)

Here, the subscript “1” represents the dielectric layer and subscript
“2” represents the semiconductor layer. The following Eq. (61) is also
obtained from the condition of charge-current conservation principles.

jωρsur = jkJsur +
⇀

j y2 (61)
⇀

j y2 is the conductive current of y direction component in
semiconductor.

The boundary conditions used in the previous analysis works done
by other researchers are summarized according to the condition of
(A) without consideration of diffusion and (B) with consideration of
diffusion.

(A) Without consideration of diffusion (zero temperature
proximity Te = 0 K)

In this situation, l-wave is terminated and only s-wave exists in
semiconductor. Kino, G. S. [16] considered the existence of both ρsur

and Jsur at the interface which is related by the equation Jsur = ρsurυd.
This treatment is equivalent to the Hahn’s boundary condition used in
the electron beam theory.

(B) With consideration of diffusion
(i) Sumi [2, 3] applied the condition of ρsur = 0, Jsur = 0 in his

analysis.
(ii) Blotekjaer [17] applied the condition of ε1Ey1 = ε2Ey2 and

⇀

j y2 = 0 in his analysis. It can be seen that Eqs. (49), (50) and (51) is
equivalent to the item (i) and (ii) if the diffusion is being considered.

(iii) Mizushima et al. [18] considered that Jsur = 0 when signal
frequency is nearly equal to dielectric relaxation frequency and ρsur

is represented by scalloped charges referring to Hahn’s boundary
condition.

(iv) Steele et al. [19] applied the condition of ρsur 6= 0, Jsur 6= 0
in his analysis. According to his analysis, to achieve the condition of
ρsur = 0, Jsur = 0, dc magnetic field with infinitive value has to be
applied in x direction.

If there is no occurrence of diffusion where the carriers do not
perform thermal motion, the charges will only appear at the surface.
This also means that only s-wave exists in semiconductor bulk.
Nevertheless, if the carriers perform thermal motion, the charges will
be distributed in the semiconductor bulk near to the surface. To
assume that the diffusion current is not existing at the surface, this
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condition, ρsur = 0, Jsur = 0 has to be set. The penetration of space-
charges will result in the existence of l-wave. In the collision-dominant
condition, (ω∗

C
= ωC ) and (ω ¿ ωC ), the penetration distance is almost

equal the Debye length, λD , where this statement can be understood
from Eq. (32).

With respect to the above considerations, we proceeded the
analysis based on the boundary condition where ρsur = 0, Jsur = 0,
meaning that the diffusion is considered.

Then, the boundary conditions are re-determined as follows.

ε1Ey1 = ε2Ey2 (62)
Hx1 = Hx2 (63)
Ez1 = Ez2 (64)

Using these boundary conditions, the ratio of Al/As for the electric
field in the z direction is obtained as follows.

Al

As
= j

k2

ΓsΓl

ωc

ω − kυd
(65)

By considering Eq. (65), the electromagnetic field components, Ey, Ez,
and Hx are rewritten as

Ey = j
k

Γs
As

(
eΓsy − j

ωc

(ω − kυd)
eΓly

)
(66)

Ez = As

(
eΓsy − j

k2

ΓsΓl

ωc

(ω − kυd)
eΓly

)
(67)

Hx =
jε2ω

Γs
As

((
1− j

ωc

ω

)
eΓsy − j

ωc

(ω − kυd)
kυd

ω
eΓly

)
(68)

The following Eq. (69) is obtained from Eqs. (51) and (65).

Hxl

Hxs
= η = −j

kυdωc

(ω − jωc) (ω − kυd)
(69)

The above Eq. (69) shows that the s-wave component and l-wave
component of electromagnetic fields have to be excited in order to
be satisfied.

4. EFFECTIVE PERMITTIVITY OF A SEMI-INFINITE
SEMICONDUCTOR DRIFTING PLASMA

In this section, in order to derive the ω- and k-dependent effective
permittivity of semi-infinite semiconductor drifting plasma, Ey, Ez and
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Hx components are classified into lamellar component and solenoidal
component. The following group of equations was used in the analysis.

Ys ≡ jωε∗

Γs
; Yl ≡ j

ευdΓl

k
; ε∗ = ε

(
1− j

ω∗c
ω

)
(70)

Here, Yl and Ys are the admittances of l-wave and s-wave, respectively.
ε∗ is the effective permittivity.

First, the expression for Eq. (51) of Hx is rewritten as follows,
assuming ωc

∼= ω∗c .

Hx =
jωε

k

(
Γl

k
· kυd

ω
Ale

Γly+
k

Γs

(
1−j

ωc

ω

)
Ase

Γsy

)
=

jωεΓlυd

kω
Ale

Γly

+
jωε

Γs

(
1− j

ωc

ω

)
Ase

Γsy =
jευdΓl

k
Ale

Γly +
jωε∗

Γs
Ase

Γsy (71)

S-wave component of Ey, Ez and Hx can be expressed as the following
by referring to Eqs. (49), (50) and (71), respectively.

Esy = A+
s

jk

Γs
eΓsy −A−s

jk

Γs
e−Γsy =

jk

Γs

(
A+

s eΓsy −A−s e−Γsy
)

= Ys
k

ωε∗
(
A+

s eΓsy −A−s e−Γsy
)

(72)

Esz = A+
s eΓsy + A−s e−Γsy (73)

Hsx = −A+
s

jωε∗

Γs
eΓsy + A−s

jωε∗

Γs
e−Γsy = −jωε∗

Γs

(
A+

s eΓsy −A−s e−Γsy
)

= −Y s

(
A+

s eΓsy −A−s e−Γsy
)

(74)

L-wave component of Ey, Ez and Hx can also be expressed as the
following by referring also to Eqs. (49), (50) and (71), respectively.

Ely = A+
l j

Γl

k
eΓly −A−l j

Γl

k
e−Γly = j

Γl

k

(
A+

l eΓly −A−l e−Γly
)

= j
Yl

ευd

(
A+

l eΓly −A−l e−Γly
)

(75)

Elz = A+
l eΓly + A−l e−Γly (76)

Hlx = −A+
l j

ευd

k
Γle

Γly + A−l j
ευd

k
Γle

−Γly

= −j
ευd

k
Γl

(
A+

l eΓly −A−l e−Γly
)

= −Yl

(
A+

l eΓly −A−l e−Γly
)
(77)

The calculation of Hx/Ey is performed as follows.

Hx

Ey
=

Hsx + Hlx

Esy + Ely
=

Ys (A+
s −A−s ) + Yl

(
A+

l −A−l
)

kYs
ωε∗

(
A+

s −A−s
)

+ Yl
ευd

(
A+

l −A−l
) =

ωε

k
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Ys

(
A+

s −A−s
)

+ Yl

(
A+

l −A−l
)

=
ωε

k

[
kYs

ωε∗
(
A+

s −A−s
)

+
Yl

ευd

(
A+

l −A−l
)]

Ys

(
1− ε

ε∗
) (

A+
s −A−s

)
= Yl

(
ω

kυd
− 1

)(
A+

l −A−l
)

(
A+

l −A−l
)

(
A+

s −A−s
) =

Ys

(
1− ε

ε∗
)

Yl

(
ω

kυd
− 1

) =
ωε∗

Γs

k

ευdΓl

(
1− ε

ε∗
)

(
ω

kυd
− 1

)

(
A+

l −A−l
)

(
A+

s −A−s
) =

ωk2 (ε∗ − ε)
ΓsΓlε (ω − kυd)

= −j
k2

ΓsΓl

ω∗c
(ω − kυd)

≡ K

(78)

Then, the admittance at interface is determined as follows:

Y |y=0 = −Hx

Ez
= −

[−Ys (A+
s −A−s )− Yl

(
A+

l −A−l
)]

(
A+

s + A−s
)

+
(
A+

l + A−l
)

=
Ys (A+

s −A−s ) + Yl

(
A+

l −A−l
)

(
A+

s + A−s
)

+
(
A+

l + A−l
) (79)

For the case of semi-infinite, A−s = A−l = 0. The following calculation
is obtained by introducing Eq. (78) into (79).

Y |y=0 =Ys

1+ Yl
Ys

A+
l

A+
s

1 + A+
l

A+
s

=Ys

1−j ΓsευdΓlk
2ω∗c

ωε∗kΓsΓl(ω−kυd)

1− j k2

ΓsΓl

ω∗c
(ω−kυd)

=Ys

1−j kυdω∗c
(ω−jω∗c )(ω−kυd)

1− j k2

ΓsΓl

ω∗c
(ω−kυd)

(80)
Assuming that kυd

(ω−jω∗c ) ¿ ω∗c
(ω−kυd) , then the admittance is obtained as

follows.

Y |y=0 =
jωε

Γs
·

1− j ω∗c
(ω−kυd)

1− j k2

ΓsΓl

ω∗c
(ω−kυd)

=
jωεeff

Γs
(81)

Eq. (81) can also be obtained directly from Eqs. (67) and (68). Finally,
the effective permittivity is drawn out from Eq. (81).

εeff = ε
1− j ω∗c

(ω−kυd)

1− j k2

ΓsΓl

ω∗c
(ω−kυd)

(82)

Here,

ω∗c = −j
ω2

p

ω−kυd−jν ; ωp =
√

q2n0

m∗ε (Plasma frequency)
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Again, the ω- and k-dependent effective permittivity can also be
expressed in the following form.

εeff = ε
1− ω2

p

(ω−kυd)(ω−kυd−jν)

1− k2

ΓsΓl

ω2
p

(ω−kυd)(ω−kυd−jν)

(83)

This effective permittivity is used to describe the dielectric response
of the semiconductor plasma to the TM surface wave excitation.
It is noted here that the derived effective permittivity presented in
Reference [10] is only applicable to the two-dimensional electron gas
(2DEG) structure but the derived effective permittivity as expressed in
Eq. (83) is applicable to the semiconductor-insulator bulk structure.
The details on the derivation of the effective permittivity for 2DEG
structure can be found in Reference [20]. We have shown that
the transverse decay constant of s-wave, Γs and longitudinal decay
constant of l-wave, Γl for both structures are different which result
in the different expression of effective permittivity. It can also
be understood that the thermal velocity is related to those decay
constants.

5. TRANSMISSION LINE REPRESENTATIONS FOR
MULTI-LAYERED STRUCTURES

In Sections 2, 3 and 4, the properties of electromagnetic fields and ef-
fective permittivity excited by drifting plasma waves in semiconductor-
insulator single structure are derived. These parameters are basically
the main parameters to be used in further analysis to predict or in-
dicate the interaction between propagating electromagnetic waves and
drifting carrier plasma waves in semiconductor. The examples of anal-
ysis procedures can be found in References [10] and [12], where we
presented the formulation to calculate the admittance of interdigital
gate slow-wave structure on bulk semiconductor structure and semi-
conductor with 2DEG structure, respectively, in order to understand
the condition of interaction. In this section, the another analysis tech-
nique on the multi-layered structure using transmission line represen-
tations is presented since multi-layered structure is also an interesting
structure for fabricating such a so-called plasma wave device. Those
derived basic parameters can be directly applied in this transmission
line representation to calculate the surface impedance and hence, the
conductance characteristics.

This section describes an analysis on the multi-layered structure of
insulator-semiconductor-insulator (I-S-I) structure by using transmis-
sion line representations. The analyzed structure and its equivalent
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(a) (b)

Figure 3. (a) Schematic insulator-semiconductor-insulator structure
and (b) its transverse equivalent circuit.

circuit is shown in Fig. 3. In this structure, the semiconductor layer
with a thickness of b is sandwiched by two insulator layers having sur-
face impedance of Z1 and Z2. It is assumed here that the s-wave com-
ponent and l-wave component are excited independently. Using equiv-
alent transmission line representation, the characteristic impedances
of s-wave, Zos and l-wave, Zol in semiconductor is given as

Zos =
Γs

jε (ω − jωc)
(84)

Zol =
k

jευdΓl
(85)

The problem that may occur during the determination of surface
impedance of semiconductor layer is the contribution level of s-wave
and l-wave. It was mentioned in the previous section that s-wave and
l-wave have to be excited in order to satisfy Eq. (69). Due to this
condition, the surface impedance, Zs and Zl determined from s-wave
and l-wave will be contributed by a ratio of 1/ (1 + η) and η/ (1 + η),
respectively as shown in Fig. 3.

Assuming that the surface impedance at the interface A as shown
in Fig. 3 is Z and the surface impedance of dielectric at the back side
is Z2, then Z is given as

Z =
(

Z2 + Zsh

Z2 + Zop

)
Zop (86)
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Here Zsh represents the surface impedance at interface A when Z2

is made short-circuited (Z2 = 0) while Zop represents the surface
impedance at interface A when Z2 is made open-circuited (Z2 = ∞).

For simplicity, s-wave and l-wave are assumed to be short-
circuited, then Zsh and Zop can be expressed as follows.

Zsh =
1

1 + η
Zos tanh Γsb +

η

1 + η
Zol tanhΓlb (87)

Zop =
1

1 + η
Zos coth Γsb +

η

1 + η
Zol cothΓlb (88)

Figure 4 shows the structure where the insulator layer and the
semiconductor layer are structured to form a multi-layered structure.
Again, the surface impedance Z at the interface A is derived.
Here, ‘I’ represents the insulator layer while ‘II’ represents the
semiconductor layer. ZII

os , ZII
ol , ΓII

s , and ΓII
l are the characteristic

impedance and the propagation constant of s-wave and l-wave in
semiconductor layer, respectively. In the other hand, ZI

o and ΓI are
the characteristic impedance and the propagation constant in insulator
layer, respectively.

The surface impedance Zi,I , Zi,II and Zi−1,I at the Ai,I , Ai,II

and Ai−1,I interface, respectively, are given as follows. Here, i is the
number of structure where a pair of semiconductor layer and insulator

(a) (b)

Figure 4. (a) Schematic multi-layered structure and (b) its transverse
equivalent circuit.
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layer represents one structure.

Zi,I = ZI
o

Zi,II + ZI
o tanhΓII

s bII

ZI
o + Zi,II tanhΓII

s bII
(89)

Zi,II =
(

Zi−1,I + Zsh

Zi−1,I + Zop

)
Zop (90)

Zsh =
1

1 + η
ZII

os
tanhΓII

s bII +
η

1 + η
ZII

ol
tanhΓII

l bII (91)

Zop =
1

1 + η
ZII

os
cothΓII

s bII +
η

1 + η
ZII

ol
cothΓII

l bII (92)

The surface impedance of substrate at A0,I interface is given by

Zsub = Z0sub tanhΓsubbsub (93)

Here, Γsub =
√

k2 − ω2/c2
sub. Hence, the surface impedance at

interface A can be determined from Eqs. (89)–(93). From the
obtained surface impedance, the conductance characteristics can be
determined. The phenomena of negative conductance exist when the
coupling interaction between the propagating electromagnetic waves
and drifting plasma waves is achieved. It has been presented that
the negative conductance characteristics occur when the drift velocity
of carriers is slightly exceeds the phase velocity of electromagnetic
waves [10].

6. CONCLUSION

An improved and reliable method to analyze the properties of
semiconductor plasma in a semiconductor-insulator structure based
on the transverse magnetic (TM) mode analysis was presented. Two
waves components (quasi-lamellar wave and quasi-solenoidal wave),
electromagnetic fields (Ey, Ez and Hx) and ω- and k-dependent
effective permittivity were derived. A method to determine the
surface impedances in semiconductor-insulator complex structure using
equivalent transmission line representation method was also presented
since a multi-layered structure is also a promising structure for
fabricating a plasma wave device.
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APPENDIX A.

The list of symbols and their definitions are summarized as follows.
⇀
υ: electron mean drift velocity,
q: electronic charge,
m∗: effective mass of electron,
⇀

E: electric field in semiconductor,
⇀

H: magnetic field in semiconductor,
µo: permeability of free-space,
n: electron density,
kB: Boltzman constant,
Te: electron temperature,
τ : relaxation time of electrons,
ε: dielectric permittivity of semiconductor.
⇀

D: electric flux density,
⇀

B: magnetic flux density,
ρ: charge density,
⇀

j : conductive current density,
µ: mobility of semiconductor µ = qτ

m∗ ,
D: diffusion constant D = kT

m∗ν or D = υ2
thτ ,

c: light velocity in semiconductor c = 1√
εµo

,
ωc: dielectric relaxation frequency ωc = qµno

ε ,

υth: mean thermal velocity υth =
√

kBTe

m∗ ,
ν: collision frequency ν = 1

τ ,
ω: angular frequency,
ωp: plasma frequency.
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