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Abstract—An efficient method is presented for rigorous description
of three-dimensional electromagnetic diffraction fields in slot systems
containing several parallel plane interfaces between dielectrics
and conductors. For such structures, the method employs the
representation of spatial field components in terms of two complex
scalar functions. They specify two field polarizations, which reflect
and refract on all parallel dielectric interfaces independently, one from
the other, which essentially simplify the total solution of diffraction
problem. As an example, the application of eigen-function expansions
and mode-matching technique solves the specific problem of three-
dimensional diffraction of a plane electromagnetic wave by a slot in
a thin conducting screen located ahead of a half-infinite dielectric.

1. INTRODUCTION

The three-dimensional diffraction problem for a slot and strip
structures with planar stratified media is of interest since its solution
is the bases for the theory of slotlines, striplines and another
electromagnetic transmission systems [1–6]. However, this case is
more complex for computations in comparison with the case of two-
dimensional diffraction [7–16], because one cannot consider diffraction
fields in terms of two independent polarizations for which the field
equations split into two independent subsystems. For example,
in the works [3, 4] the three-dimensional diffraction by a slot and
strip structures with dielectric layers is described by a system of
singular integrodifferential equations for the spatial field components,
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whose solution is constructed in a matrix form. Another approach
employs a representation of these components in term of two scalar
functions, which specify two different polarizations, just as proposed
in the book [17] for the diffraction by a half-plane. Although these
polarizations will not be independent one from the other in the three-
dimensional case, such a representation could essentially simplify the
problem. Really, this approach provides opportunity to obtain a
comparatively simple solution for an unloaded strip line [5, 6]. But
in the presence of supplementary planar dielectrics, placed parallel
to the line, as well for a simple slotline on dielectric layer without
conducting substrate, such an approach does not provide appreciable
advantage. The origin for this is the lack of coincidence between the
polarizations under consideration, and the polarizations at reflection
and refraction on dielectric interfaces are independent [17]. As a
result, the equations describing such reflection and refraction do not
split into two independent systems, and one should take into account
two polarizations at once on every dielectric interface that essentially
complicates a solution. It could be more simple for field representation
allowing independent reflection and refraction on dielectric interfaces,
as it takes place for the ordinary H and E polarizations of a plane
wave [17], one of which is orthogonal to its plane of incidence, and
the other is parallel to that. In this work, we consider such a
representation for three-dimensional diffraction by a slot system with
several plane dielectric interfaces parallel one to the other and also
parallel to the plane conducting screen containing a diffraction obstacle
(slot). Without considerable complications, this representation can be
extended to those dielectric media, which are not isotropic and have
one optic axis orthogonal to the plane interfaces.

2. GENERAL REPRESENTATION OF
ELECTROMAGNETIC FIELDS FOR
THREE-DIMENSIONAL DIFFRACTION PROBLEMS

Let us consider Maxwell’s equations [17–19] for stationary fields in
homogeneous anisotropic medium without sources, assuming their
harmonic time-dependence determined by the factor exp(−iωt). We
shall suppose that the dielectric tensor of a medium in the rectangular
coordinate system (x, y, z) has the diagonal form with the components
εe, εo and εo in the x-, y- and z-axes, respectively. For this general
case, the spatial components of three-dimensional stationary field can
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be expressed in terms of two complex scalar functions U and V :
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where k = ω/c. Maxwell’s equations [17–19] will be valid for these
expressions, if the functions satisfy the following equations:
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Now let us suppose that the field is harmonically dependent on

the z-coordinate:

U(x, y, z) = u(x, y) eikpz V (x, y, z) = v(x, y) eikpz

where p is the normalized propagation constant of the field along the
z-axis. Then the representation (1) takes the form:
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where the common multiplier exp(ikpz) of all components is omitted.
In this case, Equation (2) becomes
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The representation (3) is not identical to that of the three-dimensional
field in [17]: the latter includes only the first derivatives of the
scalar field functions with respect to the spatial coordinates x and
y, whereas in (3) the second derivatives are also present. However,
the representation (3) is more convenient for the consideration of
diffraction structures having parallel interfaces between dielectric and
conducting media, if they are orthogonal to the x-axis. Really, the
functions u and v will determine the ordinary H and E polarizations
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with respect to planes of wave incidence, and these polarizations reflect
and refract on these interfaces independently one from the other. This
circumstance essentially simplifies solution of diffraction problems for
such structures, which will be demonstrated in the following section.

3. THREE-DIMENSIONAL DIFFRACTION BY A SLOT
IN A THIN CONDUCTING SCREEN SPACED APART
FROM HALF-INFINITE DIELECTRIC

By the way of illustration, let us consider the plane-wave diffraction by
a slot in an infinitely thin perfectly conducting screen located ahead of
the half-infinite dielectric (Figs. 1 and 2), — a simple example of the
three-dimensional diffraction by a slot system with dielectric interfaces.
This example can be considered as a simplified simulation of a process
of photosensitive material exposure through an opaque template with
passing openings.

Let the plane wave with the unite amplitude

u(x, y) = (u0/σ0) exp [ik(α0x + β0y)]
v(x, y) = (v0/σ0) exp [ik(α0x + β0y)]

(5)

is incident upon a slot in a plane infinite conducting screen. Here,
σ0 = (β2

0 + p2)1/2, p = sinϑ sinϕ, α0 = cos ϑ and β0 = sinϑ cosϕ are
the wave propagation constants along the x- and y-directions, and the
scalar parameters u0, v0 determine the wave polarization (u2

0+v2
0 = 1):

when u0 = 1, v0 = 0, the electric vector of the wave is directed
orthogonally to its plane of incidence (along the vector eu, Fig. 2),
but at u0 = 0, v0 = 1 it lies in this plane (i.e., it is parallel to the
vector ev).

Figure 1. Diffraction by a slot
structure with a dielectric inter-
face (a two-dimensional view).

Figure 2. Three-dimensional
plane wave diffraction by a slot
(a view from the direction of a
dielectric).
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The diffraction problem will be solved by mode matching
technique [20], which employs the division of the field-propagation
volume into homogeneous regions of a simple geometry and matching
of the fields on their boundaries. Here, it is natural to consider the
following three regions: the half-space before the screen (x ≤ 0) from
which the incident plane wave propagates, the region between the
screen and a dielectric interface (0 ≤ x ≤ h), and the interior of a
dielectric (x ≥ h). For each of these regions the field will be sought as
a Fourier integral on plane waves:
before the slot (for x ≤ 0, with explicit separation of the incident and
reflected plane waves)
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)
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+
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before the dielectric interface (0 ≤ x ≤ h)
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in a dielectric (x ≥ h)
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Here, A(β) and B(β) are the unknown amplitudes of Fourier
components,

D(β) = 1 + R(β)e2ikαh D̄(β) = 1− R̄(β)e2ikαh (9)
To ensure validity of Equation (4) for every region, we should set

α =
√

1− σ2 γ =
√

ε0 − σ2 γ̄ =
√

ε0(1− σ2/εe) σ2 = p2 + β2 (10)
One should choose the branch of the square roots (10) having the
nonnegative imaginary parts to provide decrease of diffraction fields
moving away from the slot [17–20].
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The spatial components of the electric and magnetic fields in
various regions can be determined as a result of substitution of the
representations (6), (7) or (8) for each region into Equation (3). The
unknown Fourier amplitudes in (6)–(8) will be determined through the
boundary conditions for these components. If the parameters R, R̄
and T , T̄ are the corresponding amplitude coefficients of reflection and
refraction [17] for two different polarizations on the dielectric interface
x = h, i.e.,

R(β) =
α− γ

α + γ
R̄(β) =

εoα− γ̄

εoα + γ̄
T (β) =

2α

α + γ
T̄ (β) =

2εoα

εe(εoα + γ̄)
(11)

then the continuity conditions for the tangential field components
on this interface are satisfied automatically. Thereby, it remains to
consider the boundary conditions at the plane of a screen x = 0.
Here, the tangential electric components should vanish on a conducting
surface, but in a slot one should enforce the continuity conditions on
the tangential electric and magnetic components:

Ey(± 0, y) = 0 for |y| > l, Ez(± 0, y) = 0 for |y| ≥ l (12a)
Ey(− 0, y) = Ey( + 0, y) for |y| < l,

Ez(− 0, y) = Ez( + 0, y) for |y| ≤ l (12b)
Hy(− 0, y) = Hy( + 0, y) for |y| < l,

Hz(− 0, y) = Hz( + 0, y) for |y| ≤ l (12c)

where the symbol “0” in the arguments denotes an infinitesimal
positive value. As well known [17–21], the electric field component
Ez which is parallel to the edges of a slot y = ±l must be equal to
zero. The same condition should be imposed on the difference of the
corresponding magnetic components Hz on both sides of a conducting
surface to provide zero value of the normal y-component of the surface
current on the edges [17–21]. That is why the points y = ±l are
included in the conditions for Ez, Hz and ignored by the conditions
for Ey, Hy.

Substitution of the representations (6), (7) into (12) yields the
following system of integral equations:
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(13)
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We will solve these equations by analogy with the case of two-
dimensional diffraction by a slot in a screen of finite thickness [7–10],
considering the thin conducting screen having finite but very small
thickness compared with the wavelength.

The functions of y in the left sides of (13) determine the fields Ey

and Ez on a slot. They vanish beyond the interval −l ≤ y ≤ l, so that
these functions can be represented as a Fourier series within this finite
interval: ∫ +∞
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Such values of spatial Fourier frequencies provide zero values of the
function (15b) and of the derivative of the function (15a) on the edges
of a slot.

Using the representations (15), one can express the integral
Fourier amplitudes in terms of the unknown amplitudes a

(s,a)
m and b

(s,a)
m

of the discrete series (15)
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where
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Inserting the representations (16) into integral Equation (14)
yields two systems of linear algebraic equations for the amplitudes of
the symmetric and antisymmetric Fourier modes (15):
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These systems can be solved by the method of reduction [22],
restricting ourselves to finite number of unknowns. Using the obtained
solution for the field amplitudes a

(s,a)
m and b

(a,s)
m on a slot, one

can compute the integral Fourier amplitudes (16) and the spatial
components of the electric and magnetic fields with the help of
Equations (6)–(8) and (3). Fig. 3 displays the example of such
computation for the following case: the half-width of a slot is l =
0.382λ (kl = 2.40); the distance between a dielectric and a screen is
h = 0.907 (kh = 5.70); the orientation angles of the diffracting wave
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(5) are ϑ = 30◦, ϕ = 20◦; a dielectric is isotropic; its permittivity
is the scalar complex value of 1.90 + 2.00 × 10−2i, close to the value
used in the numerical example of [10]. This figure plots magnitudes of
the electric and magnetic field vectors |E| = (|Ex|2 + |Ey|2 + |Ez|2)1/2

and |H| = (|Hx|2 + |Hy|2 + |Hz|2)1/2 in the same scale. We have
considered the cases of two polarizations of the incident plane wave:
the so-called U polarization, when u0 = 1, v0 = 0, and the wave
(5) is polarized orthogonally to its plane of incidence (parallel to the
vector eu on Fig. 2) and the V polarization with u0 = 0, v0 = 1,
when the electric vector of the wave is parallel to this plane (vector ev

on Fig. 2). Fig. 3 demonstrates the presence of field singularities on
the edges of a slot and the existence of field discontinuities on both
sides of a conducting screen, as well as on the dielectric interface,
where the discontinuous electric component Ex appreciably differs
from zero. Our calculations show that both polarizations are present
simultaneously in the diffraction field even if one of them is absent in
the incident wave (5), that is the essential feature of three-dimensional
diffraction [21]. Really, Equation (17) as well as Equations (13), (14)
and the representations (15), are not split into two independent sets of
equations for different polarizations.

The obtained solution can be generalized on the case of multilayer
dielectric placed behind the screen, if coefficients R and R̄ in (7) and
(9), determined here for one interface, will be replaced with appropriate
reflection coefficients computed for a multilayer dielectric structure as
a whole.

4. CONCLUSION

We have considered the equations describing three-dimensional fields
in diffraction systems containing multilayer dielectric structures and
have solved a simple example of diffraction problem for such a system
with a slot in a thin conducting screen. These equations can be used for
rigorous simulation of various diffraction systems with several parallel
plane dielectric interfaces such as slot and strip transmission lines.

The presented approach to three-dimensional diffraction is based
on the representation of the spatial field components in terms of
two scalar complex functions. They specify two different field
polarizations, which can be identified as the well-known H and E
polarizations, if they are considered with reference to the plane of
incidence for every plane-wave component in composition of a total
diffraction field. Owing to this fact the field propagation through a
multilayer dielectric structure with parallel plane interfaces can be
described easily, because such propagation occurs independently for
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these polarizations. In essence, under these conditions the solution
is reduced to solving the problem of field propagation through a
diffracting obstacle (slot, slit or aperture), just as one solves a two-
dimensional problem. However, in contrast to this simpler case,
the orientation of planes of incidence for various plane-wave field
components under three-dimensional diffraction is varied. That is why
one needs two polarizations simultaneously for simulation of diffraction
problems in this case, even if an incident field has only one polarization.
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Figure 3. Spatial distribution of the electric (top) and magnetic
(bottom) field magnitude for the diffraction of a plane electromagnetic
wave by a slot in a thin conducting screen spaced apart from a half-
infinite dielectric in the cases of the U -polarized incident wave (left)
and the V -polarized one (right).
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